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1 Introduction

In structuralist and generative theories of morphology, probability is a concept
that, until recently, has not had any role to play. By contrast, research on lan-
guage variation across space and time has a long history of using statistical
models to gauge the probability of phenomena such as t-deletion as a function
of age, gender, education, area, and morphological structure. In this chapter,
I discuss four case studies that illustrate the crucial role of probability even
in the absence of sociolinguistic variation. The first case study shows that by
bringing probability into morphological theory, the intuitive notion of morpho-
logical productivity can be made more precise. The second case study consid-
ers a data set that defies analysis in terms of traditional syntagmatic rules, but
that can be understood as being governed by probabilistic paradigmatics. The
third case study illustrates how the use of item-specific underlying features can
mask descriptive problems that can only be resolved in probabilistic morphol-
ogy. Finally, the fourth case study focuses on the role that probability plays in
understanding morphologically complex words. However, before discussing
the different ways in which probability emerges in morphology, it is useful to
first ask the question of why probability theory, until very recently, has failed to
have an impact in linguistic morphology, in contrast to, for instance, biological

morphology.



To answer this question, consider the developments in information tech-
nology over the last 50 years, which have not been without consequences for
the study of language. The computers of the fifties had comparatively reason-
able computational capacity but very limited memory, on the order of 15KB
(it was common then to count memory capacities in bits). For a program to
work effeciently, it had to minimize storage. Programming languages such as
Fortran, Cobol, Lisp, and Algol, were being developed, the latter being the
first language (in 1958) with a formal grammar and the first language to allow
recursive calling of functions.

With very few computers available for the academic community (by 1958,
there were only some 2500 computers in use in the USA) many researchers
had to carry out statistical analyses by hand, a tedious and laborious process
— even though methods for applied statistics were generally designed to min-
imize calculations by adopting various kinds of simplifying assumptions (such
as independence, linearity, and normality). Linguistic data in electronic form
did not exist. Not surprisingly, the linguistic theories of the time took formal
languages as the model for language, emphasizing the generative capacity of
language, denying any role of importance to probability and statistics, and el-
evating economy of storage in memory to a central theorem.

Currently, the computers on our desk have vastly increased processing po-
wer and virtually unlimited memory. Carrying out a multivariate analysis is
no longer a week’s work. Statisticians have developed new, often computation-
ally intensive, methods for analysing data that cannot be modeled adequately
by the traditional statistical techniques (e.g., bootstrap and permutation meth-
ods). In addition, artificial neural networks have become standard tools in
statistics. Some artificial neural network architectures have been found to be
equivalent to existing statistical techniques. (See, for instance, Oja, 1982, for
principal components analysis and Lebart, 1995, for correspondence analysis).
Other network architectures have made it possible to estimate probabilities that
cannot be calculated efficiently by standard analytical means (see, e.g., Mehta

& Patel, 1986, and Clarkson, Fan, & Joe, 1993, for Fisher’s exact test of indepen-



dence). Yet other network architectures such as feed-forward artificial neural
networks provide genuinely new statistical tools for the flexible generalization
of linear regression functions (see, e.g., Venables & Ripley, 1994, section 10.4).

Not only do we now have many more sophisticated statistical techniques,
we also have an ever increasing amount of data. The early corpora for English,
such as the Brown corpus (Kucera & Francis, 1967) comprised 1 million words,
more recent corpora such as the British National Corpus (htt p: / /i nf 0. ox. -
ac. uk/ bnc/ '), contain 100 million words, and the world wide web is enjoying
increasing use as a data resource with for English an estimated 47,000,000,000
words in February 2000 (Grefenstette, 2000). Not surprisingly, these develop-
ments in technology and resources have left their mark in linguistics.

An area in linguistics in which these changes have had a very prominent
impact is morphology. Early work on morphology in the generative frame-
work focused on the properties of morphological rewrite rules (Aronoff, 1976,
Selkirk, 1980), within a framework that, with the exception of Jackendoff (1975),
proceeded on the assumption of a strict separation of the regular and the ir-
regular. Although Bybee & Moder (1983) introduced morphological schemas
to account for attraction phenomena among irregular forms in English, and
although Bybee (1985) proposed to understand morphological phenomena in
terms of similarities between stored representations in the lexicon, the study by
Rumelhart and McClelland (1986a) turned out to be the most effective to chal-
lenge the classic view of morphology as a symbolic system. They showed that
a very simple artificial neural network could map with a considerable degree
of success English present tense forms on past tense forms without making a
distinction between regular and irregular forms, and without formulating any
explicit symbolic rules.

The original biological motivation for artificial neural networks stems from
McCulloch & Pitts (1943). They published a seminal model of a neuron as a bi-
nary thresholding function in discrete time that has been very influential in the
development of artificial neural networks. A report from 1948 (in Ince, 1992)

shows that Alan Turing also developed the mathematics for networks of sim-



ple processing units (which he called unorganized machines) in combination
with genetic algorithms (what he called a genetic search) as a model for un-
derstanding computation in the brain . This report did not attract attention at
that time. It is only recently that it has become clear that Turing may have been
the first connectionist (Copeland & Proudfoot, 1999), and it is only now that
his ideas are implemented and studied with computer simulations (Teuscher,
2001). Real neurons are now known to be more complicated than the neurons
of McCulloch and Pitts, Turing, or the ANNs used in statistics. The interest
of the connectionist model for the creation of past tense forms of McClelland
and Rumelhart (1986), therefore, resides not in the precise form of its network
architecture, which is biologically implausible. The value of their study is that,
by showing that a network of very simple processing units can perform a lin-
guistic mapping, they have provided a powerful scientific metaphor for how
neurons in the brain might accomplish linguistic mappings.

McClelland and Rumelhart’s past-tense model met with fierce opposition.
Pinker & Prince (1988) argued that it was fundamentally flawed in just about
any conceivable way. Since then, the discussion has taken the shape of a sti-
mulus-response series in which a paper in the symbolic tradition claiming that
an artificial neural network cannot model a certain fact is followed by a study
showing how that fact naturally follows once one adopts the right kind of con-
nectionist architecture and training regime (see, e.g., MacWhinney & Leinbach,
1991; Plunkett & Juola, 2000). Brain imaging data from has been advanced
as evidence against the connectionist account (Jaeger, Lockwood, Kemmerrer,
Van Valin, & Murphy, 1996), without convincing the connectionist opposition
(Seidenberg & Hoeffner, 1998).

Nevertheless, the symbolic position seems to be in something of a retreat.
For instance, Pinker & Prince (1988) and Pinker (1991) flatly reject the con-
nectionist approach. Pinker (1997) and Pinker (1999), however, allow for the
possibility that irregulars are stored in some kind of associative memory, al-
though the claim is maintained that language comprises a mental dictionary of

memorized words on the one hand, and a mental grammar of creative rules on



the other. Marcus (2001) seems to go a step further by accepting connectionist
models as enlightening implementational variants of symbolic systems. But he
too claims that ANNs are incapable of explaining those crucial data sets that
would reveal the supposedly symbolic nature of human language processing.
Another index of the retreat of the narrow symbolic position is the emergence
of stochastic optimality theory (Boersma, 1998; Zuraw, 2000), an extension of
optimality theory incorporating a mechanism accounting for non-deterministic
data, and of interpretations of optimality theory in which similarity spaces and
attractors play a crucial role (Burzio, 2002).

There are at least three issues that play a role in the controversy between
the connectionist and symbolic positions. The first issue is whether human
cognition and language as a cognitive faculty are fundamentally symbolic in a
nature. This is an issue about which I will remain agnostic.

A second issue is whether artificial neural networks are appropriate mod-
els for language. For instance, should ANNSs be able to generalize outside the
scope of their training space, as argued by Marcus (2001)? The answers to
questions such as this depend on a host of assumptions about learning and
generalizability in animals, primates, and humans, questions that go way be-
yond my competence and the scope of this chapter.

A third issue that is at stake here is whether language is, in its core, a deter-
ministic phenomenon (one that can be handled by simple symbolic rules) or a
probabilistic phenomenen (one for which such simple symbolic rules are inad-
equate). This is the issue addressed in this chapter. I will argue that the role
of probability in morphology is far more pervasive than standard textbooks on
morphology would lead one to believe. However, this chapter will not be con-
cerned with how artificial neural networks deal with non-deterministic data,
for two reasons. First, a good introduction to neural network theory requires a
chapter of its own (see, for instance, McLeod, Plunkett, & Rolls, 1998). Second,
given that the neural networks used to model language are artificial neural net-
works providing abstract statistical models for linguistic mapping problems, it

makes sense to consider a broader range of statistical tools available at present



for understanding the quantitative structure of such problems. From this per-
spective, ANNSs pair the advantage of maximal flexibility with the disadvan-
tage of requiring considerable time with respect to training the model on the
one hand, and a loss of analytical user control on the other: To understand how
an ANN achieves a particular mapping itself requires application of conven-
tional multivariate statistical techniques.

What [ will therefore discuss in this chapter is some quantitative techniques
for coming to grips with the probabilistic structure of morphological phenom-
ena that, unlike ANNs, do not require extensive training time and that provide
immediate insight into the quantitative structure of morphological data. I offer
these techniques to the reader as useful analytical tools, without committing
myself to any of these techniques as ‘models of the mind’.

However, I will also indulge in speculating how these techniques might
be articulated in terms of the spreading activation metaphor, the current gold
standard in psycholinguistics for modeling lexical processing. I indulge in
these speculations in order to provide some indication as to how the mental
lexicon might deal with probabilistic phenomena without invoking complex
statistical calculations. Those committed to a connectionist approach will have
no difficulty reformulating my symbolic spreading activation models at the
subsymbolic level. Those committed to optimality theory will find that my
models can be reformulated within stochastic optimality theory. Both kinds of
reformulation, however, come with the cost of increased complexity in terms
of the numbers of formal parameters required to fit the data.

The remainder of this chapter is structured as follows. Section 2 illustrates
how probability theory can help to understand a key issue in morphological
theory, the enigmatic phenomenon of morphological productivity. Section 3
discusses two data sets illustrating the role of probability in the production of
complex words. Finally, section 4 considers the role of probability during the

comprehension of morphologically complex words.



2 Probability and productivity

Aronoff (1976) described productivity as one of the central mysteries of deriva-
tional morphology. What is so mysterious about productivity is not immedi-
ately evident from the definition given by Schultink fifteen years earlier. Ac-
cording to Schultink (1961), productivity is the possibility available to language
users to coin, unintentionally, a number of formations which are in principle
uncountable. The empirical problem that makes productivity so mysterious
is that some word formation rules give rise to small numbers of words, while
other word formation rules give rise to large numbers of formations. In En-
glish, there are many words in -ness (goodness), there are fewer words in -ee
(employee), and hardly any in -th (warmth). As soon as we start observing how
often different kinds of word formation patterns are realized, we see that pro-
ductivity is graded or scalar in nature, with productive word formation at one
extreme, semi-productive word formation in the middle, and unproductive
word formation at the other extreme.

Productivity becomes an even more enigmatic notion once it is realized that
unproductive word formation patterns can be fully regular (for instance, the
Dutch suffix -in that creates female agent nouns, as in boer, ‘farmer’, boerin,
‘female farmer’), while word formation need not be rule-governed in the tradi-
tional sense to be productive (see the discussion of linking elements in Dutch
in section 3 below).

Some researchers (Schultink, 1961; and recently Bauer, 2001) have argued
for a principled distinction between productive and unproductive word forma-
tion. An unproductive affix would be 'dead’, it would not be part of the gram-
mar. Productive affixes, on the other hand, would be “alive’, and the question
of degrees of productivity would only arise for such living affixes. The prob-
lem with this view is that in practice it is very difficult to know whether an affix
is truly unproductive. Consider, for instance, the following quote from (Bauer,

2001:206).

Individual speakers may coin new words which are not congru-



ent with currently predominating customs in the community as a
whole. The Oxford English Dictionary credits Walpole with coining
gloomth and greenth in the mid-eighteenth century, some 150 years
after the end of the period of societal availability for -th; greenth ap-
pears to have survived into the late nineteenth century, but neither
is now used, and neither can be taken to illustrate genuine produc-

tive use of -th.

Interestingly, a simple query of the world wide web reveals that words such as
coolth, greenth, and even gloomth are used by speakers of English, even though
-th is one of the well-worn examples of a supposedly completely unproductive

suffix in English. Consider the following examples of the use of coolth.

(1) Coolth, once a nonce word made on analogy with warmth, is now tiresomely joc-
ular: The coolth of the water in the early morning is too much for me. Kenneth G.
Wilson (1923?). The Columbia Guide to Standard American English. 1993.

www. bart| eby. conl 68/ 5/ 1505. ht m

(2) Increase the capacity of your house to store coolth. (Yes, it is a real word.) Us-
ing the mass in the house to store coolth in the summer and heat in the ...

www. t ucsonmec. or g/ tour/tech/ passcool . ht m

(8) The combination of high-altitude and low-latitude gives Harare high diurnal tem-
perature swings (hot days and cool nights). The team developed a strategy to capture
night-time coolth and store it for release during the following day. This is achieved by
blowing night air over thermal mass stored below the verandah’s ...

www. ar up. conti nsite/features/printpages/harare. htm

(4) Do we see the whiteness of the snow, but only believe in its coolth. Perhaps this is
sometimes so; but surely not always. Sometimes actual coolth is ...

www. di t ext. com sellars/ikte. htm



(5) Early drafts of Finnegans Wake- HCE ...behaved in an ungentlemanly manner
opposite a pair of dainty maidservants in the greenth of the rushy hollow, whither, or
so the two gown and pinners pleaded . ..

www. r obot wi sdom coni j aj / f wake/ hce. ht m

(6) Macom — Garden realization ... realization 3. Delivery of carpet lawn - Fa Kotrba
4. Maintainance of greenth a) chemical treatment; weeding out; fertilization and plant
nutrition; prevention of . ..

www. macom cz/ engl i sh/ service. htm

(7) This year I discovered the Gothic novel. The first Gothic novel I read was ”Mel-
moth the Wanderer.” I read all 697 pages in about five days it was so good. In the
Penguin Classics introduction to “Melmoth” it mentions other Gothic novels such as
“The Italian,” " Vathek” and “The Castle of Otranto.” All of which I've since read and
have discovered a new genre of fiction which I really enjoy. I've also had a new word
added to my vocabulary: “Gloomth.”

WWw. geoci ti es. cont prozacpar k/ got hnovel . ht m

Example (1) is an example of the prescriptive view, mirroring on the web the
quote from Bauer (2001). The second example shows how coolth is used to fill
the lexical gap in the series hot/heat, warm/warmth, cool/coolth, cold/cold. 1t is a
technical term introduced to the reader as a real word of English. The writer of
example (3) takes the use of coolth for granted, and the writer of example (4), in
a discussion of Kant's theory of experience, seems to find the non-technical use
of coolth unproblematic. Examples (5) and (6) illustrate the use of greenth, and
the last example shows how modern speakers can even enjoy learning about
gloomth. What these examples show is that forms such as coolth, greenth, and
gloomth are occasionally used in current English, testifying to the residual de-
gree of productivity of -th and the graded, scalar nature of productivity.

At first sight, it would seem that the degree of productivity of a word for-



mation pattern might be captured by counting the number of distinct forma-
tions, henceforth word types. The problem with type frequency as a measure of
productivity is that unproductive patterns may comprise more types than pro-
ductive patterns. In Dutch, for instance, the suffix -elijk occurs more often than
the prefix -her (see, e.g., Baayen, 2001), but it is the latter and not the former
which is generally judged to be productive. What we need, then, is a measure
that captures the probability of new words, independently of the number of
words that are already attested.

Two measures that formalize the notion of degree of productivity in terms
of probability are available (Baayen & Renouf, 1996; Baayen 2001). They are
based on the probability theory of the number of different species (types) ob-
served among a given number of observations (tokens). First consider the "pro-
ductivity’ of a fair dice. There are six types: 1, 2, 3, 4, 5, and 6. Imagine how
many different types we count as we throw a fair dice 100 times. How many of
these types may we expect to have been seen after N throws? In other words,
how does the expected vocabulary size E[V (V)] increase as a function of the
sample size N? The growth curve of the vocabulary size for a fair dice is shown
in the upper left panel of Figure ?? using a solid line. The vertical axis plots the
expected count of types. The horizontal axis plots the number of throws, i.e.,
the individual observations or tokens. The growth curve of the vocabulary
shows that after 40 throws we are almost certain to have seen each side of the
dice at least once. In fact, each type will probably have been counted more
than once. This is clear from the dotted line in the graph, which represents the
growth curve E[V (1, N)] of the hapax legomena, the types which occur exactly
once in the sample. After 40 trials, it is very unlikely that there is a type left in
the sample that has been observed only once.

Now consider the upper right panel of Figure ??. Here we see the corre-
sponding plot for some 6 million words from the British National Corpus (its
context-governed subcorpus of spoken British English). Instead of throwing
a dice, now imagine that we are reading through this subcorpus, word token

by word token, keeping track of the number of different word types, and also
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counting the hapax legomena. The upper right panel of Figure ?? shows that
both the growth curve of the vocabulary and the growth curve of the hapax
legomena increase as we read through the corpus. There is no sign of the
growth curve of the vocabulary reaching an asymptote, as in the case of the
fair dice. There is also no indication of the growth curve of the hapax legom-
ena having an early maximum with the X-axis as asymptote as N is increased.
This pattern is typical for word frequency distributions, irrespective of whether
one is dealing with small texts of a few thousand words, or with huge corpora
with tens or even hundreds of millions of words. It is also typical for the word
frequency distributions of productive affixes. For instance, the nouns in -ness
in the context-governed subcorpus of the BNC are charaterized by the growth
curves of the vocabulary and the hapax legomena in the lower right panel.
Conversely, the pattern show for the fair dice represents a frequency distribu-
tion prototypical for unproductive affixes. For instance, the nouns in -tk in the
context-governed subcorpus of the BNC have the growth curves shown in the

lower left panel of Figure ??.
PLACE FIGURE ?? APPROXIMATELY HERE

It turns out that the rate P(IV) at which the vocabulary size V (V) increases
is a simple function of the number of hapax legomena V (1, N) and the sample
size N:

)
(see, e.g., Good, 1953, or Baayen, 2001). Note that the growth rate of the vocab-
ulary size is itself a function of the sample size. The rate at which the vocab-
ulary size increases decreases through sampling time. Initially, nearly every
word is new, but as we read on through the corpus, we will see more and more
words that we have encountered before. Also note that the upper left panel of
Figure ?? provides a clear illustration of the relation between the growth rate
P(N) and the growth curve of the number of hapax legomena V' (1, N). After
50 throws, the growth curve of the vocabulary is, at least to the eye, completely

flat. After 50 throws, therefore, the growth rate of the vocabulary should be
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very close to zero. Since after 50 throws the number of hapax legomena has
become practically zero, P(NN) must also be zero, as required.

The growh rate P(IN) has a simple geometric interpretation: It is the slope
of the tangent to the growth curve of the vocabulary size at sample size N. The
growh rate P(NV) is also a probability, namely, the probability that, after having
sampled N tokens, the next token to be sampled will represent a type that has
not been observed among the previous IV tokens. To see this, consider an urn
with a fixed number of marbles. Each marble has one color, there are V' differ-
ent colors, N marbles, and V(1) marbles with a unique color, i.e., with a color
that no other marble has. The probability that the first marble drawn from the
urn will have a color that will not be sampled again is V(1)/N. Since there is
no reason to suppose that sampling the last marble will be different from sam-
pling the first marble, the probability that the very last marble taken from the
urn represents a color that has not been seen before must also be V(1) /N. This
probability approximates the probability that, if marbles from the same pop-
ulation are added to the urn, the first added marble drawn from the urn will
have a new color. The expectation operator in (1) makes this approximation
precise.

In order to derive productivity measures from the growth rate of the vo-
cabulary size, we consider the case where we sample a new token after having
read through N tokens. Let {A} denote the event that this token represents a
new type. We furthermore regard the vocabulary as a whole to be a mixture
of C different kinds of words: various kinds of monomorphemic words (sim-
plex nouns, adjectives, pronouns, ...), and many different kinds of complex
words (compounds, nouns in -ness, verbs in -ize, adverbs in -ly, ...). Let {B}
denote the event that NV + 1-th token belongs to the i-th mixture component of
the vocabulary. The hapax-conditioned degree of productivity P*(NV, ) of the
i-th mixture component is the conditional probability that the N + 1-th token
belongs to the i-th mixture component, given that it represents a type that has
not been observed before. Let V'(1, N, ) denote the number of hapax legomena

belonging to the i-th mixture component, observed after N tokens have been
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sampled.

P*(N,i) = P({B}{A})
P({B} NP({A})
P({4})

E[v(,n,]
3¢ EJ[VVu,N,j)]
j=1
N

E[V(1,N,1)]
EV(LM)] @
For -th and -ness, the values of P* are 1.0e-13/32042 = 3.1e-18 and 158/32042
= 0.0049 respectively. Note that for spoken British English, the probability of
observing new formations in -th is vanishingly small. It is probably only for
written English that an extremely large corpus such as the world wide web (for
which N > 47000000000, Grefenstette, 2000) succeeds in showing that there are
unobserved formations, i.e., that there is some very small residual productivity
for -th.

The category-conditioned degree of productivity P(NV,4) of mixture com-
ponent 4 is the conditional probability that the NV + 1-th token represents a new
type, given that it belongs to mixture component (or morphological category)
i. With N; the number of tokens counted for the i-th mixture component, we

have:

P(N,i) = P{A}{B})
P{A}nP{B})
P({B})

E[V(]l\;N,i)]

N;

N
E[V (1, N, )]

= # (3)

Applied to -th and -ness, we obtain 1.0e-13/3512 = 2.8e-17 and 158/3813 = 0.04
as estimates of P for -th and -ness respectively.
To understand the difference between the interpretations of P and P*, it is

important to realize that productivity is determined by a great many factors,
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ranging from structural constraints and processing constraints to register and
modality (Bauer, 2001; Plag, Dalton-Puffer, & Baayen, 1999). Since P* estimates
the contribution of an affix to the growth rate of the vocabulary as a whole, it is
ameasure that is very sensitive to the different ways in which non-systemic fac-
tors may affect productivity. For instance, the suffix -ster attaches productively
to Dutch verbs to form female agent nouns (zwem-er, 'swimmer’, zwemster, 'fe-
male swimmer’). However, even though -ster is productive, speakers of Dutch
are somewhat hesitant to use it. Consequently, its contribution to the overall
growth rate of the vocabulary is quite small.

The category-conditioned degree of productivity of a given affix does not
take counts of other affixes into consideration. This measure is strictly based
on the morphological category of the affix itself. It estimates its productivity,
independently of the non-systemic factors. Hence, it provides a better window
on the potentiality of the affix. Measured in terms of P, -ster emerges with a
high degree of productivity (see Baayen, 1994, for experimental validation).

The prominent role of the hapax legomena in both productivity measures
makes sense from a processing point of view. The more frequent a complex
word is, the more likely it is that it is stored in memory and the less likely
it is that its constituents play a role during production and comprehension
(Hasher & Zacks, 1984; Scarborough, Cortese, & Scarborough, 1977; Bertram,
Schreuder, & Baayen, 2000). Conversely, the more infrequent words there are
with a given affix, the more likely it is that its structure will be relevant during
comprehension and production. The number of hapax legomena, the lowest-
frequency words in the corpus, therefore provide a first approximation of the
extent to which the words with a given affix are produced or accessed through
their constituents.

Hay (2000) provides a more precise processing interpretation for the cate-
gory-conditioned degree of productivity. This study brings together the insight
that phonological transparency co-determines productivity and the insight that
relative frequency is likewise an important factor. First consider phonological

transparency. The more the phonological form of the derived word masks its
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morphological structure, the less such a form will contribute to the productiv-
ity of the morphological category to which it belongs (see, e.g., Cutler, 1981;
Dressler, 1985). Hay operationalizes the role of phonological transparency in
terms of offset-onset probabilities, and then shows that the resulting juncture
probabilities predict other properties of the words in which they occur, such as
prefixedness ratings, semantic transparency ratings, and number of meanings.

Next consider relative frequency. The idea here is that the frequency rela-
tion between a derived word and its base should co-determine the parsability
of that word. If the frequency of the derived word is substantially greater than
that of its base, it is unlikely that the base will effectively contribute to the pro-
cesses of production and comprehension. If, on the other hand, the frequency
of the derived word is much lower than the frequencies of its constituents, it
is much more likely that these constituents do have a role to play. Hay (2000)
shows that relative frequency predicts pitch accent placement: Prefixes in word
for which the derived frequency is greater than the frequency of the base are
less likely to attract pitch accent than words for which the derived frequency
is less than the base frequency. She also shows that t-deletion is more likely
to occur in case the derived word is more frequent than its base. Finally, she
shows that complexity ratings for such words tend to be lower than for words
for which base frequency exceeds derived frequency.

Interestingly, Hay demonstrates that for a sample of twelve English deriva-
tional affixes the category-conditioned degree of productivity is a linear func-
tion of mean relative frequency and mean juncture probability of the forma-
tions in the corresponding morphological categories. In other words, the prob-
ability that a morphological category will give rise to new formations emerges
as being demonstrably co-determined by the juncture probabilities of its mem-
bers and the frequency relations between these members and their base words.
Hay and Baayen (2002) provide a more detailed analysis of the correlation be-
tween relative frequency and the two productivity measures P and P* for 80
English derivational affixes. Their results suggest that the degree of produc-

tivity of an affix correlates surprisingly well with the likelihood that it will be
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parsed in comprehension.
Having outlined how probability theory can help to come to grips with the
elusive notion of degrees of productivity, we now turn to consider the possibil-

ity that morphological regularity itself is probabilistic in nature.

3 Probability in morphological production

In this section, I introduce two data sets illustrating the role of probability in
the production of morphologically complex words. The first data set concerns
the production of linking elements in Dutch nominal compounds. The second
data set addresses the selection of voice specification of syllable final obstruents

in Dutch.

3.1 Linking elements in Dutch

The immediate constituents of nominal compounds in Dutch are often sepa-
rated by what I will refer to as a linking element. Whether a linking element
should be inserted, and if so, which linking element, is difficult to predict in

Dutch. To see this, consider the compounds in (1).

(1) schaap-herder “sheep-herder”  ’‘shepherd’
schaap-S-kooi ”sheep-S-fold” ‘sheepfold’
schaap-EN-vlees ”sheep-EN-meat” ‘mutton’

The same left constituent appears without a linking element, with the linking
element -s-, and with the linking element -en-. Intensive study of this phe-
nomenon has failed to come up with a set of rules that adequately describe
the distribution of linking elements in Dutch compounds (see Krott, Baayen,
& Schreuder, 2001, for discussion and further references). This suggests that
the appearance of linking elements is fairly random, and that the use of link-
ers is unproductive. This is not the case, however. Linking elements are used

productively in novel compounds, and there is substantial agreement among
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speakers as to which linking element is most appropriate for a given pair of
immediate constituents. The challenge that the linking elements of Dutch pose
for linguistic theory is how to account for the paradox of an apparently random
morphological phenomenon that nevertheless is fully productive.

The key to solving this paradox is to exchange a syntagmatic approach for a
paradigmatic approach, and to exchange greedy learning for lazy learning. A
syntagmatic approach assumes that it is possible to formulate a generalization
describing the properties that the context should have for a given linking ele-
ment to appear. A paradigmatic approach assumes that the set of compounds
similar to the target compound requiring the possible insertion of a linking
element, its compound paradigm, forms the analogical basis from which the
probabilities of the different linking elements are derived. The syntagmatic ap-
proach is most often coupled with greedy learning, in the sense that once the
generalization has been abstracted from a set of examples, these examples are
discarded. In fact, researchers working in the tradition of generative grammar
tend to believe that learning a rule and forgetting about the examples that al-
lowed the rule to be deduced go hand in hand. Pinker (1991, 1997, 1999), for
instance, has argued extensively for a strict division of labor between rules ac-
counting for what is productive and regular on the one hand, and storage in
memory for what is unproductive and irregular on the other hand. Conversely,
the paradigmatic, analogical approach is based on the insight that learning may
involve a continuous process driven by an ever-increasing instance base of ex-
emplars. In this approach, it may even be harmful to forget individual in-
stances. This kind of learning, then, is lazy in the sense that it does not attempt
to formulate a rule that allows the data to be discarded. Greedy learning, once
completed, requires little memory. By contrast, lazy learning assumes a vast
storage capacity.

Two mathematically rigorously defined approaches to the modeling of para-
digmatic analogy are available: Analogical Modeling of Language (AML, Skou-
sen 1989, 1993), and the many machine learning algorithms implemented in the

TIMBL program of Daelemans, Zavrel, van der Sloot, & van den Bosch (2000).
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Both AML and TIMBL determine the choice of the linking element for a given
target compound on the basis of the existing compounds that are most similar
to this target compound. The two methods differ with respect to what counts
as a similar compound. AML makes use of a similarity metric that also plays
a role in quantum mechanics (Skousen, 2000). We will return to AML below.
In this section, I describe the 1B1-1G metric (Aha, Kibler, & Albert, 1991; Daele-
mans, Van den Bosch, & Weijters, 1997) available in TIMBL.

In formal analogical approaches, the question of which linking element to
choose for a compound amounts to a classification problem: Does this com-
pound belong to the class of compounds selecting -en-, to the class of com-
pounds selecting -s-, or to the class of compounds with no overt linking ele-
ment, for notational convenience henceforth the compounds with the linking
element -0-. In order to establish which class a compound for which we have
to determine the linking element belongs to, we need to define the properties
of compounds on which class assignment has to be based. In other words,
we need to know which features are relevant, and what values these features
might have. Now consider Table 1, which lists a hypothetical instance base
with 10 compounds. In this example, there are 5 features: the modifier, the
head, the nucleus of the modifier, the onset of the head, and the coda of the
head. The values of the feature "‘Nucleus’ are the vowels aa, 4, ou, and e. The
values of the feature "Modifier” are the left constituents schaap, lam, paard, koe,
and varken. What we want to know is what the most probable linking element

is for the novel compound schaap-?-oog (sheep’s eye).
PLACE TABLE 1 APPROXIMATELY HERE

To answer this question, we need to know which exemplars in the instance
base are most relevant. We want to discard exemplars that are very different
from the target compound, and we want to pay special attention to those com-
pounds that are very similar. In other words, we need a similarity metric, or,
alternatively, a distance metric. The IB1-IG distance metric is based on a simple

distance metric (known as the simple matching coefficient or Hamming dis-
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tance) that tracks the number of features that have different values. Let X de-
note the target compound, and let Y denote an exemplar in the instance base.
The Hamming distance between these two compounds, A(X,Y’), is defined as
the number of features with mismatching values:

n

AX,Y) = Tigiy- (4)

=1
In the present example, the number of features n equals 5. The value of the i-th
feature of X is denoted by ;. The operator I} evaluates to 1 if the expression
z is true, and to 0 otherwise. This metric allows us to group the compounds
in the instance base according to their distance to the target compound. For
instance, schaap-en-bout is at distance 3 from the target schaap-?-oog, because
these two compounds mismatch with respect to the features Head, Onset(2),
and Coda(2). We can now determine the set S of compounds that, given the
features and their values, are most similar to the target compound. The dis-
tribution of linking elements in this set of nearest neighbors determines the
probabilities of selection. Denoting the cardinality of S by S, the probability
of the linking element -en- is given by the proportion of compounds in S that

select -en-:
S

Iip,—en-
P(L = -en-) = ; % ®)
The 1B1-1G distance measure (Daelemans, Van den Bosch, & Weijters, 1997)
improves considerably upon (4) by weighting the features for their relevance,
using the information-theoretic notion of entropy. The entropy H (L) of a dis-

tribution of linking elements L, with J different linking elements,

J
H(L) == pjlog, pj, (6)
j=1

is a measure of uncertainty about which linking element to choose in the situa-
tion that no information is available about the values of the features of a given

word. For the data in Table 1,
H(L) = —[P(L=en)logy(P(L=-en))+P(L=s)log,(P(L=5))+
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+P(L = 0)log,(P(L = 0))]
—[ 0.410g,(0.4) + 0.510g,(0.5) + 0.110g,(0.1)]

1.36.

The degree of uncertainty changes when extra information is provided, for

instance, the information that the value of the feature Modifier is schaap:

H(L|Modifier = schaap) =
= —[P(L = en|Modifier = schaap) log,(P(L = en|Modifier = schaap)) +
+P(L = s|Modifier = schaap) log,(P(L = s|Modifier = schaap)) +
+P(L = @|Modifier = schaap) log, (P(L = §|Modifier = schaap))]]
= —[0.5 % log,(0.5) + 0.25 % log,(0.25) + 0.25 * log,(0.25)]

1.5.

We can gauge the usefulness or weight w; of a feature F; for predicting the link-
ing element by calculating the probability-weighted extent to which knowl-
edge of the value v of F; decreases our uncertainty:

w; = H(L) = ) P(v)H(Lv). 7)

veEF;
For the feature Modifier, v ranges over the values schaap, lam, paard, koe, and
varken. Note that when v has the value schaap, the probability P(v) equals 4/10.
Because H(L|v) = 0 when v # schaap (the other modifiers all occur with just
one linking element, so there is absolute certainty about the appropriate linking

element in these cases), the information gain weight for the feature Modifier is

Whodifier = H(L) — P(Modifier = schaap) H (L|Modifier = schaap)
= 1.36—-0.4x1.5
= 0.76.

The feature with the lowest information gain weight is Coda(2), which is not

surprising as there is no obvious phonological reason to suppose the coda of
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the second constituent to codetermine the choice of the linking element. Cru-
cially, when applied to a realistic instance base, the information gain weights
are a powerful means for establishing which features are important for under-
standing the quantitative structure of a data set.

When applied to an instance base of Dutch compounds as available in the
CELEX lexical database (Baayen, Piepenbrock, and Gullikers, 1995), it turns out
that, of a great many features, the Modifier and Head features have the highest
information gain values (1.11 and 0.41) respectively, and that other features,
such as whether the first constituent bears main stress, have a very low infor-
mation gain weight (0.07). When we modifiy our distance metric by weighting

for information gain,
n
A(Xa Y) = Z wil[wi#y;]a (8)
i=1

and when we choose the linking element on the basis of the distribution of
linking elements in the set of compounds with the smallest distance A, some
92% of the linking elements in Dutch compounds are predicted correctly (using
ten-fold cross-validation). Experimental studies (Krott, Baayen, & Schreuder,
2001a, Krott, Schreuder, & Baayen, 2001b) have confirmed the crucial impor-
tance of the Modifier and Head features. Apparently, the compounds shar-
ing the modifier constituent (the left constituent compound family), and to a
lesser extent the compounds sharing the head constituent (the right constituent
compound family), form the analogical exemplars on which the choice of the
linking element in Dutch is based. What we have here is paradigmatically de-
termined selection instead of syntagmatically determined selection. Instead of
trying to predict the linking element on the basis of specific feature values of
the surrounding constituents (its syntagmatic context), it turns out to be crucial
to zoom in on the constituents themselves and the distributional properties of

their positional compound paradigms.

PLACE FIGURE ?? APPROXIMATELY HERE
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To see how such paradigmatic effects might be accounted for in a psycholin-
guistic model of the mental lexicon, consider Figure ??. Figure ?? outlines the
functional architecture of a spreading activation model for paradigm-driven
analogy using the small instance base of Table 1. At the left hand side of the
graph, the modifier (labeled LEFT) and the head constituent (labeled RIGHT)
are shown. These two lexemes are connected to their positional compound
paradigms, listed in the center. The weights on the connections to the com-
pounds in the instance base are identical to the information gain weights of
the left and right constituents. The different linking elements are displayed at
the right hand side of the graph. Each linking element is connected with the
compounds in which it appears. Activation spreads from the left and right con-
stituents to the compounds in the paradigmatic sets, and from there to the link-
ing element. The linking element that receives the most activation is the one se-
lected for insertion in the novel compound schaap-?-00g. Krott, Schreuder, and
Baayen (2001b) show that an implemented computational simulation model
along these lines provides excellent fits to both the choices and the times re-
quired to make these choices in experiments with novel Dutch compounds.

This example shows that morphological network models along the lines
proposed by Bybee (1985, 1995a, 2001) can be made precise and that, once for-
malized, they have excellent predictive power. It should be kept in mind, how-
ever, that the present model presupposes considerable structure in the mental
lexicon, both in terms of the specific connectivity required and in terms of the
specific information gain weights on these connections. In this light, it makes
more sense to speak of an analogical or paradigmatic rule for the selection of
the linking element rather than of a network model, because we are dealing not
with undifferentiated connectivity in an encompassing network for the whole
mental lexicon, but with highly structured connectivity in a sub-network dedi-
cated to the specific task of selecting the appropriate linking element for Dutch
compounds.

The next section provides a second example of a phenomenon that turns out

to be analogical in nature, the morphophonology of final obstruents in Dutch.
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3.2 Syllable-final obstruents in Dutch

The feature [voice] is distinctive in Dutch. This is illustrated in (2) for the
Dutch nouns /rat-en/and /rad-en/. When the alveolar stop is voiceless, the noun
means 'honey combs’, when the stop is voiced, the noun means ”councils”.
When the stop is in syllable-final position, as in isolated singular forms, the
distinction between the voiced and voiceless obstruent is neutralized, and in

phrase-final position both obstruents are realized as voiceless.

(2) FORM TRANSLATION VOICING
/rat-en/ 'honey comb’-PLURAL voiceless
/rat/ "honey comb’ voiceless
Jrad-en/ ‘council’-PLURAL voiced
/rat/ ‘council’ voiceless

Traditionally, this phenomenon is accounted for by assuming that the obstru-
ents in /rat-en/ and /rad-en/ are specified as being underlyingly voiceless and
voiced respectively, with a rule of syllable-final devoicing accounting for the
neutralization of the voice distinction in the singular (e.g., Booij, 1995). Whether
the final obstruent in a given word alternates between voiced and voiceless is
taken to be an idiosyncratic property of that word that has to be specified lex-
ically, although it has been noted that fricatives following long vowels tend to
be underlyingly voiced and that bilabial stops tend to be voiceless following
long vowels (Booij, 1999).

Ernestus & Baayen (2001a) report that there is far more structure to the dis-
tribution of the voice specification of final obstruents in the lexicon of Dutch
than expected on the basis of this standard analysis. Figure ?? summarizes
some of the main patterns in the data for three major rime patterns by means
of the barplots at the left hand side. The data on which these graphs are based
are some 1700 monomorphemic words attested in the Dutch part of the CELEX
lexical database. These words are nouns, verbs, or adjectives ending in an
obstruent that has both voiced and voiceless counterparts in Dutch, and that

are attested with a following schwa-initial suffix. For these words, we there-
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fore know whether they have an alternating or a non-alternating final obstru-
ent. The top left panel of Figure ?? plots the percentage of words exhibiting
voice alternation (% voiced) as a function of the kind of obstruent (bilabial (P)
and alveolar (T) stops, labiodental (F), alveolar (S), and velar (X) fricatives) for
words with a rime consisting of a short vowel followed by a sonorant conso-
nant, followed by the final obstruent. Note that as we proceed from left to
right, the percentage of words with underlying voiced obstruents increases.
The center left panel shows a fairly similar pattern for words ending in a long
vowel that is directly followed by the final obstruent without any intervening
consonant. The bottom left panel visualizes the distribution for words ending
in a short vowel immediately followed by the final obstruent. For these words,
we observe a u-shaped pattern. (A very similar pattern characterizes the sub-
set of verbs in this database of monomorphemic words.) Ernestus and Baayen
show that the quality of the vowel, the structure of the coda (does a consonant
precede the final obstruent, and if so, is it a sonorant), and the type of final
obstruent, are all significant predictors of the distribution of the percentage of

voicing in Dutch.
PLACE FIGURE ?? APPROXIMATELY HERE

The right panels of Figure ?? present the corresponding barplots for the
data obtained in a production experiment in which participants were asked
to produce the past tense form for some 200 artificially created but phonotac-
tically legal pseudo-verbs. The past tense suffix was selected because it has
two allomorphs the selection of which depends on whether the final obstruent
alternates. If the final obstruent alternates, the past tense suffix has the form
-de and the final obstruent is realized as voiced. If the final obstruent does not
alternate, the appropriate past tense suffix is -te, and the final obstruent is re-
alized as voiceless. By asking participants to produce the past tense form, the
status assigned to the final obstruent of the pseudo-verb, alternating or not al-
ternating, can be determined simply on the basis of the form of the past-tense

suffix.
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Interestingly, the percentages of verbs for which the participants used the
past tense suffix -de reflect to a considerable degree the percentages of the
words with alternating final obstruents in the lexicon shown in the left pan-
els. Note that even the u-shaped pattern in the lower left panel is present to
some extent in the lower right panel. This pattern of results is incompatible
with theories that hold that the selection of the past tense suffix crucially de-
pends on the availability of a lexically specified feature marking the verb as
underlyingly voiced. After all, the participants in the experiment were asked
to produce the past tense for pseudo-verbs, forms that are not available in the
lexicon and for which no such lexically specified feature is available. We are
therefore faced with the question how the participants might have arrived at

their choice of the allomorph of the past tense suffix for these pseudo-verbs.
PLACE FIGURE ?? APPROXIMATELY HERE

Figure ?? illustrates the kind of lexical connectivity required for a spread-
ing activation network to predict the choice of the past tense allomorph. Com-
pletely analogous to the spreading activation model outlined in Figure ?? for
modeling the choice of the linking element in Dutch compounds, activation
spreads from the phonological feature values (left) to the words sharing these
feature values (center) and from there to the voicing specification of the final
obstruent and of the past tense allomorph (right). As before, this model embod-
ies an analogical, paradigmatic rule. It presupposes that vowel length, coda
structure, and type of obstruent can be identified for any given input form,
and that the speaker has learned that it is these features that are primarily rel-
evant for the voicing alternation. Once the values of these features are acti-
vated, the paradigms of words in the lexicon sharing these feature values are
co-activated, proportionally to the weights wi,ws,.... The support from the
weighted paradigmatic cohorts determines the probability of selecting [-voice]
or [+voice]. Note that this probability is not determined by the proportion of
words with exactly the same values as the target for the features vowel length,

coda structure, and type of obstruent. Words which share only two feature val-
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ues, and even words that share only one feature value, also co-determine the
probabilities of a voiced or voiceless realization.
A formal definition of these probabilities proceeds as follows. Let F' denote

the number of features, and let v denote the vector

specifying for the target word the value v; of each feature F;. We define n;;;, as
the number of lexemes with value j for feature i that support exponent k, the
exponents in this example being the voicing outcomes Voiced and Voiceless.

The support s, that exponent & receives given target ¥ and weights w equals

F
Sk = ) Williyk, ©)
i=1
and the probability p;, that it will be selected, given K different exponents, is
Sk
Pk=—xg - (10)
Em:l Sm

The maximum likelihood choice of this spreading activation model is the ex-
ponent for which p;, is maximal. This maximum likelihood choice is the choice
that the model predicts that the majority of the participants should opt for.
When we set the weights w to the information gain weights (7), the max-
imum likelihood prediction of the model coincides with the majority choice
of the participants in 87.5% of the experimental pseudoverbs. When we opti-
mize the weights using the simplex algorithm of Nelder & Mead (1965), this
accuracy score improves to 91.7%. The by-word probabilities for voicelessness
in this model correlate well with the proportions of participants selecting the
voiceless allomorph of the past tense suffix, -te (r = 0.85,#(190) = 22.1,p <
0.0001). That the maximum likelihood choices of the model are similar to those
made by the participant is illustrated in Figure ??, the dendrogram for the hier-

archical clustering of the participants and the model. (The clustering is based
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on a distance matrix of by-participant pairwise proportions of pseudoverbs
which differ with respect to the assignment of voice.) The participants are la-
belled 1-28, the model is labelled 29, and can be found in the lower center
of the tree diagram. In a dendrogram such as this, participants who are very
similar will be in a very similar position in the tree. For instance, participants
20 and 25 are very similar, the group formed by participants 20 and 25 is in
turn very similar to participant 12. These participants are very different from
participants 4 and 6. One has to traverse the tree almost to its root to go from
participant 25 to participant 4. In other words, vertical traversal distance, la-
belled Height in Figure ??, tells us how dissimilar two participants are. The
position of the model (29) near to participants 15, 5, and 27, shows that the
model’s behavior is quite similar to that of a number of actual participants.
If the model had occupied a separate position in the dendrogram, this would
have been an indication that its voicing predictions might be in some way fun-
damentally different from those of the participants, which would have been a
source of worry about the validity of the model as a model of how speakers of

Dutch arrive at their choice of the past tense suffix.
PLACE FIGURE ?? APPROXIMATELY HERE

Summing up, the distribution of voice alternation for final obstruents in the
lexicon of Dutch is far from random. Speakers of Dutch make use of this in-
formation when confronted with novel (pseudo)verbs (see Ernestus & Baayen,
2001b, 2002, for evidence that even the voice specification of existing words
is likewise affected by the distributional properties of voicing in the lexicon).
The probability that a speaker of Dutch will select the voiced or voiceless allo-
morph of the Dutch past tense suffix can be approximated with a reasonable
degree of accuracy on the basis of only three parameters, one for each relevant
feature.

There are many other formal quantitative models that provide good fits to
the present data (see Ernestus & Baayen, 2001a, for detailed discussion), two

of which are of special interest. Boersma (1998) proposes a stochastic version
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of optimality theory (SOT) in which constraints are assigned a position on a hi-
erarchy scale. The exact position of a constraint on this scale is stochastic, i.e.,
it varies slightly from instance to instance, according to a normal distribution.
The positions of the constraints are determined by Boersma'’s gradual learning
algorithm (see also Boersma & Hayes, 2001). This algorithm goes through the
list of forms in the model’s input, adjusting the constraints at each step. If the
model predicts an outcome that is at odds with the actually attested outcome,
the positions of the constraints are adjusted. Those constraints that are violated
by the actual input form are moved down. At the same time, those constraints
that are violated by the words that the model thought were correct instead of
the actual input form are moved up in the hierarchy. The simplest model that
provides a reasonable fit to the data is summarized in Table 2. It has 10 con-
straints, and hence 10 parameters. The maximum likelihood predictions of this
model correspond for 87% of the experimental pseudoverbs with the majority
choice of the participants, a success rate that does not differ significantly from
the success rate (91%) of the spreading activation model (p > .25, proportions
test).

Given that SOT and the spreading activation model have the same observa-
tional adequacy, the question arises which model is to be preferred for this spe-
cific data set. SOT implements a greedy learning strategy, in that the individ-
ual examples to which the model is exposed are discarded. It is a memory-less
system that presupposes that it is known beforehand which constraints might
be relevant. The spreading activation model, by contrast, crucially depends on
having in memory the phonological representations of Dutch monomorphemic
lexemes. Interestingly, this requirement does not add to the complexity of the
grammar, as the phonological form of monomorphemic words must be stored
in the lexicon anyway. Since there is no intrinsic advantage to greedy learn-
ing for these data, Occam’s razor applies in favor of the spreading activation

model as the more parsimonious theory, at least for this data set.

PLACE TABLE 2 APPROXIMATELY HERE
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The interactive activation model is in its turn challenged by a lazy learn-
ing model with no parameters at all, Analogical Modeling of Language (AML,
Skousen 1989, 1993). In what follows, I give a procedural introduction to AML.
For a rigorous mathematical analysis of the statistical properties of AML, the
reader is referred to Skousen (1992), and for the use of this natural statistic in
quantum physics, to Skousen (2000).

Like the interactive activation model, AML requires an input lexicon that
specifies for each lexeme the values of a series of features describing its final
syllable together with the underlying voice specification of the final obstruent.
Table 3 lists some examples of an instance base with features Onset, Vowel
Type, Vowel (using the DISC computer phonetic alphabet), Coda structure
(whether a pre-final consonant is present and, if so, whether it is a sonorant

or a stop), and final obstruent.
PLACE TABLE 3 APPROXIMATELY HERE

When AML has to predict the voice specification for a pseudoverb such as
puig, it considers the exemplars in its lexicon for all possible supracontexts of
the target. A supracontext of the target is the set of exemplars (possibly empty)
that share a mimimum number (possibly even zero) of feature values with the
target. Table 4 lists all the supracontexts of puig. The first supracontext has
distance 0: The values of all its features are fixed. That is, in order for a word to
belong to this supracontext, it must share puig’s values for all its five features.
Because puig is not a real word of Dutch, this fully specified supracontext is
empty. The next 5 supracontexts have distance 1. They contain the exemplars
that share 4 feature values, and that differ from the target at (at most) one po-
sition. This position is indicated by a hyphen in Table 4. The next 10 supra-
contexts cover the sets of exemplars that have two variable positions. The fi-
nal supracontext has five variable positions. As we move down Table 4, the
supracontexts become less specific in their similarity requirements, and con-
tain nondecreasing numbers of exemplars. The columns labeled voiced” and

"voiceless’ tabulate the number of exemplars in a given context that have the
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corresponding voice specification. Thus, there are 8 exemplars in the second
supracontext, 7 of which are underlyingly voiced. The last, most general supra-
context at the bottom of the table covers all 1684 words in the lexicon, of which

583 are voiced.
PLACE TABLE 4 APPROXIMATELY HERE

Supracontexts can be deterministic or non-deterministic. A supracontext is
deterministic when all its exemplars support the same voice specification (e.g.,
p long L - -), otherwise, itis non-deterministic (e.g.,- | ong L None -).
When predicting the voice specification for a new word that is not yet in the
model’s instance base, AML inspects only those supracontexts that are homoge-
neous. All deterministic supracontexts are homogeneous. A non-deterministic
supracontext is homogeneous only when all more specific supracontexts that
it contains have exactly the same distribution for the voice specification. Con-
sider, e.g., the non-deterministic supracontext - | ong L - x, which has the
outcome distribution (7, 1). It contains the more specific supracontext- | ong
L None x. This supracontext is more specific because the fourth feature has
the specific value None. This supracontext is also non-deterministic and it has
the same outcome distribution (7,1). The supracontext - 1ong L - X has
one other more specific supracontext, p | ong L - x. This supracontext is
the empty set, and does not count against the homogeneity of the more gen-
eral supracontexts of which it is a subset. Therefore, the supracontext- | ong
L - x is homogeneous. It is easy to see that the non-deterministic supracon-
text - long L None - is heterogeneous, as there is no other more specific
supracontext with the distribution (38, 34). The homogeneous contexts jointly
constitute the analogical set on which AML bases its prediction. Intuitively, one
can conceptualize the homogeneity of a supracontext as indicating that there
is no more specific information (in the form of a more fully specified supra-
context) with contradicting distributional evidence. In other words, distribu-
tional evidence tied to more specific supracontexts blocks contradicting distri-

butional evidence from less specific supracontexts from having an analogical
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contribution.
PLACE TABLE 5 APPROXIMATELY HERE

Table 5 lists the exemplars that appear in the analogical set. AML offers two
ways for calculating the probabilities of the outcomes (voiced or voiceless),
depending on whether the size of the supracontexts is taken into account. In
occurrence-weighted selection, the contribution of an exemplar (its similarity
score in the model) is proportional to the count of different supracontexts in
which it occurs. The third column of Table 5 lists these counts, and the fourth
column the proportional contributions. The probability of a voiced realiza-
tion using occurrence weighted selection is 0.75, as the summed count for the
voiced exemplars equals 25 out of a total score of 100. Applied to all experi-
mental pseudoverbs, the maximum likelihood choice of AML with occurrence
weighted selection agrees with the majority choice of the participants in 166
out of 192 cases, an accuracy score of 86% that does not differ significantly
from the accuracy score of 91% obtained with the spreading activation model
(X2(1) = 1.6761,p = 0.1954).

When we use size weighted selection, the contribution of an exemplar is
proportional to the sum of the sizes of the supracontexts in the analogical set
in which it appears. This size weighted selection amounts to using a squaring
function for measuring agreement, similar to the quadratic measure of agree-
ment found in Schrodinger’s wave equation (Skousen, 2000). The exemplar
buig, for instance, occurs in 4 homogeneous supracontexts, the homogeneous
supracontexts in Table 4 with the (7,1) distribution. The size of each of these
4 supracontexts is 8, hence, buig now contributes a count of 32 instead of 4. In
the case of the exemplar poog, the two homogeneous supracontexts in which
it appears both have a size of 1. Hence, the contribution of poog remains pro-
portional to a count of 2. The probability of a voiced realization using size-
weighted selection is 0.84. The accuracy score of AML with respect to the com-
plete set of experimental pseudoverbs is again 86%. Although AML seems to

be slightly less accurate than the spreading activation model, the fact that AML
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is a parameter-free model, i.e., a model with no parameters that the analyst
can twiddle to get the model to better fit the data, makes it a very attractive
alternative.

It is important to realize that AML bases its predictions on the local similar-
ity structure in the lexicon given a target input. There are no global compu-
tations establishing general weights that can subsequently be applied to any
new input. It is not necessary to survey the instance base and calculate the
information gain weight for, say, the onset. Likewise, it is not necessary to es-
tablish a priori whether constraints pertaining to the onset should or should
not be brought into a stochastic optimality grammar. (The only requirement is
the a-priori specification of a set of features and their values, but this minimal
requirement is a prerequisite for any current theory.) What I find interesting is
that the microstructure of local similarities as captured by the analogical set of
AML is by itself sufficient to capture the support in the language for the voice
specification for a given target word. The absence of a role for the onset follows
without further specification from the fact that the supracontexts containing
the onset (the supracontexts with an initial p in Table 4) are either very sparsely
populated or heterogeneous. Althought generalizations in the form of abstract
rules may provide a good first approximation of morphological regularities,
for more precise prediction it is both necessary and, surprisingly, sufficient to
take into account the microstructure of the similarity space around individual
words. Global similarity structure is grounded in the local similarity structure

around individual words.

3.3 Discussion

The case studies surveyed in this section have a number of interesting conse-
quences for linguistic theory. A first observation concerns the notion of pro-
ductivity. Regularity, of the kind that can be captured by symbolic rules, is
often seen as a necessary condition for productivity. The Dutch linking ele-

ments, however, are productive without being regular in this sense. Similarly,
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the morphophonological voicing alternation of obstruents in Dutch also en-
joys a fair degree of productivity, even though standard analyses have treated
it as idiosyncratic and lexically specified. To understand the basis of produc-
tivity, the paradigmatic, probabilistic dimension of morphological structure is
crucial.

A second observation is that rejecting syntagmatic symbolic rules as the ap-
propriate framework for the analysis of a given morphological phenomenon
does not imply embracing subsymbolic connectionism. The present exam-
ples show that a symbolic approach in which paradigmatic structure provides
a similarity space over which probabilities are defined can provide an excel-
lent level of granularity for understanding the role of probability in language
production. This is not to say that the present data sets cannot be modelled
by means of subsymbolic artificial neural networks. To the contrary, artifi-
cial neural networks are powerful non-linear classifiers, whereas the classifi-
cation problems discussed in this section are trivial compared to the classifi-
cation problems that arise in, for instance, face recognition. Artificial neural
networks have as disadvantage that they require large numbers of parameters
(the weights on the connections) that themselves reveal little about the linguis-
tic structure of the data, unlike the information gain weights in the spreading
activation model. The hidden layers in an artificial neural network often pro-
vide a compressed re-representation of the structure of the data, but the cost in
terms of the number of parameters and the complexity of the training proce-
dure are high. And it is not always clear what one has learned when a three-
layer network successfully maps one type of representation onto another (see
Forster, 1994). For those who take the task of morphological theory as part
of linguistics to be to provide the simplest possible account for (probabilistic)
phenomena in word formation, artificial neural networks are probably not the
analytically most insightful tool to use. However, those who view morphol-
ogy as part of cognitive science may gladly pay the price of greater analytical
complexity, especially when more biologically realistic neural networks mod-

els become available.
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A third observation concerns the notion of learning. Traditional symbolic
approaches such as the one advocated by Pinker (1991) are based on the a-
priori assumption that greedy learning is at the core of the language faculty.
The gradual learning algorithm of Boersma (1998) is in line with this tradition:
Occurrences leave a trace in the positions of the constraints, they themselves
need not be stored in memory. TIMBL and AML, by contrast, are based on lazy
learning, with extensive storage of exemplars in memory and similarity-based
reasoning taking the place of abstract rules.

A question that arises here is to what extent these models provide a rea-
sonable window on language acquisition. It should be noted at the outset that
all models discussed here share, in their simplest form, the assumption that
it is known at the outset which features are relevant and what values these
features can assume, and that this knowledge is constant and not subject to de-
velopment over time. This is a strong and unrealistic assumption. Granted this
assumption, SOT, TIMBL, and AML can all approximate acquisition as a func-
tion of the input over time. Given which constraints are relevant for a given
linguistic mapping, SOT can chart how the positioning of constraints develops
over time. What TIMBL requires for modeling classificatory development is a
continous re-evaluation of the information gain weights as the instance base is
increased with new exemplars. AML, by contrast, predicts changing classifica-
tory behavior as a function of a changing lexicon without further assumptions,
a property it shares with connectionist models of language acquisition.

A related final question concerns whether there are differences in the ex-
tent to which different models depend on a-priori assumptions. All models
reviewed here, including SOT and AML, do not differ with respect to the mini-
mal levels of representation they require. The differences between these mod-
els concern how they make use of these representations and what happens
with the examples from which a given mapping has to be learned. Both TIMBL
and AML instantiate lazy learning algorithms that do not require any further
a-priori knowledge. The same holds for connectionist models. SOT instanti-

ates a greedy learning algorithm, an algorithm that does require the a-priori
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knowledge of which constraints are potentially relevant, or, at the very least,
that does require considerable hand-crafting in practice. For instance, there is
no constraint xiuyF[+voice] in the SOT model summarized in Table 2, simply
because it turned out to be unnecessary given the other constraints that had
already been formulated. Theoretically, it might be argued that every combi-
nation of feature values (e.g., T, or SonO) and outcome values (e.g., [-voice])
is linked automatically with a (supposedly innate, universal) constraint, with
irrelevant constraints dropping to the bottom of the grammar during learn-
ing. Under this view, SOT would not depend on a-priori knowledge either,
although such a SOT grammar is encumbered with an enormous pile of use-
less constraints lying inactive at the bottom of the ranking. Note, however,
that TIMBL and AML are encumbered in a different way, namely, with useless
features that are themselves harmless but that render the on-line calculation of
the similarity space more complex. Similarly in connectionist networks, such
useless features add noise to the system, delaying learning and slowing down
convergence.

Summing up, from a statistical point of view, SOT, AML and TIMBL, and con-
nectionist models as well, all have their own advantages and disadvantages as
explanatory frameworks for the data sets discussed. One’s choice of model will
in practice be determined by one’s view of the explanatory value of these mod-
els as instantiations of broader research traditions (optimality theory, machine

learning, and cognitive science) across a much wider range of data sets.

4 Probability in morphological comprehension

In the previous section, we have seen how probabilities based on counts of
word types falling into different similarity classes play a role in the production
of morphologically complex words. In this section, we shall see that proba-
bilities based on token frequencies play a crucial role in solving the ambiguity

problem in morphological segmentation. Consider the examples in (3).
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(3) acute+ness 32 a+cuteness 39

expert+ness 25 ex+pert+ness 68
intent+ness 29 in+tent+ness 57
perverse+ness 31 per+verse+ness 66
sacred+ness 27 sac+redness 56
tender+ness 28 tend+er+ness 55
prepared-+ness 19 prep+a+red+ness 58

The first column lists correct segmentations for a number of words with the
suffix -ness, the third column lists some incorrect or implausible segmentations.
I'will explain the interpretation of the numbers in columns two and four below.
How do we know, upon reading a string such as pr epar edness, which of the

segmentations in (4) is the one to choose?

(4) preparedness 19
prepared+ness 27
pre+pared+ness 56
prep+a+red+ness 58
prep+a+redness 58
pre+par+ed+ness 71
pre+pa+red+ness 78
pre+pa+redness 78
pre+pare+d+ness 78
prep+are+d+ness 78

prepare+d+ness 78

Some of these segmentations can be ruled out on the basis of combinatorial
restrictions. For instance, the verb form are (past tense of be, or singular of the
noun denoting an area of 100 m?) in prep+are+d+ness does not combine with the
suffix -d. Other segmentations in (4), however, are possible albeit implausible.
E.g., ((pre((pare)d))ness) has the same structure as ((pre((determine)d))ness), but it
is unlikely to be the intended reading of preparedness. Why are such forms im-

plausible? In other words, why are their probabilities so low? In various com-
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putational approaches (e.g., probabilistic context-free grammars, probabilistic
head lexicalized grammars, and data-oriented parsing, as described in the in-
troductory chapter of this book), the probability of the whole, P(preparedness),
is obtained from the probabilities of combinations of its constituents, some of

which are listed in (5).

(5) P(prepared, ness)
P(pre, pared)
P(pared, ness)
P(pre, pared, ness)

P(prepare, d)
P(d, ness)
P(prepare, d, ness)

Crucially, these probabilities are estimated on the basis of the relative token
frequencies of these bigrams and trigrams in large corpora, with the various
approaches using different subsets of probabilities and combining them ac-
cording to different grammars (for an application to Dutch morphology, see
Heemskerk, 1993; for a memory-based segmentation system using TIMBL see
Van den Bosch & Daelemans, 2000). In this section, I consider the question
how human morphological segmentation might be sensitive to probabilities of
combinations of constituents.

It is important to realize that if the brain does indeed make use of probabil-
ities, then it must somehow keep track of (relative) frequency information for
both irregular and completely regular complex words. The issue of whether
fully regular complex words are stored in the mental lexicon, however, is hotly
debated. Pinker (1991, 1997), Marcus, Brinkman, Clahsen, Wiese, and Pinker
(1995), Clahsen, Eisenbeiss, and Sonnenstuhl (1997), and Clahsen (2000) have
argued that frequency information is stored in the brain only for irregular com-
plex words, and not at all for regular complex words. They argue that regular

morphology is subserved by symbolic rules that are not sensitive to the fre-
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quencies of the symbols on which they operate, and that irregular morphology
is subserved by a frequency-sensitive associative storage mechanism.

The only way in which probabilities might play a role for regular complex
words in this dual route model is at the level of the rules themselves, i.e., rules
might differ with respect to their probability of being applied. Consider Ta-
ble 6, which lists the frequencies of the singular, plural, and diminutive forms
of the Dutch nouns tong, ‘tongue’, and gast, ‘guest’, as listed in the CELEX lexi-
cal database. By assigning different probabilities to the rules for diminutiviza-
tion and pluralization, this approach can account for the lower probabilities of
diminutives compared to plurals. However, it cannot account for the differ-
ences in the probabilities of the two plural forms. Even though the lexemes
tong and gast have very similar probabilities, the former occurs predominantly
in the singular, and the latter predominantly in the plural. I will refer to tong as
being a singular-dominant noun and to gast as a plural-dominant noun. What
the dual route model predicts is that such differences in frequency dominance
are not registered by the brain, and hence that such differences do not affect
lexical processing. Note that this amounts to the claim that the brain has no
knowledge of the probability that a particular noun co-occurs with the plural
suffix. The only frequency count that should be relevant in the dual route ap-
proach is the stem frequency, the summed frequency of the singular and the

plural forms.
PLACE TABLE 6 APPROXIMATELY HERE

There is massive evidence, however, that the claim that frequency infor-
mation is retained by the brain for irregular words only is incorrect (see, e.g.,
Taft, 1979, Sereno & Jongman, 1995, Bertram, Laine, Baayen, Schreuder, &
Hyo6n4, 1999, Bertram, Schreuder, & Baayen, 2000, Baayen, Schreuder, De Jong,
& Krott, in press). These studies show that probabilistic information in the
form of knowledge of co-occurrence frequencies of constituents forming com-
plex words must be available to the brain. But how then might the brain make

use of this information? Although I think that formal probabilistic models
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provide excellent mathematically tractable characterizations of what kinds of
knowledge are involved in morphological segmentation, I do not believe that,
e.g., the algorithms for estimating the parameters of hidden markov models
can be mapped straightforwardly onto the mechanisms used by the brain. The
way the brain solves the ambiguity problem may well be more similar to a
dynamic system in which a great many interdependent morphological units
compete to provide a segmentation that spans the target word in the input. In
what follows, I will outline a model implementing a simple dynamic system,
and I will show that it provides a reasonable framework for understanding

some interesting aspects of the processing of Dutch and German plural nouns.

4.1 A dynamic system for morphological segmentation

Whereas computational parsing models in linguistics have succesfully used
token-count based probabilities of occurrence, psycholinguistic research on the
segmentation problem has focused on the role of form similarity. In the Short-
list model of the segmentation of the auditory speech stream (Norris, 1994;
Norris, McQueen, & Cutler, 1996), for instance, the lexical representations that
are most similar to the target input are wired into a connectionist network
implementing a similarity-based competition process. The resulting model
is very sensitive to differences in form between lexical competitors, and cap-
tures important aspects of auditory lexical processing. However, the authors
of Shortlist have not systematically addressed how to account for the word
frequency effect in auditory word recognition (see, e.g., Rubenstein & Pollack,
1963).

MATCHECK (Baayen, Schreuder, & Sproat, 1997, Baayen & Schreuder, 1998,
2000) implements an approach to the segmentation problem in which form
similarity and token-frequency based probability simultaneously play a role.
This model is a dynamic system articulated within the interactive activation
framework. It shares with dynamic systems in general the properties that its

behavior depends crucially on the initial condition of the model, that it is de-

39



terministic, and that there is order in what seems to be chaotic behavior. The
components of the model are an input lexicon, a mechanism for ascertaining
whether a lexical representation should be taken into account as a candidate
for a segmentation, and a competition mechanism. In what follows, I outline
the architecture of Matcheck for the visual modality.

The input lexicon contains form representations for stems, affixes, and full
forms, irrespective of their regularity. Each representation w has an initial acti-
vation level a(w, 0) equal to its frequency in a corpus. The initial probability of
a lexical representation p,, ¢ is its relative frequency in the lexicon.

The mechanism for determining whether a lexical representation should be
taken into account as a possible constituent in a segmentation makes use of
an activation probability threshold 0 < 8 < 1. Only those lexical representa-
tions with a probability p,, ; > 6 at timestep ¢ are candidates for inclusion in a
segmentation.

The competition mechanism consists of a probability measure imposed on
the activation levels of the lexical representations, combined with a similarity-
based function that determines whether the activation of a given lexical repre-
sentation should increase or decrease. The activation probability of represen-
tation w at timestep ¢ is

a(w,t)

p’lu,t = 1%

21:1 a(w;, t)7

with V' the number of representations in the lexicon. The details of the crite-

(11)

ria for whether the activation of a lexical representation increases or decreases
need not concern us here. What is crucial is that a lexical representation that
is aligned with one of the boundaries of the target word is allowed to increase
its activation until its activation probability has reached the threshold 8. Once
this threshold has been reached, activation decreases. Given a decay rate d,,
(0 < 0y < 1) for representation w, the change in activation from one time step

to the next is defined as
a(w,t) = a(w,0) + dy{a(w,t — 1) — a(w,0)}. (12)

Because d,, < 1, the activation at each successive timestep becomes smaller
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than it was at the preceding timestep. Asymptotically, it will decrease to its
original resting activation level. Activation increase, which occurs at the timesteps
before w has reached threshold, is also defined in terms of §,,,

a(w,t —1)

a(w7t) = (5 Y

(13)

but now we divide by 4,, instead of multiplying by J,,. Consequently, the ac-
tivation at timestep ¢ becomes greater than the activation at timestep ¢ — 1.
Because activation increase and activation decrease are both defined in terms
of §,,, words with a decay rate close to 1 are slow to decay and slow to become
activated. Conversely, words which decay quickly (d; close to 0) also become
activated quickly. Note that if the activation level of a lexical representation
increases while the activation levels of the other representations remain more
or less unchanged, its probability increases as well.

The key to the accuracy of MATCHECK as a segmentation model lies in the
definition of the activation and decay parameter d,,, which differs from rep-
resentation to representation. It is defined in terms the frequency f,, and the
length L,, of a lexical representation w, in combination with three general pa-

rameters (a, 6, ¢), as follows:

0w = f(g((saaaw)ag 5; ’LU), (14)
with
1
9(8, 0, w) = 6 —————, (15)
1+ ailoﬁ)(g??$1)

and, with T denoting the target word, and using d as shorthand for g(d, o, w),

Cnal N6
d+ (1—-d) (Fi‘&f,ﬁ) iff ¢>0

1) otherwise.

f(d, ¢, 6,w) = (16)

The parameter 6 (0 < § < 1) denotes a basic activation and decay rate that is
adjustable for each individual word. Lexical representations with higher fre-
quencies receive higher values for §,,. They have a reduced information load,

and become activated less quickly than lower-frequency representations. The
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parameter a (o > 0) specifies how the frequency and length of the represen-
tation should be weighted, independently of its similarity to the target word.
The parameter ¢ (( > 0) determines to what extent the relative difference in
length of a lexical competitor and the target word should affect the activation
and decay rate of w. Increasing « or ¢ leads to a decrease of J,,, and hence to
more rapid activation and decay. Finally, constituents that are more similar in
length to the target word have a smaller J,, than shorter constituents (for exper-
imental evidence that longer affixes are recognized faster than shorter affixes,
see Laudanna, Burani and Cermele, 1995).

Figure ?? illustrates the activation dynamics of MATCHECK. On the horizon-
tal axis, it plots the timesteps in the model. On the vertical axis, it plots the acti-
vation probability. The solid horizontal line represents the activation probabil-
ity threshold # = 0.3. Consider the left panel, which plots the activation curves
for the singular-dominant plural tongen. The curved solid line represents the
plural suffix -en, which, due to its high frequency, has a high initial probability.
During the first timesteps, the many words with partial similarity to the target,
such as long, 'lung’, become activated along with the constituents themselves.
Hence, although the activation of -en is actually increasing, its activation proba-
bility decreases. The base tong starts out with a very low initial probability, but
due to its greater similarity to the plural form, it reaches threshold long before
-en. Upon having reached threshold, its activation begins to decay. The subse-
quent erratic decay pattern for tong is due to the interference of a lexical com-
petitor, not shown in Figure ??, the orthographic neighbor of the plural form,
tonnen (see, e.g., Andrews, 1992, Grainger, 1990, and Grainger & Jacobs, 1996,
for experimental evidence for orthographic neighborhood effects). Thanks to
the probability measure imposed on the activations of the lexical representa-
tions, the decay of the activation of fong makes activation probability available
for the lower-frequency plural form, which now can now reach threshold as
well. This point in model time (timestep 19) is represented by a vertical solid
line. This is the first timestep in the model at which a full spanning of the input

is available. In other words, the first ‘parse’ to become available for tongen is

42



the plural form. Once both the singular and plural form have entered activa-
tion decay, the plural affix finally reaches threshold. It is only now that stem
and suffix provide a full spanning of the input, so the second parse to become
available arrives at timestep 41. The following erratic activation bumps for the
base noun arises due to the difference in the speed with which the singular and
plural forms decay, and have no theoretical significance.

The central panel in Figure ?? reveals a similar pattern for the plural-domi-
nant plural gasten. However, its representations reach the threshold at an ear-
lier timestep. The singular tong reaches theshold at timestep 13 and its plu-
ral tongen becomes available at timestep 18, whereas the corresponding model
times for gast and gasten are 10 and 14 respectively.

The right panel of Figure ??, finally, shows the timecourse development
for a very low-frequency singular-dominant noun plural, loepen, ‘magnification
glasses’. Note that the first constituent to reach threshold is the plural suffix,
followed by the base, which jointly provide a full spanning of the target long
before the plural form reaches threshold.

Two questions arise at this point. First, how well does MATCHECK solve the
ambiguity problem? Second, how good is MATCHECK at modeling actual pro-
cessing times in psycholinguistic experiments? The first question is addressed
in Baayen and Schreuder (2000). They showed, for instance, that for 200 ran-
domly selected words of lengths 5-8 with on average 3 incorrect segmenta-
tions, the first segmentation to be produced by MATCHECK was correct in 194
cases, of which 92 were due to the full form being the first to become available,
and 102 to a correct segmentation becoming available first. The model times
listed in examples (3) and (4) illustrate how MATCHECK tends to ranks correct
segmentations before incorrect segmentations, using the parameter settings of
Baayen & Schreuder (2000). For instance, the full form preparedness and the cor-
rect parse prepared-ness become available at timesteps 19 and 27 respectively,
long before the first incorrect parse pre-pared-ness (timestep 56) or the complete
correct segmentation prepare-d-ness (timestep 78). Because the model gives pri-

ority to longer constituents, a parse such as prepared-ness, which is based on the
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regular participle prepared, becomes available before the many incorrect or im-
plausible parses containing shorter constituents. The presence of the regular
participle prepared in the lexicon protects the model against having to decide
between alternative segmentations such as prepare-d-ness and pre-pared-ness. In
other words, paradoxically, storage enhances parsing. In MATCHECK, storage
in memory does not just occur for its own sake, its functionality is to reduce

the ambiguity problem.
PLACE FIGURE ?? APPROXIMATELY HERE

We are left with the second question, namely, whether the model times pro-
duced by MATCHECK have any bearing on actual human processing latencies.
The next two sections address this issue by means of data sets from Dutch and

German.

4.2 Regular noun plurals in Dutch

Baayen, Dijkstra, and Schreuder (1997) studied regular Dutch plurals in -en
and their corresponding singulars using visual lexical decision. The visual lex-
ical decision task requires participants to decide as quickly and accurately as
possible whether a word presented on a computer screen is a real word of
the language. Response latencies in visual lexical decision generally reveal
strong correlations with the frequencies of occurrence of the words. This par-
ticular study made use of a factorial experimental design contrasting three fac-
tors: Stem Frequency (high versus low), Number (singular versus plural), and
Dominance (singular dominant versus plural dominant). Within a stem fre-
quency class, the average stem frequency was held constant in the mean, as
illustrated in Table 6 above for the nouns tong and gast. The right panel of Fig-
ure ?? provides a graphical summary of the pattern of results. The horizontal
axis contrasts singulars (left) with plurals (right). The dashed lines represent
plural dominant singulars and plurals. The solid lines represent singular dom-

inant singulars and plurals. The lower two lines belong to the nouns with a
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high stem frequency, and the upper two lines to the nouns with a low stem
frequency.

What this graph shows is that high frequency nouns, irrespective of num-
ber, are processed faster than low-frequency nouns. It also reveals a frequency
effect for the plural forms. For each of the two stem frequency conditions,
singular-dominant plurals are responded to more slowly than plural-dominant
plurals. Speakers of Dutch are clearly sensitive to how often the plural suffix
-en co-occurs with particular noun singulars to form a plural. Especially the
fast response latencies for plural dominant plurals bear witness to the marked-
ness reversal studied by Tiersma (1982): While normally the singular is the un-
marked form both with respect to its phonological form as with respect to its
meaning, many plural dominant plurals are semantically unmarked compared
to their corresponding singulars (see Baayen, Dijkstra, and Schreuder, 1997,
for further discussion). This plural frequency effect, however, is completely at
odds with the dual route model advanced by Pinker and Clahsen and their co-
workers. Finally, Figure ?? shows that for noun singulars it is the frequency of
the lexeme, i.e., the summed frequencies of the singular and the plural forms,
that predicts response latencies, and not so much the frequencies of the singu-
lar forms themselves. If the frequencies of the singulars as such would have
predicted the response latencies, one would have expected to see a difference
in the response latencies between singular dominant and plural dominant sin-
gulars. The observed pattern of results has been replicated for Dutch in the
auditory modality (Baayen, McQueen, Dijkstra, and Schreuder, 2002), and for
Italian (visual modality) by Baayen, Burani, and Schreuder (1997).

PLACE FIGURE ?? APPROXIMATELY HERE

The left panel of Figure ?? summarizes the results obtained with MATCHECK
for the parameter settings § = 0.3, = 0.25,a = 04,( = 0.3, and p = 3.
This last parameter determines the granularity of the model, i.e., the precision
with which the timestep at which the threshold is reached is ascertained (see

Baayen, Schreuder, & Sproat, 2000). The lexicon of the model contained the
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186 experimental words and in addition some 1650 randomly selected nouns
as well as various inflectional and derivational affixes. The frequencies of the
affixes were set to the summed frequencies of all the words in the CELEX lexical
database in which they occur. Noun singulars received the summed frequen-
cies of the singular and plural forms as frequency count, the assumption be-
ing that in a parallel dual route model the processing of the (globally marked)
plural leaves a memory trace on the (globally unmarked) singular. Noun plu-
rals were assigned their own plural frequency. The lexicon also contained a
dummy lexeme consisting of a series of X characters, which received as fre-
quency count the summed frequencies of all words in the CELEX database that
were not among the 1650 randomly selected nouns. This ensured that all words
in the lexicon had initial probabilities identical to their relative frequencies in
the corpus on which the CELEX counts are based.

Interestingly, it is impossible to obtain the pattern shown in the left panel of
Figure ?? with just these settings. The reason for this is that the singular form,
thanks to its cumulated frequency, is a strong competitor of the plural form. Al-
though plural-dominant plurals reach the threshold before singular-dominant
plurals with the same stem frequency, as desired, they also reach the threshold
well after the corresponding singulars. Indistinguishable processing times for
singulars and plurals, as observed for plural-dominant singulars and plurals
in the high stem frequency condition in the experiment, cannot be simulated.

The adaptation of MATCHECK that leads to the pattern of results actually
shown in the left panel of Figure ?? is to enrich the model with a layer of lex-
emes in the sense of Aronoff (1994) or lemmas in the sense of Levelt (1989).
The representations of the singular and plural forms have pointers to their lex-
eme, which in turn provides pointers to its associated semantic and syntactic
representations. The lexemes serve a dual function in MATCHECK. Their first
function is to accumulate in their own activation levels the summed activa-
tion levels of their inflectional variants. Once the lexeme has reached threshold
activation level, a response can be initiated. This allows the model to take

into account the combined evidence in the system supporting a given lexeme.
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The second function of the lexemes is to pass on part of the activation of the
(marked) plural form to the (unmarked) singular form. I assume that it is this
process that leaves a memory trace with the singular that results over time in
the summed frequency of the singular and the plural form being the predictor
of response latencies for singulars. To implement this modification, we have
to revise the definition of increasing activation given in equation (13) for the
representation of the singular as follows. Let w, denote the representation of
a singular, and let ¢ range over its n inflectional variants. For the present data,
n = 1, as there is only one inflectional variant other than the singular itself,

namely, the plural. We define a(ws, t) as follows:

awst) = 2D | toglaun,t— 1) Y atwi ), (7)

i=1
with A the parameter determining how much activation flows from the plural
to the singular. In the simulation leading to the left panel of Figure ??, A was
set to 1.1.

How well does this model approximate the observed patterns in the exper-
imental data? A comparison of the left and right panels of Figure ?? suggests
that the model provides a good fit, an impression that is confirmed by Table 7:
The same main effects and interactions that are significant in the experiment
are also significant according to the model. The model also captures that high-
frequency plural dominant singulars and plurals are processed equally fast
(t(45.99) = —0.82,p = 0.416 for the response latencies, t(35.44) = —0.86,p =
0.398 for the model times, Welch two-sample t-tests), in contrast to the low-
frequency plural dominant singulars and plurals (¢(41.65) = —2.38,p = 0.022
for the response latencies, £(32.33) = —4.394, p = 0.0001 for the model times).

PLACE TABLE 7 APPROXIMATELY HERE

MATCHECK provides this good fit to the experimental data with parame-
ter settings that make it make the most of the available full form representa-

tions. The only word for which it is a parse into base and affix that reached
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the threshold before the full form was the plural form loepen, for which the ac-
tivation probabilities over time were shown in the right panel of Figure ??. In
other words, if the model has to parse, it can do so without any problem; oth-
erwise, the stem will tend to contribute to the recognition process only through
its contribution to the activation of the lemma.

The conclusion that parsing as such plays a minor role for this data set
also emerged from the mathematical modeling study of Baayen, Dijkstra, and
Schreuder (1997). Their model, however, was based on the assumption that
there is no interaction between the representations feeding the direct access
route and those feeding the parsing route. The present model, by contrast,
implements the idea that all lexical representations are in competition and that
the direct route and the parsing route are not independent. In fact, by allowing
activation to spread from the plural to the base, and by allowing the evidence
for the word status of a target in lexical decision to accumulate at the lexeme
layer, there is much more synergy in this competition model that in the earlier

mathematical model.

4.3 Noun plurals in German

Clahsen, Eissenbeiss, and Sonnenstuhl (1997) and Sonnenstuhl & Huth (2001)
report that in German high-frequency plurals in -er are responded to faster in
visual lexical decision than low-frequency plurals in -er, while matched high
and low-frequency plurals in -s are responded to equally fast. They attribute
this difference to the linguistic status of these two plurals. The -s plural is ar-
gued to be the default suffix of German (Marcus et al, 1995), the only truly
regular plural formative. According to these authors, plurals in -s are there-
fore not stored, which would explain why high and low frequency plurals in
-s require the same processing time, a processing time that is determined only
by the speed of the parsing route and the resting activation levels of the rep-
resentations on which it operates. Plurals in -er, by contrast, are described as

irregular. These forms must be stored, and the observed frequency effects for
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high and low frequency plurals reflect this.

In the light of their theory, it is not suprising that Clahsen, Eissenbeiss, and
Sonnenstuhl (1997) suggest that Dutch plurals in -en might not be regular but
rather irregular (Clahsen, Eissenbeiss, and Sonnenstuhl, 1997). This hypoth-
esis, which does not make sense from a linguistic point of view (see Baayen,
Schreuder, De Jong, & Krott, 2002), is inescapable if one accepts the dual route
model. However, the dual route model faces many problems.

Burzio (2001), for instance, points out that many morphologically regular
past-tense forms are phonologically irregular, while many morphologically ir-
regular past-tense forms are phonologically regular, an inverse correlation be-
tween morphological and phonological regularity. In a dual route model, mor-
phological rules should be able to coexist with phonological rules, leading to
a positive correlation between morphological and phonological regularities,
contrary to fact.

Behrens (2001) presents a detailed examination of the German plural sys-
tem that shows that the -s plural does not fulfill the criteria for instantiating a
symbolic rule, a conclusion that is supported by her acquisition data based on
a very large developmental corpus.

Other problems for the dual route model are pointed out by Ramscar (2001)
and Hare, Ford, and Marslen-Wilson (2001). Hare et al. (2001) report frequency
effects for regular past-tense forms in English that had unrelated homophones
(e.g., allowed and aloud). Particularly interesting is the study by Ramscar, who
shows that past-tense inflection in English is driven by semantic and phono-
logical similarity, instead of by encapsulated symbolic rules that would be sen-
sitive to only the phonological properties of the stem.

If the separation of rule and rote in the dual route model is incorrect (see
also Bybee, 2001), the question arises why there seems to be no frequency effect
for the German -s plural. In what follows, I will show that a simulation study
with MATCHECK sheds new light on this issue.

The data set that serves as our point of departure is that of Experiment 1 of

the study by Sonnenstuhl & Huth (2001). Table 8 summarizes the design of this
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experiment: six affix classes (plurals in -s, plurals in -er, and four sets of plurals
in -n/-en, grouped by gender and the presence or absence of a final schwa), each
of which is crossed with plural frequency (high versus low) while matching for
Stem frequency. Table 9 summarizes the pattern of results obtained by means
of a series of t-tests on the item means, and the right panel of Figure ?? dis-
plays the results graphically. The high and low frequency plurals in -s elicited
response latencies that did not differ significantly in the mean. The same holds
for the set of plurals in -en of non-feminine schwa-final nouns (labelled (4) in
the tables and figure). The authors forward these results as evidence that plu-
rals in -s are not stored in the German mental lexicon. A question that remains
unanswered in this study is why the supposed default plural suffix, the rule-
governed formative par excellence, is the one to be processed most slowly of

all plural classes in the study.
PLACE TABLE 8 APPROXIMATELY HERE
PLACE TABLE 9 APPROXIMATELY HERE

To study this data set with MATCHECK, a lexicon was constructed with the
120 singulars and their corresponding plurals that were used in this experi-
ment. Some 2100 randomly selected words from the CELEX lexical database
were added to the model’s lexicon, including representations for the plural
suffixes -en, -n, -er, and -s as well as for other inflectional suffixes such as -d
and -e. All lexical entries received a frequency based on the frequency counts
in the German section of the CELEX lexical database. Because these counts are
based on a small corpus of only 6 million words, they were multiplied by 7 to
make them similar in scale to the Dutch frequency counts, which are derived
from a corpus of 42 million words. Suffixes received frequencies equal to the
summed frequency of all the words in which they occur as a constituent. The
singulars of the target plural forms were assigned the summed frequency of
their inflectional variants, the lemma frequency of CELEX on which the high

and low frequency sets of plurals in the Sonnenstuhl & Huth (2001) study
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were matched, just as in the simulation study of Dutch plurals in the preced-
ing section. Again, a dummy lexeme was added with a frequency equal to the
summed frequencies of the words not explicitly represented in the model’s lex-
icon. Parameter values that as a first step yield a good fit to the experimental
data are 6 = 0.28,0 = 0.20,p = 3,a = 0.7, = 0.9, and A = 0.5. This fit is
shown in the left panel of Figure ??. As shown by the Welch two-sample t-tests
listed in Table 9, those frequency contrasts that were found to be statistically
significant in the experiment are also significant in the model, and those con-
trasts that are not significant in the experiment are likewise not significant in
the simulation.

What is disturbing about these results is that the ordering in model time
seems to be wrong. Compare the left and right panels of Figure ??. According
to the model, the plurals in -s should be processed more quickly than any other
kind of plural, but in fact they elicit the longest response latencies. Conversely,
the plurals in -er show up in the simulation with the longest model times, even

though in fact they were responded to very quickly.
PLACE FIGURE ?? APPROXIMATELY HERE

Why do we get this reversed pattern in MATCHECK? A possible answer to
this question can be found by considering the average family size of the six plu-
ral classes. The family size of an inflected simplex noun is the type count of the
derived words and compounds in which that noun occurs as a constituent. Var-
ious studies have shown that, other things being equal, words with a large mor-
phological family are responded to more quickly than words with a small mor-
phological family (Schreuder & Baayen, 1997, Bertram, Baayen, & Schreuder,
1999, De Jong, Schreuder, & Baayen, 2000, De Jong, Feldman, Schreuder, Pas-
tizzo, & Baayen, 2001). The family size effect is semantic in nature, and proba-
bly arises due to activation spreading in the mental lexicon to morphologically
related words. Interestingly, Table 10 shows that the nouns with the -er plural
have the highest family size in this data set, while the nouns with the -s plural

have the lowest family size. Thus, plurals in -s might elicit long response la-
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tencies because of their small morphological families. Conversely, the plurals

in -er might be responded to quickly thanks to their large families.
PLACE TABLE 10 APPROXIMATELY HERE

Itis possible to test this hypothesis by asking ourselves whether we can sys-
tematically reorder the lines in the left panel on the basis of the family counts
listed in Table 10 such that a pattern approaching that in the right panel is ob-
tained. It turns out that this is not possible using the counts of family members
for the individual words, probably because these counts (based on a corpus of
only 6 million words) introduce too much noise compared to the model times
of MATCHECK. A mapping is possible, however, on the basis of the class means,
using the transformation h(t;;) for the j-th plural in the i-th plural class with
family size V; and model time ¢;;. Let z; = log(V;) — 1.2, the distance of log
family size from a baseline log family size of 1.2. The further the family size of

a plural class is from this baseline, the further the distance y; that it will shifted:
yi = 1.7 x el 5 s(y), (18)

with s(z) = 1if z > 0 and s(z) = —1if z < 0. Adjustment with the mean of

the shifts y; leads to the transformation
(i) = iy = g — 2L (19)

Application of (19) results in the pattern shown in the central panel of Figure ??,
areasonable approximation of the actually observed pattern represented in the
rightmost panel. Although a more principled way of integrating MATCHECK
with subsequent semantic processes is clearly called for, the present result sug-
gests that differences in morphological family size may indeed be responsible
for the difference in ordering between the first and third panels of Figure ?2.
This family size effect that we observe here underlines that the plurals in -er
are tightly integrated in the network of morphological relations of German,
and that, by contrast, the plurals in -s are rather superficially integrated and

relatively marginal in the language. This is not what one would expect for
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a default suffix in a dual route model, especially if default status is meant to
imply prototypical rule-based processing rather than marginal rule-based pro-
cessing applicable mainly to recent loans, recent abbreviations, interjections,
and other normally uninflected words.

These modeling results receive further support by a simulation of Exper-
iment 4 of the study by Clahsen et al. (1997), who contrasted plurals in -s
with plurals in -er. As in the Sonnenstuhl & Huth (2001) study, a significant
frequency effect was observed only for the plurals in -er. Interestingly, appli-
cation of MATCHECK to this data set with exactly the same parameter values
leads to the same pattern of results, with a significant difference in modeltime
for the plurals in -er (¢(15.45) = 4.13,p = 0.0008) but not for the plurals in -s
(t(15.52) = 1.60, p = 0.1290).

We are left with one question. Why is it that MATCHECK does not pro-
duce a frequency effect for plurals in -s? Consider Figure ??, which plots the
timecourse of activation for the German nouns Hypotheken (left panel) and Taxis
(right panel). The pattern in the left panel is typical for the plurals in -en and for
those plurals in -er for which no vowel alternation occurs. Crucially, the base
and the plural form become active one after the other, indicating that there is
little competition between them. In the case of plurals in -s, however, the base
and the plural become active at more or less the same time — they are in strong
competition masking the effect of the frequency of the plural. The reason for
this strong competition is the small difference in length between the singular
forms and their corresponding plurals in -s. Recall that the activation/decay
rate of a word as defined in equations (14)—-(16) depends on its length in rela-
tion to the length of the target word. The more similar a word is in length to
the target, the faster it will become active. This property contributes to the seg-
mentation accuracy of MATCHECK as reported in Baayen & Schreuder (2000),
and it is responsible for the absence of a frequency effect for -s plurals in the
present simulation study. Note that this property of MATCHECK is of the kind
typically found in dynamic systems in general, in that it allows a tiny difference

in the initial conditions (here the length of the base) to lead to quite different
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outcomes (here the presence or absence of a frequency effect).
PLACE FIGURE ?? APPROXIMATELY HERE

From a methodological point of view, it is important to realize that null-
effects, in this case the absence of a frequency effect for German plurals in -s,
should be interpreted with caution. Clahsen and his co-workers infer from this
null effect that German -s plurals do not develop representations of their own.
We have seen that this null effect may also arise as a consequence of the dif-
ferences between the forms of the -s and -en suffixes and the kinds of words
that they attach to (see Laudanna & Burani, 1995, and Bertram, Schreuder,
& Baayen, 2000, for the processing consequences of affix-specific differences).
Another example of an argument based on a null effect can be found in Frost,
Forster, and Deutsch (1997), who claim that connectionist models would not
be able to model the presence and absence of semantic transparency effects in
priming experiments in English and Hebrew respectively. As shown by Plaut
and Gonnerman (2000), the null effect of transparency in Hebrew emerges in
connectionist simulation studies as a consequence of the difference in morpho-

logical structure between English and Hebrew.

4.4 Discussion

This section addressed the role of probability in morphological comprehen-
sion. Techniques developed by computational linguists make profitable use
of co-occurrence probabilities to select the most probable segmentation from
the set of possible segmentations. It is clear from the computational approach
that knowledge of co-occurrence probabilities is indispensible for accurate and
sensible parsing.

From this perspective, the hypothesis defended by Pinker and Clahsen and
their co-workers that co-occurrence knowledge is restricted to irregular com-
plex words is counterproductive (see also Bybee, 2001). Bloomfieldian econ-
omy of description cannot be mapped so simply onto human language pro-

cessing. Much more productive are, by contrast, those psycholinguistic studies

54



that have addressed in great detail how form-based similarity affects the seg-
mentation process. These studies, however, seem to implicitly assume that the
segmentation problem can be solved without taking co-occurrence probabili-
ties into account.

MATCHECK is a model in which probabilities develop dynamically over
time on the basis of both frequency of (co-)occurrence and form similarity. I
have shown that this model provides reasonable fits to experimental data sets,
and that it provides an explanation of why frequency effects for regular plurals
may be absent even though these plurals are stored in the mental lexicon. The
mechanisms used by MATCHECK to weight the role of frequency and similarity
are crude and in need of considerable refinement. Nevertheless, I think that
the model provides a useful heuristic for understanding how the brain might

use probability in morphological comprehension to its advantage.

5 Concluding remarks

In this chapter, I have presented some examples of how concepts from proba-
bility theory and statistics can be used to come to grips with the graded nature
of many morphological data. I have first shown that the graded phenomenon
of morphological productivity can be formalized as a probability, a probabil-
ity that is itself grounded, at least in part, in junctural phonotactic probabil-
ities and parsing probabilities. Following this, I have discussed examples of
morphological regularities that are intrinsically probabilistic in nature, outlin-
ing how simple spreading activation architectures (symbolic connectionist net-
works) might capture the role of probability while avoiding complex statistical
calculations. Finally, I have shown that part of the functionality of the storage
of regular complex forms in the mental lexicon may reside in contributing to
resolving parsing ambiguities in comprehension.

Not surprisingly, I agree with researchers such as Seidenberg & Gonnerman
(2000) and Plaut & Gonnerman (2000) that traditional, non-probabilistic theo-

ries of morphology are inadequate in the sense that they cannot handle graded
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phenomena in an insightful way. Seidenberg, Plaut, and Gonnerman seem to
suggest, however, that the graded nature of morphology shows that the sub-
symbolic connectionist approach to language is the only way to go. This is
where they and I part company. In this chapter, I have shown that computa-
tional models of analogy provide excellent analytical tools for understanding

the role of probability in morphology.
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Modifier (1) Head (2) Nucleus (1) Onset(2) Coda(2) L translation

schaap bout aa b t -en- 'leg of mutton’
schaap herder aa h r -0-  ’'shepherd’
schaap kooi aa k i -s-  ’sheep fold’
schaap vlees aa \4 s -en- 'mutton’

lam bout a b t -s-  ’leg of lamb’
lam vlees a \Y s -s-  ‘lamb’

lam gehakt a g t -s-  'minced lamb’
paard 008 aa - g -en-  "horse eye’

koe 00g oe - g -en- ‘cow’s eye’
varken 00g e - g -s-  'pig’s eye’

Table 1: Features and their values for a hypothetical instance base of Dutch
compounds. L denotes the linking element. The numbers in parentheses refer

to the first and second constituents.
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Constraint Gloss Position
*P[+voice] no underlyingly voiced bilabial stops -173.5
*T[+voice] no underlyingly voiced alveolar stops -217.5
*S[+voice] no underlyingly voiced aveolar fricatives -512.2
*F[—voice] no underlyingly voiceless labiodental fricatives -515.4
*X[—voice] no underlyingly voiceless velar fricatives -515.6
*V:O[—voice] no underlyingly voiceless obstruents following long vowels -516.4
*juyO[—voice] no underlyingly voiceless obstruents following [i, u, y] -516.7
*VO[+voice] no underlyingly voiced obstruents following short vowels -517.0
*SonO[—voice] no underlyingly voiceless obstruents following sonorants -1300.1
*OO[+voice] no underlyingly voiced obstruents following obstruents -1302.1

Table 2: Constraints and their position in SOT for the voice specification of final

obstruents in Dutch.
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Lexeme Onset VowelType Vowel Coda Obstruent  Voicing
aap empty long a None p voiceless
aard empty long a Sonorant T voiced
aars empty long a Sonorant S voiced
aas empty long a None S voiced
abrikoos k long o None S voiced
abt empty short A Obstruent T voiceless
accent s short E Sonorant T voiceless
accijns s short K Sonorant S voiced
accuraat r short a None T voiceless
acht empty short A Obstruent T voiceless
ZWijg ZW long K None voiced
zwoeg W iuy u None voiced
zwoerd  zw iuy u Sonorant T voiced

Table 3: Feature specifications in the lexicon for AML.
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supracontext distance voiced voiceless homogeneity

p long L None 0 0 empty

- long L None 1 1 homogeneous
p - L None 1 0 0 empty

p long - None 1 1 0 homogeneous
p long L - 1 0 0 empty

p long L None 1 0 1 homogeneous
- - L None 2 7 1 homogeneous
- long - None 2 65 1 heterogeneous
- long L - 2 7 1 homogeneous
- long L None 2 38 34 heterogeneous
p - - None 2 2 1 heterogeneous
p - L - 2 0 0 empty

p - L None 2 0 1 homogeneous
p long - - 2 1 0 homogeneous
p long - None 2 4 8 heterogeneous
p long L - 2 0 2 homogeneous
- - - None 3 107 4 heterogeneous
- - L - 3 7 1 homogeneous
- - L None 3 38 34 heterogeneous
- long - - 3 65 1 heterogeneous
- long - None 3 261 188 heterogeneous
- long L - 3 38 38 heterogeneous
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409
38
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583

1

34

2

11

5
636
38
231
59
1101

heterogeneous
heterogeneous
homogeneous
heterogeneous
heterogeneous
heterogeneous
heterogeneous
heterogeneous
heterogeneous

heterogeneous

Table 4: Supracontexts for the pseudoverb puig.
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exemplar voicing | occurrence weighted size weighted

count contribution | count composition contribution
buig voiced 4 0.10 32 8-8-8-8 0.12
duig voiced 4 0.10 32 8-8-8-8 0.12
huig voiced 4 0.10 32 8-8-8-8 0.12
juich voiceless 4 0.10 32 8-8-8-8 0.12
poog voiced 2 0.05 1-1 0.01
puist voiceless 2 0.05 4 22 0.02
puit voiceless 4 0.10 6 2-2-1-1 0.02
ruig voiced 4 0.10 32 8-8-8-8 0.12
tuig voiced 4 0.10 32 8-8-8-8 0.12
vuig voiced 4 0.10 32 8-8-8-8 0.12
zuig voiced 4 0.10 32 8-8-8-8 0.12
P(voiced) 0.75 0.84

Table 5: The exemplars predicting the voice specification for the pseudoverb

puig. The column labeled ‘composition’ specifies the sizes of the supracontexts

to which an exemplar belongs.
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word inflection  frequency probability

tong singular 2085 4.96e-05
tongen  plural 179 0.43e-05
tongetie diminutive 24 0.06e-05

2288 5.45e-05

gast singular 792 1.89¢-05
gasten  plural 1599 3.80e-05
gastje diminutive 0 0

2391 5.69e-05

Table 6: Frequencies in a corpus of 42 million tokens as available in the CELEX
lexical database of the singular, plural, and diminutive forms of the Dutch

nouns fong, ‘tongue’, and gast, ‘guest’, and the corresponding probabilities.
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expected observed

F p F p

Number 641 0.000 46.4 0.000
Dominance 27.3 0.000 27.1 0.000
StemFreq 65.7 0.000 90.4 0.000
Number:Dominance 139 0.000 15.8 0.000
Number:StemFreq 73 0.007 79 0.005
Dominance:StemFreq 0.6 0434 01 0.828

Number:Dominance:StemFreq 0.1 0459 0.6 0.451

Table 7: F-values for 1 and 178 degrees of freedom and the corresponding p-

values for the model times (expected) and the reaction times (observed).
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suffix class frequency F(stem) F(pl) RT modeltime

-er 1) low 112 13 556 11.3
—er 1) high 12 43 510 9.3
-5 2) low 105 11 591 15.5
-s (2) high 97 50 601 15.2
-en (3) [+fem,+e] low 107 22 568 12.1
-en (3) [+fem,+e] high 111 59 518 10.6
-en (4) [-fem,+e] low 178 100 571 14.2
-en (4) [-fem,+e]  high 209 170 544 13.0
-en (5) [+fem,-e] low 115 11 588 15.7
-en (5) [+fem,-e]  high 116 66 548 12.8
-en (6) [-fem,-e]  low 110 17 594 15.1
-en (6) [-fem,-e]  high 112 84 535 12.7

Table 8: German plurals cross-tabulated by class and frequency. Response la-
tencies and frequencies of stem and plural as tabulated in Sonnenstuhl & Huth

(2001).
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suffix class observed expected

t df p t df p

-5 1) 031 9 p=0.760 053 1659 0.601
-er @) 492 9 p=0001 235 17.93 0.030
-en 3) 644 9 p<0001 295 1670 0.009
-en 4 151 9 p=0166 119 17.00 0.248
-en (G) 439 9 p=0002 280 17.06 0.012
-en 6) 419 9 p=0001 2.82 1232 0.015

Table 9: T-tests by affix. The t-tests for the observed data are as reported in
Sonnenstuhl & Huth (2001), the t-tests for MATCHECK are Welch two-sample

t-tests based on the model times.
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Plural Class Family Size

-er D 12.5
s ) 1.7
-en 3) 8.8
-en (4) 3.1
-en (5) 2.6
-en 6) 3.9

Table 10: Mean family size of the six German plural classes in the Sonnenstuhl

& Huth (2001) study.
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