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You can do such a lot with a wompom,
You can use every part of it too.
For work or for pleasure, it’s a triumph it’s a treasure
Oh there’s nothing that a wompom cannot do.
Flanders and Swan
https://www.youtube.com/watch?v=CsaNgsoQcO4

1 Introduction

In this essay, I reflect on the past, present, and future of corpus linguistics. My own
research has focused primarily on morphology, the mental lexicon, and lexical
processing. A consequence of this narrow, myopic focus on just a tiny part of the rich
phenomenon of language is that many important and inspiring developments in
corpus linguistics have remained completely out of my sight. I beg the reader’s
forgiveness for a narrative that is fragmentary, selective, and anchored in my own
research.

In recent years, large language models (LLMs) have sprung into existence. LLMs
offer unprecedented opportunities and unprecedented dangers for both the study of
language and for society. Paraphrasing a line from the wonderful song by Flanders
and Swan about an imaginary creature with infinite uses, the wompom, it seems that
“there is nothing that an LLM cannot do”. What are the implications of a talking
wompom for corpus linguistics?
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In what follows, Section 1 looks back at the developments in corpus linguistics
that unfolded over the last decades, and that influenced my thinking and research.
Section 2 then present two case studies illustrating the opportunities and challenges
of the tools and resources that are now available for understanding the lexicon and
lexical processing. Section 3 looks forward, and reflects on the huge challenges for
the immediate future that I believe corpus linguistics will have to address.1

2 The past

2.1 Resources and computational infrastructure

Looking back over the past decades, there have been enormous developments in
computational infrastructure and the written and spoken resources that have
become available. In the eighties, a megabyte was an enormous amount of memory.
When I was working on my PhD thesis in the eighties, I was advised to travel to
Nijmegen, where the CELEX lexical database was being developed, in order to extract
morphologically analysedword frequency lists from this database. At that time, Iwas
investigating whether the Good-Turing probability for unseen types (Good 1953)
would be a reasonable statistic for evaluating morphological productivity. Since this
probability is estimated by the ratio of hapax legomena and the corpus size, I was
particularly interested in the words with frequency 1 in CELEX, which typically
constitute roughly half of the types. To my disappointment, it turned out that CELEX

only included a handful of hapax legomena. One of the reasons turned out to be that
adding hapax legomena to the databasewould have led to a doubling of the size of the
database, and to doubling the size of external memory required. As in the early
eighties a hard disk storing 1 megabyte had a price tag of around 1 million US$,
adding hapax legomena to the database was prohibitively expensive. Fortunately,
the costs of storing devices have plummeted while the amounts of data that can be
stored have increased dramatically. In parallel, the resources available for corpus
linguistic research have also increased exponentially.

Given the abundant resources we now have, the work done by early pioneers of
corpus linguistics such as Zipf, Yule, and Ellegåard, which was done by hand (Elle-
gård 1953; Yule 1944; Zipf 1949), is all the more impressive. My earliest experiences

1 I am grateful to Maria Heitmeier, Sebastian Otte, Yu-Xiang Tseng, and Stefanie Wulff for their
detailed feedback on earlier versions of this study, and to Dagmar Divjak, Petar Milin, Shu-Kai Hsie,
Yu-Ying Chuang, Konstantin Sering, Melanie Bell, Karen Beaman, Susanne Gahl, Arvi Tavast, and
Kristian Berg for essential and inspiring discussions. The author is indebted to support from the ERC,
project SUBLIMINAL-101054902.
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with corpus linguistics involved the study of aspect in Biblical Hebrew (Baayen 1997).
The instrument that I used to collect the data for this study was a keyword in context
concordance in book format (Mandelkern 1896), a monument of Jewish corpus lin-
guistics long before the advent of computers. (Now, I would use a different tool, the
computerized and meticulously linguistically annotated electronic version of the
Hebrew Bible https://shebanq.ancient-data.org/hebrew/text.) When I started work-
ing on my PhD thesis in the mid-eighties, my initial insights were gleaned from a
perusal of a book with word frequencies compiled by computer (probably using
punch cards) from a Dutch corpus of some 600,000 words (Uit den Boogaart 1975).
This corpus wasmodeled after the Brown corpus, which had 1million words, and for
which a book with word frequencies had been published almost a decade earlier
(Kučera and Francis 1967). Fortunately, the frequency tables of Uit den Boogaart
(1975) included information on all the hapax legomena. Soon after, I found myself
learning UNIX, programming in C, and scripting in awk, on a small VAX computer
that was in constant use by some 15 people simultaneously. But this computer gave
me access to the online version of the Dutch corpus.

Since then, developments have been rapid. In the nineties, the British National
Corpus (Burnard 1995)was created, comprising 100millionwords. A decade later, the
WaCky corpora (Baroni et al. 2009) extended the size of written corpora tomore than
1 billion words. The Common Crawl February/March 2024 archive brings together no
less than 3.16 billion web pages.2

Over the years, resources for spoken language have also been increasing rapidly.
The switchboard telephone conversation corpus comprises some 260 h of recorded
and transcribed speech (Godfrey et al. 1992). The Buckeye corpus (Pitt et al. 2005)
comprises 40 one-hour face-to-face interviews with a stratified sample of speakers
from Columbus, Ohio, with audio, orthographic transcriptions, and broad phonetic
transcriptions. Inspired by the British National Corpus, a corpus of spokenDutchwas
constructed and completed in 2004, with some 900 h of speech, transcribed at various
levels http://hdl.handle.net/10032/tm-a2-k6 (Oostdijk et al. 2002). A much smaller
corpus of spontaneous speech in German was created by Arnold and Tomaschek
(2016), but this corpus provides, for 6.5 h of speech from 13 speakers, not only the
audio and transcriptions, but also recordings of tongue movements traced with
electromagnetic articulography. A truly vastmultimedia corpus is being compiled by
the Little Red Hen Consortium (https://www.redhenlab.org/home), which provides
videos, audio, and aligned transcription for TV news broadcasts, mainly from the
USA, but with increasing contributions from other languages as well. The NewsScape

2 https://www.commoncrawl.org/blog/february-march-2024-crawl-archive-now-available.
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infrastructure developed by Uhrig (2018) provides access to some 350,000 h of
broadcasts, comprising some 2 billion words. Pipelines are currently in development
for adding detailed information of movements of the head, torso, arms, and hands in
the videos, enabling large scale study of co-speech gesture, and the consequences of
gesture for the realization of speech in natural settings (see, e.g., Alcaraz Carrión
et al. 2020).

2.2 Methods

The development of tools for the analysis of corpora has also been impressive. With
respect to specifically statistical methods, the logistic regression modeling frame-
work for variable rule analysis introduced in the early seventies (see, e.g., Cedergren
and Sankoff 1974) gave sociolinguistics an impressive head start compared to other
subdisciplines of linguistics. Extensions within the general approach of linear mixed
models (Pinheiro and Bates 2000) and the generalized additive (mixed) model (GAM,
Wood 2017) provide the analyst not only with tools for studying count data, but also
with tools for evaluating measurements made on corpora, such as the durations in
speech of segments or words (see, e.g., Gahl 2008; Plag et al. 2017). GAMs provide an
especially attractive analytical tool for the analysis of non-linear trends in time, or
non-linear properties of linguistic units in spoken corpora, such as F0 contours for
stress (Koesling et al. 2012) and tone (Chuang et al. 2021, 2024).

Multivariate methods such as principal components analysis, multidimensional
scaling, linear discriminant analysis, and more recently t-distributed stochastic
neighbor embedding (tSNE,Maaten andHinton 2008) have becomepart of the corpus
linguist’s toolkit. My first encounter with this group of methods goes back to an ACH-
ALLC conference at which John Burrows presented his stylometric analyses of
authorial hands and language change (Burrows 1986, 1992, 1993). As a young post-doc,
I was stunned by the analytical power of the relative frequencies of the most
frequent function words (just 40 function words will already get you a long way),
when analysed using principal components analysis.

About a decade later, researchers started moving away from monocausal
explanations to multifactorial explanations. In cognitive linguistics and corpus
linguistics, Stefan Gries and Dagmar Divjak developed behavioral profiling (Arppe
2008; Arppe and Järvikivi 2007; Divjak 2004; Divjak and Gries 2006; Gries 2000; Gries
2006; Gries 2010; Gries and Divjak 2009; Levshina 2022). But also in subsequent more
formal approaches to language spearheaded by Joan Bresnan (Bresnan 2006;
Bresnan et al. 2007), multifactorial explanations gained traction. Across sociolin-
guistics, cognitive linguistics, and corpus linguistics, a variety of methods for count
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data is now available to predict which of a possible set of alternative language
variants is most likely to be used in a given context. These methods range from
statistical methods such as mixed effects logistic regression and support vector ma-
chines to methods from machine learning such as random forests, gradient boosting
machines, and memory-based learning (Daelemans and Van den Bosch 2005).

At the time that logisticmodels and variable rule analysisweremaking theirway
into linguistics, psychologists were studying learning rules for very simple neural
networks (Rescorla and Wagner 1972). The Parallel Distributed Processing books
(McClelland and Rumelhart 1986; Rumelhart andMcClelland 1986) were published at
the same time that the idea of network models was introduced to morphology by
Bybee (1985, 1988). In the eighties, seminal algorithms and network architectures
such as back-propagation Rumelhart, Hinton, and Williams (1986) and recurrent
networks (Jordan 1986) were already on the table. Recurrent networks were devel-
oped further by Elman (1990), and not much later enriched with other kinds of
neurons (Hochreiter and Schmidhuber 1997) that made these networks even more
powerful. More recent transformer technology (Vaswani et al. 2017) has been applied
to huge datasets such as the Common Crawl, resulting in large language models
(LLM) such as the current GPT series initiated by Open-AI (Radford et al. 2018). There
is hardly a natural language processing task left that an LLM, supplemented with
some fine-tuning, cannot do. According to Binz and Schulz (2023a, 2023b), with some
fine-tuning pre-trained LLMs can also be turned into generalist cognitive models. It
seems that there is nothing that an LLM cannot be made to do.

2.3 Linguistic theory

Looking back at the development of linguistic theory over the last decades, one
constant, across widely different linguistic theories, has been that explanations have
been relying on symbolic descriptors that partition complex continuous and multi-
faceted phenomena into discrete subsets with superordinate labels such as phoneme,
morpheme, word category, aspect, tense, and voice. According to early proposals, both
in post-Bloomfieldian American structuralism and in generative grammar, these
symbolic descriptors are part of a calculus that governs how symbolic units are
arranged (Blevins 2016). However, over time, it was recognized that the constructions
in a language provide islands of systematicity in a variegated whole (Croft 2001;
Goldberg 2005). Monofactorial explanations were replaced by multifactorial expla-
nations, and researchers in NLP started replacing deterministic grammars by
probabilistic grammars.

Making sense of language as a variegated, probabilistic system that is subject to
many simultaneous pressures and constraints is not straightforward. It is all fine to
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have models predicting the probabilities of alternative realizations of a given
feature. Social stratification of language features can be dealt with relatively
straightforwardly by positing different probabilistic grammars for dialects, socio-
lects and idiolects. But variabilitywithin one language variety remains enigmatic. If a
speaker selects a less-probable variant, is this the inevitable consequence of the
randomness in the firing patterns of biological neurons? Or, more along the lines of
current next-word prediction based large language models, is every choice made
ultimately predictable from a deterministic chain of previous experiences?

Exemplarmodels and analogical models provide a different kind of explanation.
These models propose that generalization and selection in language is driven by
analogical reasoning over exemplars stored in memory. Examplars can range from
structured chunks of words (Bod 1998, 2006; Borensztajn et al. 2009) to structured
sequences of phones (Daelemans et al. 1995; Skousen 1989). Analogical reasoning
based on the most similar structured exemplars in memory then accounts for
generalization. As more frequent phenomena will have more exemplars in memory,
effects of frequency and probability are straightforwardly explained by selecting
that class that is supported by most exemplars. The changing rates at which phe-
nomena are encountered in individual language use, and hence the changing
composition of analogical sets of exemplars, then explain within-individual fluctu-
ations in choice behavior.

But exemplar models face two challenges. One challenge is that feature engi-
neering is required. Some metric is required on the basis of which it can be decided
how similar exemplars are. Often, exemplars are described by means of arrays of
discrete feature-value pairs. This may not be optimal, a point to which I return
below.3

The other challenge is the overwhelming numbers of exemplars. The challenges
that come with storing and evaluating huge numbers of exemplars is especially
prominent for spoken language, and becomes visible already at the word level.
Although an exemplar model for auditory word comprehension was developed in
the late nineties (Johnson 1997), network-based models for auditory comprehension
were considered already at the same time (Gaskell and Marslen-Wilson 1998), and
have been explored subsequently from many different theoretical perspectives
(Magnuson et al. 2020; Scharenborg 2008; Shafaei-Bajestan et al. 2023). Simple
network models operating on discrete featural representations, using the learning

3 Radical exemplar models as conceptualized by Ambridge (2020b) argue against stored abstrac-
tions. However, without clear proposals as to how exemplar similarity is to be assessed, this seems
not very helpful. The idea that exemplars would be ‘re-represented’ at multiple levels of abstractions
in deep learning networks (Ambridge 2020a) is for me incompatible with the idea that exemplars
would be discrete representations in memory, that they in some way would ‘exist’.
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rule of Rescorla and Wagner (1972) are also available for exploring both lexical
processing (Baayen et al. 2011; Milin et al. 2016) as well as higher levels of language
structure (see, e.g., Romain et al. 2022).

For many years, I believed that network models avoid the problems faced by
exemplar models. But with the advent of large language models, I’m not so sure
anymore. Thesemodels work with billions of parameters (175 billion for GPT-3, more
than a trillion for more recent AI systems). Some engineers now describe language
modelling as a form of compression (Delétang et al. 2023). From their perspective,
LLMs are compressed re-representations of the data they were trained on. Impor-
tantly, compression results in a memory that is productive and that makes accurate
predictions for unseen data. From this perspective, Chat-GPT3 is a corpus that talks
back.

But this suggests to me that there is considerable continuity with exemplar-
based models. Daelemans et al. (1999) observed, using memory-based learning, that
forgetting is harmful: performance drops when low-frequencywords are not taken
into consideration. Furthermore, in order to optimize algorithms for efficient
exemplar-driven generalization such as TiMBL (Daelemans et al. 2007), they also
found that it is essential to make use of data compression.

The analogical sets of nearest neighbors on which the models of Skousen (1989)
and Daelemans et al. (1995) base generalization offer the analyst considerable
insight. Analogicalmodeling has successfully and insightfully been applied to a range
of phonomena, ranging from the study of stress (Arndt-Lappe 2011; Eddington 2000)
andfinal devoicing (Ernestus and Baayen 2003) to the study of derivational semantics
(Plag et al. 2023).

By contrast, a current LLM is more like a black box. In fact, the LLMs put the
connectionist debate that raged for two decades in a new light. This debate came to
an inconclusive end in 2002with a series of exchanges in Trends in Cognitive Sciences
(McClelland and Patterson 2002a, 2002b, 2002c; Pinker and Ullman 2002). This debate
left many researchers with the feeling that connectionist networks are just not good
enough. However, history has proven the connectionists right. Neural network
models can be made to work, and a well-designed connectionist memory is pro-
ductive. Unfortunately, LLMs are not straightforwardly interpretable. In this respect,
history has proven the connectionists wrong. For instance, Seidenberg and Gon-
nerman (2000) viewed the hidden layer of their networks as a layer of morphological
representation, where orthographical, semantic, and phonological systematicities
(in their terminology, ‘codes’) converge. According to this proposal, just as there are
distributed representations of form and meaning, there is a distributed represen-
tation of morphology which captures regularities attributed to morphemes without
having to represent morphemes with discrete units. However, the many layers of

The wompom 621



units and the internals of attention heads in current transformer-based LLMs are
opaque to any such interpretation.

3 The present

For corpus linguistics and corpus-informed linguistic theory, the importance of
statistical learning is unsurprising. However, with the advent of LLMs, we now have
computational proof that human language skills can be very closely approximated by
statistical learning algorithms that work extremely well without depending on any
traditional linguistic concepts such asmorphemes, tense, aspect, case, number, voice,
relative clause, syntactic dependencies, and constructions.

The excellent performance of LLMs suggests to me that abstracting away from
micro-variation by means of symbolic features and symbolic rules operating with
these features is harmful, at least when huge volumes of data are available for
training with immensely large and deep networks. Perhaps this should be unsur-
prising. Abstraction results in categories that ideally are maximally distinct and as a
consequence informative for main trend prediction with some classifier, but within-
category differences become invisible and can no longer fine-tune prediction. LLMs
therefore challenge current practice in corpus linguistics, cognitive linguistics, and
construction grammar, of analyzing and describing tokens of language use bymeans
of featural descriptions distinguishing between discrete values, such as employed in
behavioral profiling. To be clear, I believe behavioral profiling is an important and
informative tool that has led tomany important insights. But LLMs challenge us to do
even better.

Working with abstract features may also be sub-optimal for a very different
reason. LLMs absorb not only language structure (whatever that is), but also huge
chunks of world knowledge. In part, this happens because LLMs are currently
developed not only on textual data, but also on digital materials containing pro-
gramming code, equations from logic, mathematics, physics, and chemistry. In part
this is also due to including wikipedia among the training materials.4

The implication for linguistic theory is that it is counterproductive to assume
that knowledge of language and world knowledge are completely separated and
disjunct. When in the early nineties I was working as a post-doc with Rochelle Lieber
on lexical semantics, she argued that language provides the ‘skeleton’ for morphology,
a skeleton that is featural and hierarchical in nature, and that encyclopedic
knowledge is a holistic body that is grafted onto this skeleton (Lieber 2004). At the

4 It appears there are hardly any benefits of visual grounding for contextualized embeddings
calculated from very large text corpora, whereas benefits are visible when training proceeds on
substantially smaller corpora (Shahmohammadi et al. 2023).
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time, this distinction made a lot of sense to me, not in the least for practical reasons.
But with the new technologies that are now available, we are in a much better
position to study the interaction of knowledge of language and knowledge of the
world.

Inwhat follows, I present two case studies that illustrate the above thoughts. The
first addresses the importance for linguistic theory of taking world knowledge into
account. In this case study, which focuses on nominal number in English, I make use
of standard embeddings (obtained with word2vec), which I take to be word-type
specific ‘continuous’ (instead of discrete) behavioral profiles. The second case study
uses contextualized embeddings from a large language model (GPT-2) to predict the
English determiners (the, a, an). It illustrates the problems that come with the use of
abstract features, and at the same time shows how an LLM can be useful as a tool for
corpus linguistics.

3.1 Oak leaves

In standard approaches in theoretical linguistics to the formation of noun plurals in
English, an operation on form (the addition of a dental fricative with phonological
adjustments) has a parallel operation onmeaning: the change from singular number
to plural number. Typically, the semantics of pluralization is described as involving
the change in value of an abstract feature for number, either by adding a feature
specification for plurality, or replacing a singular feature value by a plural feature
value. Although the semantics of pluralization in English is well known to be more
interesting than this (see, e.g., Quirk et al. 1985), in distributional semantics,
pluralization has been conceptualized as a unitary semantic operation. For instance,
taking pluralization to involve an equipollent opposition, we can set up proportional
analogies such as

apple : apples
SING[ ] PLUR[ ] = cow : cows

SING[ ] PLUR[ ]
and rewrite this in vector notation as follows:

apple
̅̅̅̅̅→

: apples
̅̅̅̅̅̅→ = cow̅̅̅→

: cows̅̅̅̅→
.

We next express the plurals as a function of their singulars,

APPLES
̅̅̅̅̅̅̅̅→ = APPLE

̅̅̅̅̅̅̅→+ PLURAL
̅̅̅̅̅̅̅̅̅→

COWS
̅̅̅̅̅̅→ = COW

̅̅̅̅→+ PLURAL
̅̅̅̅̅̅̅̅̅→

,

and it now follows that
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PLURAL
̅̅̅̅̅̅̅̅̅→

apple = APPLES
̅̅̅̅̅̅̅̅→− APPLE

̅̅̅̅̅̅̅→

PLURAL
̅̅̅̅̅̅̅̅̅→

cow = COWS
̅̅̅̅̅̅→− COW

̅̅̅̅→
.

Here, I specified separate plural vectors for apple and cow, one reason being that
word embeddings inevitably contain measurement noise. In what follows, I will

refer to the vectors PLURAL
̅̅̅̅̅̅̅̅̅→

apple and PLURAL
̅̅̅̅̅̅̅̅̅→

cow as the shift vectors for apple and
cow. Given the measurement noise in the embeddings, we average over all shift
vectors to obtain an average shift vector calculated over all n pairs of singulars and
their corresponding plurals in a given dataset (see, e.g., Drozd et al. 2016):

AVG SHIFT
̅̅̅̅̅̅̅̅̅̅̅̅→ = 1

n
∑
n

i=1
(plural̅̅̅̅̅̅→

i − singular
̅̅̅̅̅̅̅̅̅→

i).

However, as pointed out by Shafaei-Bajestan et al. (2022, 2024), upon closer inspec-
tion, the empirical shift vector for English is not very informative. To see this,
consider the left panel of Figure 1, which plots the shift vectors (calculated from
word2vec embeddings, Mikolov et al. 2013) for 11,665 English nouns in a two-
dimensional plane, obtained by applying a tSNE dimension reduction (Maaten and
Hinton 2008). The average shift vector (not shown) is located near the origin of the
scatterplot. Shift vectors show considerable clustering by high-level WordNet-based
semantic class, four of which are highlighted (artifacts in gray, animals in brown,
plants in green, and group nouns in black). A straightforward linear discriminant
analysis with leave-one-out cross-validation is able to predict the high-level semantic
class (N = 26) for a shift vector with 63 % accuracy (majority baseline: 23 %).
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Figure 1: Shift vectors for 11,665 English nouns, using word2vec embeddings. Left panel: selected high-
level WordNet categories. Right panel: WordNet-based subcategories of the higher-level category of
artifacts. Individual shift vectors are represented by tiny dots, shift vectors of selected categories are
represented by larger symbols.
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The right panel of Figure 1 shows that within a large category such as that of
artifacts, words belonging to further subclasses show additional clustering. Formore
fine-grainedWordNet-based semantic classes, classification accuracy increases even
further (see Shafaei-Bajestan et al. 2024, for detailed discussion). The emergence of
clusters in just a two-dimensional t-SNE plane indicates that English shift vectors
are well-separated in a relatively low-dimensional subspace of the embedding
space (cf. Stupak and Baayen 2022).5

What are the theoretical implications of the clustering of English shift vectors by
semantic class? Itmight be argued thatwe are observing performance noise, and that
English pluralization is at its core a symbolic operation – the adding or exchanging of
a feature value. However, as pointed out by Shafaei-Bajestan et al. (2024), languages
such as Swahili (Polomé 1967) and Kiowa (Harbour 2008) have elaborate gender
systems with exponents that vary with a set of high-level semantic classes. Given the
present observations for English, it is conceivable that Swahili and Kiowa have
grammaticalized parts of the differential semantics of nominal pluralization,
whereas English has not.

Of course, one’s response to this observation could be: so what? On the other
hand, what if the observed clustering of shift vectors is actually part of English
speakers’ knowledge of their language? If so, there are non-trivial implications for
our understanding of inflectional productivity. Rules depend on simplicity. It is this
simplicity that enables generalization. If English nouns have plurals that are to some
extent class-specific and even item-specific, then the implication is that predicting
the precise meaning of a noun plural that has not been encountered before, given a
singular that has been encountered before, is not possible.

Let me illustrate this simple point with an example. Consider how listeners
might interpret the plural compound oak leaves. Listeners who do not knowwhat an
oak tree is will think of the leaves of some plant. Listeners who know that an oak is
some kind of tree, will understand that the compound references the leaves of some
tree that goes by the name of oak. Those listeners who can distinguish oak trees from
willow trees and ash trees, will recognize that leaves such as depicted in Figure 2 are
the leaves of oak trees. But European listenerswill primarily think of the leaves of the
European oak (left panel), whereas listeners in North America will first think of the
leaves of the American oak (right panel). What the precise meaning of an inflected
word is varies across speakers and listeners, and depends on their knowledge of the
world.

One might argue that this variability in understanding does nothing more than
clarify that all that a grammatical description can reasonably accomplish is to

5 Plural shift vectors in Russian, and Finnish Chuang et al. (2023), Nikolaev et al. (2023) have also been
found to form clusters, but these clusters are based on case, rather than semantic class.
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associate plurality with a single general operation, such as an average shift vector in
distributional semantics, or a change in a symbolic feature an in theoretical
morphology. Undoubtedly, this keeps things simple, but it has an important down-
side. If embeddings capture important aspects of meaning, then linguistic theories
that work with a single fixed featural change for nominal plurality give up
completely on making precise predictions for the actual meanings of plural nouns.

Alternatively, we can embrace embeddings, and accept the challenge to think of
how we might predict words’meanings from their forms as well as possible. Before
addressing this question, a cautionary note on embeddings is in order. The knowl-
edge base underlying embeddings is super-human in many ways, both in terms of
volumes of text and the wide coverage of topics. Embeddings cannot be expected to
be precise for any single language user. Nevertheless, they are useful, especially as
similarity scores of embeddings have been found to be precise predictors for
aggregated human perceived semantic similarity (Boleda 2020). I look at them as
crutches to walk with.

If we accept embeddings as legitimate and useful approximators of words’
meanings, then the question arises how close a listener can get to a word’s embed-
ding given its form as input. This question can be addressed with a computational
model of the mental lexicon that we have been developing in Tübingen, the
discriminative lexicon model (DLM, Baayen et al. 2019; Chuang and Baayen 2021;
Heitmeier et al. 2024).

The DLM is a simple model for studying the relation between words’ forms and
their meanings. Both forms and meanings are represented by high-dimensional
numeric vectors.6 The task that themodel is designed for is to predict meanings from

Figure 2: Leaves of the European oak (left) and the American oak (right). Source: Pixabay.com.

6 However, in the DLM, forms and meanings do not have representations stored in memory. In
comprehension, for instance, form vectors represent ephemeral visual or auditory input that is
dynamically mapped on the fly onto equally ephemeral semantic representations (see Gahl and
Baayen 2024, for detailed discussion).
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forms (comprehension), and forms frommeanings (production). This is accomplished
with the help of networks that map form and meaning onto each other. The model’s
simpler and computationally light mappings make use of the linear algebra that un-
derlies multivariate multiple regression, its more complex and computationally
intensive mappings make use of deep learning networks. In what follows, I illustrate
what can be achieved with the computationally light linear mappings.

An implementation of a DLM model provides a high-level computational
approximation of the lexicon of a single language user. Although ideally a DLMmodel
would be exposed to the language use and language exposure of a given speaker at a
given point in their life, the data required for implementing such a model are not
available (and for ethical reasons, I amhoping such data will never become available).
As a consequence, a DLM model is usually trained on community-based form repre-
sentations (in what follows, words’ standard written forms) and community-based
semantic representations (in what follows, word2vec embeddings).

A linear mapping F that transforms a form vector c into its corresponding
embedding s,

s = Fc,

can be estimated in three ways, given a corpus-based lists of word forms, the
corresponding word frequencies, and their embeddings. First, one can estimate an
optimalmapping for the set of word types without taking the frequencies withwhich
these types are used into account. Such mappings estimate what we have called the
‘endstate of learning’ (henceforth EOL), which provides the regression solution for F.
This regression solution is mathematically equivalent to the asymptotic solution that
would be obtainedwith infinite step-by-step learning experiencewith the set ofword
types.

Second, one can let the model incrementally learn a mapping, step by step and
token by token. This method comes into its own for training data that are explicitly
ordered in time. Heitmeier et al. (2023b) used it to study within-experiment lexical
learning, and also applied it to chronologically ordered data sets from CHILDES

(MacWhinney 2000). Differences in frequency of use in the training data are taken
into account automatically, as more frequent words will be encountered more often
during learning. However, this method is computationally intensive and relatively
slow.

When no information on the temporal order of learning events is available, or
when order information is not essential, then one can implement a form of
frequency-weighted regression, henceforth FIL (frequency-informed learning, see
Heitmeier et al. 2023a, for detailed discussion). FIL is as computationally light as EOL,
and its predictions are similar to those of incremental learning, except for words
with tokens that appear primarily either early in training, or late in training.
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In what follows, we use the DLM to assess the pros and cons of working with
regularized plural vectors, obtained by taking the empirical vectors of singulars and
adding the average plural shift vector. Figure 3 presents the accuracies of EOL and
FIL mappings constructed for the 11,500 singular and plural noun pairs the
embeddings ofwhichwere previously visualized in Figure 1. The blue dots in Figure 3
represent the case in which a prediction is counted as correct when the predicted
semantic vector has its targeted gold-standard vector as closest neighbor (accu-
racy@1). Orange dots represent the case in which the target vector is among the
closest 10 neighbors of the predicted embedding (accuracy@10).Models using FIL are
summarized in the upper panels, and models using EOL are visualized in the lower
panels. The left panels present type-wise accuracy, the right panels present accuracy
when token frequency is taken into account.

Figure 3 clarifies that when we regularize plurals by deriving them from their
singulars with the average shift vector, learning accuracy always increases. The
learning task is simpler, the plurals aremore predictable. Second, when frequency of
use is not taken into consideration (EOL learning), the advantage of working with
average plural shift vectors is greatest. Higher-frequency words are more difficult to
learn, they have more form neighbors. Regularizing high-frequency plurals allevi-
ates this problem especially for EOL mappings. Third, with FIL, higher-frequency
words are learnedwell, in contrast to lower-frequencywords. However, with lenient
evaluation (accuracy@10), performance is just about as good for empirical plural
vectors as for regularized plural vectors.
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From a usage-based perspective, a model trained with FIL is the most attractive.
Heitmeier et al. (2023a) report that FIL outperforms EOL when predicting visual
lexical decision latencies. FIL provides a good window on what words are more
difficult to learn, and where speakers and listeners are likely to have learned words
less well. Evaluation on a token-basis is attractive because it assesses how well
learning serves actual use: knowing words that are encountered frequently is more
important than knowing words that are hardly ever used. Evaluating with Accu-
racy@10 is also attractive, for two reasons. First, we are dealing with a classification
task with 11,500 possible outcomes. Getting close is already an achievement. Second,
from a cognitive perspective, it is highly unlikely that a listener would arrive at
exactly the same conceptualization as the speaker, as language users have different
experiences with the language and different life histories. Provided interlocutors
succeed in communicating meanings that are similar enough, communication can
proceed unhindered. The fact that token-wise Accuracy@10 is very high for empirical
plural vectors, and almost as good as Accuracy@10 with regularized plural vectors,
therefore suggests that from a usage-based perspective, not much is to be gained by
regularizing plural vectors.

At the same time, regularizing plural vectors comeswith a clear loss. Regularized
plurals are a far cry from the true meanings of plural forms as gauged with the
empirical embeddings. The averaging process used to generate regularized plurals
filters out all world knowledge. The different ways in which multiple objects of the
same type configure in the world (see Figure 4 for examples) is not part of what
grammars with general shift vectors (or symbolic features) can predict. If the task of
a grammar is to model and predict as well as possible what speakers really under-
stand given text or speech input, and what speakers say when they have an idea or a
message inmind, then simplified plural vectors simply don’t do the job. Prediction of
exactly what a speaker had in mind is not possible, and not necessary, but this
modeling example shows we can get the gist right. For instance, in the hypothetical

Figure 4: Multiple cows (left) and multiple oranges (right). A decent computational model should be
able to get the gist of plural configurations right. Source: Pixabay.com.
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case that the plural apples has not been encountered, the similarities in shape and
function of apples and oranges may well be picked up from the embedding space,
allowing the model to predict for apples configurations in the world similar to those
of oranges and other large fruits.

3.2 Determining determiners

Behavioral profiling, analogical modeling of language (Skousen 1989) and memory-
based learning (Daelemans and Van den Bosch 2005) typically work with categorical
predictors that are carefully curated by the analyst. For any algorithm, decisions
about representations are unavoidable. For behavioral profiling, compiling well-
motivated and replicable feature values for large numbers of sentences, when done
by hand, can be prohibitively expensive. More important for the present discussion
than this pratical issue is that categorical featuresmay not offer the precision that we
really need.

By way of example, consider the problem of predicting the English determiner.
Divjak et al. (2023) studied determiner use in the British National Corpus. Tomymind,
it is an exemplary study of what can be accomplished with behavioral profiling. And
yet, have these authors really solved the problem?

Divjak et al. (2023) coded 2,200 tokens of nouns by hand for the number and
countability of the noun, forwhether the noun is part of a set phrase, for the presence
of pre- or post-modifiers, for hearer knowledge, and for specificity. They report very
high accuracies (close to perfect) using recursive partitioning trees and random
forests. At first sight, this might suggest that with carefully selected and theoretically
well-motivated discrete features, the problem of determiner selection in English is
now solved.

However, the features provided to the tree and forest classifiers are themselves
based on considerable human interpretation. For instance, ‘Hearer Knowledge’ is
reported to be “based onwhether it appears that the speaker assumes that the hearer
knowswhat they are referring to” (p. 12). The authors admit that applying these kinds
of concepts to actual data is not always straightforward. In fact, in the case of ‘Hearer
Knowledge’, a problem of form (predicting the determiner) is replaced by a problem
of meaning: figuring out when ‘Hearer Knowledge’ is present or absent. Although I
can get some intuitive meaning out of this term, my mind shuts down on me when I
try to think through what it actually means. I can imagine that for non-native
speakers of English, developing a sense of what in the English speaking world counts
as ‘Hearer Knowledge’ is a formidable task. These considerations suggest to me that
what we need is a model for predicting the value of ‘Hearer Knowledge’ for a given
utterance token. This predicted value can inform a feature-driven symbolic
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classifier. Unfortunately, this would imply a two-step process, and the lesson from
end-to-endmodeling in NLP and AI is that in-between steps tend to be suboptimal for
modeling accuracy.

Large language models also predict English determiners with high accuracy.
Figure 5 illustrates this for some 15,000 nouns in the Buckeye corpus (Pitt et al. 2005),
using contextualized embeddings obtained with GPT-2. Two context windows were
used: a wide window with 100 sublexical units (about 50 words) to the left of the
article, and a narrower window with 20 sublexical units (about 10 words).7 For both
windows, prediction accuracy of a linear discriminant analysis (LDA)with leave-one-
out crossvalidation is shown for the contextualized embeddings of the articles
themselves (distance 0) as well as for thewords preceding the article, up to a distance
equal to 3. Baseline accuracy (using the majority choice) is at 0.558. Except for words
at distance 3, GPT-2 accuracies are significantly higher than the baseline accuracy.8

The somewhat better performance of contextualized embeddings obtained with a
wider context window suggests that information at quite some distance from the
target noun is already providing information on what determiner to use. It is also
interesting that without any knowledge of the upcoming noun, and hence without
any direct information about the upcoming noun’s number or countability, the LDA
models are already extremely successful. In other words, the contextualized em-
beddings of the GPT-2 model capture micro-level variation that may motivate some
features (e.g., ‘Hearer knowledge’). They also may render others unnecessary. In the
case of grammatical number, for instance, the GPT-2 model may already be antici-
pating the upcoming grammatical number, and hence may not need to be provided
explicitly with information about grammatical number that is realized on the noun.
Contextualized embeddings appear to be looking into the future. The challenge for
linguistics is to explain why.

Of course, the question of whether actual human language users can make use
of the information that LLMs extract from planet-wide global usage can only be
addressed by experiments with real speakers, and with computational models
trained on human-scale input using cognitively plausible learning mechanisms.
LLMs are models constructed at a superhuman scale, using non-human learning
algorithms. The way in which LLMs predict upcoming determiners is a far cry from
what is currently known about human language processing. But my hunch is that
they are powerful statistical tools for probing dependencies in language use.

7 I am indebted to Sean Tseng for calculating these contextualized embeddings for the Buckeye
corpus.
8 For related research supporting the idea that contextualized embeddings provide a lens on the
future, see Pal et al. (2023), and for mathematical reasons why this is possible in deep networks, see
Wu et al. (2024).
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3.3 Models and models

Thus far, I argued that abstract features such as ‘plural’ and ‘Hearer Knowledge’ can
be suboptimal because abstraction may render useful fine within-category detail
invisible, because abstraction may filter out essential knowledge of the world, and
because an abstract feature may itself stand in need of explanation. What then is the
role of abstraction, and of symbols, in the scientific method?

I can only offer a tentative line of thought that takes as point of departure the
distinction made by Breiman et al. (2001) between machine learning and statistical
modeling. Breiman and colleagues describe machine learning as goal oriented, it not
being important to understand how a model works as long as it does what it is
designed to do. By contrast, in statistics one sets up a mathematical model with
predictors and response variables that are represented symbolically, in the hope is
that the model can predict and even generate the data, apart from measurement
noise, and in this way provide the analyst with an explanation of why we observe
what we observe.

LLMs are machine learning models. Just as a smartly compressed version of the
collected works of Plato does not provide a model of Plato’s language or Plato’s
thought that humanist scholars would find useful, LLMs (conceptualized as smartly
compressed corpora that are productive) do not provide a model of human thought
or even human language. I think of them as Large Productive Compressed Corpora,
rather than as language models.
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When we build statistical models, we always work with abstraction and with
symbols, but, paraphrasing (Box 1976, p. 176), we should guard against falling in love
with our own models. The cautionary note in Box and Draper (1987) that all models
are approximations, and thus, essentially wrong (p. 424), also applies to linguistic
theories using abstract features for quantitative prediction. The practical question is
how wrong a linguistic model has to be to not be useful (cf. Box and Draper 1987, p.
74). Of course, this raises the question of what counts as ‘useful’.

Symbolic quantitative models can be useful for language teaching. Here, lin-
guistics has a long history. Assuming that in the near future we will not be wearing
automatic translation earplugs, and that there still will be people who would like to
learn another language themselves, being able to provide explanations for main
trends in language usewill continue to be very helpful. Symbolic quantitativemodels
also help us to dig deeper, to engage in the iterative process of refining features so
that prediction become increasinglymore accurate. In principle, when applied to the
same problem, with the same goal, machine learning and iterated linguistic
modeling should converge. But I fear that as linguistic models become increasingly
refined, the pleasure of understanding will decrease exponentially. Anyone who has
tried to make sense of an ANOVA model with a five-way interaction, or a recursive
partitioning tree generating hundreds of splits, will know what I mean.

4 The future

What is the future of corpus linguistics and linguistic theory? Within the constraints
of the limitations of my own understanding of language and linguistics – the com-
plexities of language and language use continue to both excite and puzzle me – I see
three issues that the field will have to address, if it is to survive.
1. We will need to clarify what the benefits for society are for tax money going into

funding corpus linguistics and linguistic theory.
2. We will need to make our research carbon neutral.
3. We will need to change the way we work, moving from ‘butterfly collection’ to

incremental model building.

In what follows, I discuss these three issues in turn.

4.1 Why fund research in corpus linguistics and linguistic
theory?

In the coming years, I anticipate that funding for the humanities, including lin-
guistics, will decrease as the economic costs of the unfolding climate catastrophe for
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our societies skyrocket. The current global political situation adds to this with
increasing defense spending. For linguistics, and corpus linguistics, to have a chance
of survival in the academic marketplace, it is imperative that we can clarify to the
tax-payer what the benefits of our discipline for society are.

As a humanities scholar, I strongly believe in the added value of better under-
standing how the human mind works within societies and their cultures. But as
countries have to take measures to deal with, for instance, rapidly rising sea levels,
increasing frequency andmagnitude of storms, as well as raging forest fires, reduced
amounts of funding across academiawill flow primarily to applied sciences. Funding
agencies in many countries are already requesting grant proposals to clarify their
practical value for society, and I expect the pressure on submitting proposals out-
lining applicable research to increase over the coming years. At the moment, we can
get away with paying lip service to applicability. However, as a field, we will have to
provide clear answers to the question why linguistics, and corpus linguistics, should
be funded. After all, with LLMs, society now has unprecedented highly effective
language technology at its fingertips – it seems that there is nothing that this
wompom cannot do. Why would citizens be required to fund academic research in
corpus linguistics and linguistic theory now that engineers “have figured it all out”?
This is a harsh question, and I don’t have any good answers. But here is one thought.

People without linguistic training tend to think that there is correct language
use, as opposed to incorrect language use. This rigid perspective on language
reinforces ingroup versus outgroup behavior and is easily harnassed to serve the
interests of demagogues. However, the accumulated results of corpus linguistics over
the past decades indicate that language is not deterministic and fixed, but stochastic,
a patchwork of constructions, idioms and collocations, with writing conventions that
diverge considerably from actual conversational speech. But this is not common
knowledge. Although teachers at secondary schools must have some knowledge of
the key findings of corpus linguistics, sociolinguistics, and dialectology, little of this
knowledge is passed on to their students. These students, some of whomwill later in
life be policy makers, need to be much better informed about the variability that is
inherent in language.

I’mhoping that a better understanding of the true nature of languagewill reduce
the risk of policy makers to overvalue the standard language or their own sociolect.
To achieve this, it will be essential that we better communicate the core insights of
our field to the general public. An example from sociolinguistics that I find
impressive is the documentary entitled “Talking black in America” (https://www.
youtube.com/watch?v=8QFpVgPl9tQ), an excellent response of American sociolin-
guistics to widespread negative sentiments and misconceptions in the USA about
English as spoken by black Americans. For educational purposes, having similar
documentaries about key results from corpus linguistics need to be developed. Many
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outstanding videos explaining central concepts from mathematics and AI are
available on the web. Similar materials, perhaps gamified, need to be developed to
enable the general public to get a better understanding of language and language use,
the variability of language, and the social and cultural importance of language
diversity.

4.2 Environmentally sustainable corpus linguistics

In 1950, Sir Ronald Fisher pointed out the following:

For the future, so far as we can see it, it appears to be unquestionable that the activity of the
human race will provide the major factor in the environment of almost every evolving
organism. Whether they act consciously or unconsciously human initiative and human choice
have become the major channels of creative activity on this planet. Inadequately prepared we
unquestionably are for the new responsibilities, which with the rapid extension of human
control over the productive resources of the world have been, as it were, suddenly thrust upon
us. (Fisher 1950, p. 20)

More than 70 years later, human-induced climate change is unfolding at a cata-
strophic pace. The planet is seriously ill: it has intelligence. Corpus linguistics and
corpus based natural language processing are contributing to climate change, just as
all other sectors of modern society. Figure 6 plots cumulative carbon emissions as a
function of time from 1930 to 2022 (data from Friedlingstein et al. 2023). This is what

1940 1960 1980 2000 2020

0
50

00
0

10
00

00
15

00
00

20
00

00

year

cu
m

ul
at

iv
e 

fo
ss

il 
fu

el
 a

nd
 c

em
en

t e
m

is
si

on
s 

(G
tC

)

Th
or

nd
ik

e 
an

d 
Lo

dg
e

Ku
ce

ra
 a

nd
 F

ra
nc

is

C
or

pu
s 

U
it 

de
n 

Bo
og

ae
rt

LO
B 

co
rp

or
a

Sw
itc

hb
oa

rd
 C

or
pu

s
Br

iti
sh

 N
at

io
na

l C
or

pu
s

Sp
ok

en
 D

ut
ch

 C
or

pu
s;

 G
oo

gl
e 

bo
ok

s
C

LL
T 

fir
st

 is
su

e
Bu

ck
ey

e 
C

or
pu

s
C

O
C

A 
(fi

rs
t r

el
ea

se
)

C
om

m
on

 C
ra

w
l (

fir
st

 re
le

as
e)

D
is

tri
bu

te
d 

Li
ttl

e 
R

ed
 H

en
 L

ab
 (m

ul
tim

od
al

 c
or

po
ra

)

KE
C

 E
M

A 
co

rp
us

; O
pe

n 
Su

bt
itl

es
U

hr
ig

's
 d

ig
ita

l i
nf

ra
st

ru
ct

ur
e 

fo
r R

ed
 H

en
 N

ew
sS

ca
pe

C
O

C
A 

(s
ec

on
d 

re
le

as
e)

20
22

 u
pd

at
e 

C
om

m
on

 C
ra

w
l

Figure 6: Cumulative fossil fuel and cement emissions (in GtC) for 1930–2022, annotated for the
emergence of selected resources for corpus linguistics.

The wompom 635



humanity has been pumping into the planet’s atmosphere. There is no sign that this
behavior will stop anytime soon.

The date of publication of a selection of resources for corpus linguistics has been
added to the plot, beginningwithA teacher’sword book of 30,000words by Thorndike
and Lorge (1944) and the word frequency lists published by Kučera and Francis
(1967), and ending with the 2022 release of Common Crawl. The magnitude of
resources now available to corpus linguistics has increased along with the ever
growing global carbon footprint of humanity. The contribution of increasingly large
corpora to humanity’s global carbon emissions is likely to be small, and I know,
correlation is not causation. But it is not unlikely that even though storage of elec-
tronic data is becoming cheaper, the rate at which storage devices are used is
increasing even faster, leading to a net increase in construction costs and of costs of
use, across society,9 including corpus linguistics.

Environmental costs are not only increasing with storage space, but also with
computational resources. Data centers housing LLMs and AI systems currently are
responsible for 2 % of global electricity consumption, and thisfigurewill have doubled
in the near future. These systems also need enormous amounts of fresh water to cool
processors.Within years, large AI systemsmaybe consuming asmuch energy as entire
nations (Crawford 2024). The planet not only has intelligence, but now it has artificial
intelligence as well. It is important to realize that the carbon footprint of LLMs is not
restricted to development, but also extends to use (think of applications such as Meta-
Llama 3). A search using generative AI is estimated to use four to five times the energy
required by a conventional web search (Crawford 2024).10

Even though computations and storage have become increasingly energy effi-
cient, the rate at which our use of the new tools and resources increases has been
increasing evenmore. AI andmachine learning are no exception (see, for AI and NLP
Wu et al. 2022). Although efforts are underway tomitigate the environmental costs of
AI and LLMs (Zhu et al. 2023), what we really need is green AI, defined by Schwartz
et al. (2020) as “AI research that yields novel results without increasing computa-
tional cost, and ideally reducing it”. As long as a novel AI application is not carbon
neutral, for the sake of future generations, it should be banned from large-scale
public use.11

9 See, e.g., Berners-Lee (2021), p. 95, and Berner et al. (2022).
10 The difference in costs of using simpler as opposed to complex LLMs can also be huge. The
contextualized embeddings calculated (using 50 preceding words) for the Buckeye corpus, which
figured in the analyses reported above in Section 3.2, required 0.011 kWh of (local) electricity. An
estimate of the cost of using Llama-3-8b instead of GPT-2 is 0.950 kWh, two orders of magnitude
higher.
11 The way that homo ‘sapiens’ is managing its own waste suggests to me that the social intelligence
of our species is remarkably similar to that of the coronavirus.
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The challenge to become carbon neutral is not only urgent for AI and machine
learning, it extends also to corpus linguistics (and any other scientific discipline).
Simplemeasures at the personal level are tominimize air travel, to drastically reduce
meat consumption, and to switch off your modem when not in use. But collectively,
we also need to becomemuch better aware of the carbon costs that comewith the use
of computer programs and applications.What is the carbon footprint of downloading
English fasttext embeddings, or of training a deep learning model for 2 weeks, or
fitting a linearmixedmodelwithmaximal randomeffects that takes 3 h in R and then
reports it didn’t converge?12

At present, we act without thinking about environmental costs. I confess guilty.
We have ethics boards that assess whether our experiments could be harmful to
participants, but the harm of carbon-intensive research for upcoming generations
seems to be outside the radar of academic ethical awareness. Funding agencies
should be encouraging us to explain how we plan to keep emissions low or how we
will offset them. Perhaps journals, including Corpus Linguistics and Linguistic
Theory, should ask researchers to publish estimates of the amount of electricity that
was required for the research reported. As researchers, we will need to learn how to
balance the higher carbon costs of energy-intensivemethods, as compared to carbon-
leaner alternatives, against the benefits of their use (see also Dhar 2020; Schwartz
et al. 2020; Strubell et al. 2019).

Letme provide two examples of the kind of issues that I am running up against in
my own research practice. The first example concerns fitting statistical models to
empirical data. A complex model may require hours of computation time. A simple
model may require only a few minutes. Is 3 h of computation time justified by the
additional precision that is supposedly gained? This question is exacerbated by
experiences indicating that for reasonably sized datasets, statistical models that take
many hours to fit are likely overfitting the data.

My second example concerns computationalmodelingwithin the discriminative
lexicon framework. We have been developing software facilitating the imple-
mentation of DLMmodels (Heitmeier et al. 2024). This software is written in the Julia
language, following recommendations of Douglas Bates and Reinhold Klieg, a lan-
guage that is highly optimized for numerical computations. Most of our models have
been implementedwith linearmappings betweenmeaning and form. It is surprising
how well these simple mappings perform. Recently, however, we have been
exploring deep networks. Deep mappings tend to outperform linear mappings with

12 The computationally highly effecient re-implementation by Douglas Bates in the MixedModels
package for julia is highly recommended: it doesn’t have any convergence problems, it is several
orders of magnitude faster, and hence has a much smaller carbon footprint.
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respect to comprehension and production accuracy.13 The problem that we are now
running into is whether to recommend using the simple linear mappings, which for
standard datasets can be estimated on a normal CPUwithin a few seconds, or should
we recommend to use deep networks, which take several hours to train on a GPU.
Does the greater precision of deep networks justify a carbon footprint that is a
thousand times greater?

Perhaps a reasonable environmentally-aware ‘code of conduct’, both for statistical
modeling and for computational modeling, is to conduct exploration with models that
are simple,14 and only build complex models when doing so is truly crucial for theory
development or practical application. If so, a complex model should be run once only.

4.3 From butterfly collection to model building

Unfortunately, to put it bluntly, a lot of research on language looks disquietingly like
butterfly collecting. An individual study can be well designed, competently executed,
and highly informative. Across many such studies, a general picture is emerging of
how language works. This is all great. Unfortunately, a body of loosely connected
research questions, analysedwith awide variety of researchmethods (howeverwell-
motivated) now has to compete with LLMs. Ideas about how language might work
are no match for a technology that actually works, that works extremely well, and
that is going to be integrated into widely used application software.

I believe that as afieldwe should bemore ambitious, and aim for comprehensive
computational models that are cognitively motivated, trained on human-scale data,
with algorithms that respect important properties of human learning. Without
implementation, theories of language are at best food for thought, and in the worst
case belief systems similar to the many other belief systems that permeate human
culture (see Horton 1967, for discussion of the rationality of pre-scientific thought).
Humanistic cognitive computational models will be theories of language that enable
us to predict much more effectively the details of language acquisition, language
change over the lifespan, the interaction of language and social identity, and the
interplay of language and cognition. What (corpus) linguistics needs is something
along the lines of what Anderson’s ACT-R model (see, e.g., Taatgen et al. 2006) is in
psychology: an integrated model that generates precise quantitative predictions for
vast arrays of empirical findings.

13 Butwhen it comes tomodeling human trial-by-trial lexical learning (Heitmeier et al. 2023b), linear
mappings outperform deep mappings (Heitmeier 2024).
14 Here, I follow Box (1976): “…it is fruitless to attempt to allow for all contingencies in advance so in
practice model building must be accomplished by iteration…” (p. 3 of the 1979 technical report).
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I am hoping that humanistic cognitive modeling in an interdisciplinary context
will also contribute to greening AI. As pointed out by Schwartz et al. (2020), “Ironi-
cally, deep learning was inspired by the human brain, which is remarkably energy
efficient.” The long-term goal of humanist cognitive computational modeling of
language can actually be energy-lean models that take inspiration from on the one
hand the fact that we now know for sure that probability in language can be dealt
with effectively (as demonstrated by LLMs), and on the other hand by the fact that we
also know a green solution exists as well (as demonstrated by the human brain).

5 Concluding remarks

I am hoping that technological advances in the design of computer chips may bring
the environmental costs of LLMs down, while at the same time providing linguists
with the means of building models that better approximate the green computations
of our brains. I am thinking in particular about modeling language processing with
spiking neurons. Eliasmith (2013) built a model of the brain, inspired by ACT-R, using
spiking neurons. Unfortunately, simulating spiking neuronswith standardhardware
is extremely computationally intensive. However, simulation studies show that en-
sembles of spiking neurons can be highly energy efficient (Higuchi et al. 2024b; Yin
et al. 2021).

New perspectives are offered by the neuromorphic chips that are currently
being developed by the Intel Neuromorphic Research Community, which is making
some significant advances on a variety of computational tasks (Davies et al. 2021).
One wishful thought is that linguistics will be actively engaged in exploring the
potential of spiking neurons. What if neuronal firing in the brain measured with
collected high-density intracranial recordings from the human speech cortex on the
superior temporal gyrus (see, e.g., Oganian et al. 2023) can be approximated by
spiking neurons that respond selectively to different frequency bands, and can
extract frequency patters directly within the time domain, at a fraction of the
computational costs of a fast fourier transform (Higuchi et al. 2024a, 2024b)?

I am also hoping that linguistic theory will not be incarcerated in the mental
prison of next word prediction, in the way that linguistic theory was enthralled for
many years by the properties of formal (programming) languages.15 Next word
prediction technology goes back to Markovian models, but are language users really
predicting the next word given the sequence of preceeding words, constantly

15 The history of how recursionmade itsway into programming languages, as ameans of facilitating
conceptualization of an iterative procedure (Daylight 2011), makes one wonder why in certain lin-
guistic circles recursion has been elevated to the defining property of language.
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recalibrating predictions for each successive word? What if we are anticipating the
message, rather than the next word?16 The discriminative lexicon model, for better
or for worse, works with holistic vectors for form that are mapped onto holistic
vectors for meaning. At the level of words, this can be made to work. It is an open
question whether the model can be made to work also for utterances. However,
even within the constraints of our simple model, effects usually attributed to
narrowing down of probabilities (Levy 2008) emerge and arise as a consequence of
sequential inputting of information to a network (cf. Baayen et al. 2016; Shafaei-
Bajestan et al. 2023).

I bring this essay to a closewith a partial quote of an abstract that appearedmore
than 65 years ago:

The “understanding” of verbal behavior is something more than the use of a consistent vo-
cabularywithwhich specific instancesmay be described.…The extent to whichwe understand
verbal behavior in a “causal” analysis is to be assessed from the extent to which we can predict
the occurrence of specific instances and, eventually, from the extent towhichwe can produce or
control such behavior by altering the conditions under which it occurs. In representing such a
goal it is helpful to keep certain specific engineering tasks in mind. How can the teacher
establish the specific verbal repertoires which are the principal end-products of education?
How can the therapist uncover latent verbal behavior in a therapeutic interview? How can the
writer evoke his own verbal behavior in the act of composition? How can the scientist, math-
ematician, or logician manipulate his verbal behavior in productive thinking? (Skinner 1957)

B. F. Skinner was far ahead of his time. What he describes gets very close to current-
day prompt engineering for and fine-tuning of pre-trained LLMs. History has proven
him right. Inmy opinion, linguistics owes Skinner a huge apology. Now that Skinner’s
vision has become reality, at least in a technical sense, we need to think throughwhat
this means for our understanding of language. I briefly touch upon three issues.

First, LLMs require training on huge volumes of textual and multimodal data.
LLMs are not embodied, and this may explain in part why they need far larger
volumes of language data, compared to human learners.17 However, human lan-
guage use also depends on extensive and intense processes of multimodal learning
that unfold across the lifespan.18 Rather than faulting LLMs for the large amount of
training data they (currently) need, I think we should take stock and consider the
possibility that we have been severely underestimating the amount of ‘training’ that

16 Reflecting on the challenges that face any author writing about a complex topic, next-word
prediction is a caricature of the actual creative process.
17 How much data is actually required for LLMs is hotly debated also in AI, see, e.g., Bender et al.
(2021), Hoffmann et al. (2022), and more recently, Eldan and Li (2023) and Gunasekar et al. (2023).
18 Our vocabularies keep expanding as we grow older (Keuleers et al. 2015), and we now also know
that ourmental lexicons are constantly updated andfine-tuned to experience aswe speak (Heitmeier
et al. 2023b); for continuous learning in vision, see, e.g., Marsolek (2008).
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speakers actually receive from very early on as they learn to navigate their physical
and social worlds at the same time.

Second, we are far more predictable than we are comfortable with. We may not
like being predictable, but that doesn’t change that we are, and that this predict-
ability is exploited. The abovementioned work by Burrows on authorial hands more
than 30 years ago has in recent years been taken to unanticipated heights. Companies
can now infer with surprising accuracy one’s gender and age, and optimize their
advertisements accordingly. Every time Chat-GPT3 provides an answer that you find
useful, it is succeeding in predicting what you like. Programmers are now finding
that LLMs help them write better code. Soon, authors will be using LLMs to write
better novels. Of course, aswith any technology, LLMs comewith real and potentially
large dangers of misuse.19 But Skinner’s vision, and LLMs, are not intrinsically good
or bad.

Third, it seems to me there is far more continuity between human language and
animal communication than has often been assumed. Prairie dogs, for instance, pack
meanings into their calls (Dennis et al. 2020; Slobodchikoff et al. 2009) inways that are
reminiscent of how human languages pack motion, figure, path, and manner into
verbs (Talmy 1985). Pepperberg (2020) showed that a grey parrot, with a brain the
size of a walnut, can learn the concept of zero. Her work suggests that the parrot not
just memorized answers to specific questions, but was also able to generalize and
answer non-trivial questions about novel configurations of objects. Thus, the parrot
was not just ‘parroting’, it had a memory that generalized. One might argue that
parrots need enormous amounts of training, but so do LLMs, and so do we. To be
clear, I am not arguing that parrots and prairie dogs are just as intelligent as we are,
or that animal languages are just like ours. What I am arguing is that across several
species (prairie dogs, parrots, whales, dogs, elephants, octopuses) brains are making
use of similar statistical learning algorithms to compress experience into productive
memory systems for communication.
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