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Abstract: Three models for word frequency distributions, the 
lognormal law, the generalized inverse Gauss-Poisson law and 
the extended generalized Zipf's law are compared and 
evaluated with respect to goodness of fit and rationale. 
Application of these models to frequency distributions of a 
text, a corpus and morphological data reveals that no model 
can lay claim to exclusive validity, while inspection of the 
extrapolated theoretical vocabulary sizes raises doubts as to 
whether the urn scheme with independent trials is the correct 
underlying model for word frequency data. The role of 
morphology in shaping word frequency distributions is 
discussed, as well as parallelisms between vocabulary richness 
in literary studies and morphological productivity in lin- 
guistics. 
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1. Introduction 
Word frequency distributions have been studied 
intensively from both literary and linguistic per- 
spectives. In literary studies, word frequency 
distributions have been used to obtain estimates of 
an author's vocabulary (e.g. Menard,  1983; Efron 
and Thisted, 1976; Muller, 1979) or to obtain 
some more or less invariant characteristic measure 
of the distribution (e.g. Yule, 1944; Guiraud, 
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1954; Brunet, 1978). In linguistic studies, word 
frequency distributions have been studied for 
corpora  (Carroll, 1967) as well as for subsets of 
words selected according to some linguistic crite- 
rion (e.g. nouns [Yule, 1944], abstract nouns in 
-hess and -ity [Harwood and Wright, 1956] or 
'coverbs' [Roy, 1976]). Baayen (1989, 1991b) and 
Baayen and Lieber  (1991) studied the word 
frequency distributions of morphological cate- 
gories with respect to their productivity. Inter- 
preting the notion of productivity as the statistical 
readiness (Bolinger, 1948) with which new words 
are formed spontaneously and unintentionally 
(Schultink, 1961; Baayen and Lieber, 1991), they 
found that the growth rate of the vocabulary is a 
useful quantitative measure for the degree of 
productivity of a word formation rule. Another  
way in which the productivity of a word formation 
rule can be evaluated is to consider the number 
of potential words the rule might give rise to. 
This is the way in which the question of how to 
estimate the theoretical vocabulary size re-appears 
in linguistics. 

Since the reliability of estimates of the theo- 
retical vocabulary size depend on the assumptions 
one is prepared to make concerning the distribu- 
tion 'law' underlying the frequency data, it is 
important to subject statistical models that allow 
the theoretical vocabulary size to be estimated 1 to 
a detailed analysis of their rationale, goodness-of- 
fit and predictive adequacy. This is the main aim of 
the present paper. A second aim is to point out 
some similarities between the frequency distribu- 
tions of well-written literary texts and productive 
word formation processes on the one hand, and 
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between those of large corpora and unproductive 
word formation processes on the other. 

The paper is structured as follows. In section 2 
some necessary objects and notations are intro- 
duced. Section 3 discusses Carroll's (1967) log- 
normal law, Sichel's (1975, 1986) generalized 
inverse Gauss-Poisson law and Orlov and Chita- 
shvili's (1983b) extended generalized Zipf's law. 
The role of morphology and semantics in shaping 
word frequency distributions is sketched in section 
4, followed by a discussion of the results obtained 
with respect to the theoretical vocabulary size in 
section 5. 

2. Word Frequency Distributions 
Once the criteria for distinguishing between word 
types -- in the present study, dictionary entries or 
lemmas -- have been established, one can count 
the number of occurrences or tokens for each type 
in a text. Two ways of summarizing word fre- 
quency counts are relevant here. A rank-frequency 
distribution is obtained when the frequency f of 
the i ,h type is viewed as a function of its rank i, the 
types being ranked such that f// /> f/+l for all i. A 
grouped frequency distribution is obtained when 
the number of types n~ for which f ---- r are 
grouped together in frequency class r. Expressions 
for the rank-frequency distribution can be trans- 
formed into expressions for the grouped frequency 
distribution. For instance, the Zipf-Mandelbrot 
law (Mandelbrot, 1962) 

Note that the parameter B disappears in the 
expression for E[nr]. This illustrates a general 
property of models phrased in terms of the 
grouped frequency distribution, namely that they 
are useful for the study of the lower frequency 
types only. 

The parametric models to be discussed in this 
paper will be evaluated on the basis of their 
rationales on the one hand, and on the basis of the 
goodness-of-fit on the other. Denoting the ob- 
served vocabulary size at sample size N by V ( N )  
and writing n~(N) for the number of types with 
frequency r in a sample of N tokens, we evaluate 
the goodness-of-fit by means of the test statistic 

= - fi)  - f i ) ,  (3)  

with 2~ and/2 the vectors 

( V(N) ,  nl(N), n2(N), . . . ,  nk(N)) 

(E[ V(N)], E[n,(N)], E[nz(N)] , . . . ,  E[nk(N)])(4) 

respectively, and (a0) the corresponding covari- 
ance matrix (Morrison, 1976). If the model has a 

XN,~ is X~,+l-a distributed. Expres- parameters, 2 
sions for the covariances air can be found in Good 
and Toulmin (1956) and in in 't Veld (1984). Note 
that the test statistic 

k 

Q =E 
,=1 E[nr] 

(nr (N) - -  E[nr(N)]) 2 + 

K 
f =  ( i + B )  r ' (1) 

with 7 a parameter of type richness, B a parameter 
introduced to account for systematic departure 
from Zipf's law f/ -- K/i v at the head of the 
distribution, and K a normalizing constant, is 
stated in terms of the rank-frequency distribution. 
It is reformulated in terms of the grouped fre- 
quency distribution as follows: 

E[nr] = Y I[f  > / r ] -  ~ I[f  > / r +  1] 
i i 

= K-Y[r~ -- (r + 1)~ I. (2) 

+ (nr(N)+--E[nr(N)]+) z 
E[nr(N)+ ] (5) 

cannot be used. Contrary to what is often assumed 
in the literature (see e.g. Sichel, 1975, 1986; 
Muller, 1979), Qk is not Z 2 distributed: (nl, n2, 
. . . .  nk, n~) should not be confused with (X1 . . . .  , 
Xk, X+), where X1 . . . . .  X~, X + are multinomially 
distributed with parameters N, Jrl, ~2 . . . . .  ~k, 
1 - -  ~~#=1 Jgi. But while Z k =  1 X i .gf_ X ~  = N, w e  

have that X nr(N) -~ V(N) ,  itself a random 
variable depending on N. In addition, the fact that 
each nr(N ) has its own variance should be taken 
into account. 

Parameter estimation will be carried out by 
requiring that E[ V(N)] ---- V ( N )  and that E[nl(X)] 
= n 1, and by minimization of X 2 in case there N,k 

are more than two parameters. This procedure 
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ensures that gross departures of the vocabulary 
size and the vocabulary growth rate are avoided. 

3. Statistical Models for Word Frequency 
Distributions 

The parametric models to be discussed in this 
section are the lognormal model (Herdan, 1960; 
Carroll, 1967), Sichel's (1975, 1986) generalized 
inverse Gauss-Poisson law and Orlov and Chi- 
tashvili's (1982ab, 1983ab) extended generalized 
Zipf's law. This section presents brief summaries 
of these models and their rationales, together with 
an evaluation in terms of the goodness of fit 
obtained for various word frequency distributions. 
Section 4 evaluates the rationales from a linguistic 
perspective, and the predictive accuracy of these 
models with respect to the theoretical vocabulary 
size is studied in section 5. 

in the sense of Stieltjes integral as 

f ~ ( ~ N f  --~tN 1 
E[nr(N)] = r! e - -  d~( : t )  (11) 

1 I ~ ( x N )  r -~N -~- ~ 1 :  
= o-Zg Jo "x~r~.  e 2 o dx 

E[V(N)] = (1 - e ) ~- dg2(zQ (12) 

1 ] ~  ~ ~ :  
- - e  -~ ~ dx. = ~ J0 (1-- e-XU) x 12 

The parameters/~ and a are estimated by solving 

EIn,(N)I--  nl(N ) 

3.1. The lognormal  law 
Herdan (1960, 42--58) and Carroll (1967) have 
argued that word frequency distributions are 
governed by the lognormal law. Consider the 
structural token distribution 

W(zt )  = ~, atiIIJt i ~< z¢], (6) 
i 

a distribution characterized by the property 

W(ar]) -- qJ(0Zj_l) ___ n~,, (7) 
nj 

where ztj is the first probability greater than at i_ 
and n~ the number of types with probability 0z]. In 
the case of the lognormal model, the structural 
token distribution is approximated by the con- 
tinuous expression 

= - -  e d x .  (8) 

We can now write the expressions of the com- 
pound Poisson law (Yule, 1944) 

E[nr(N)] = ~ (ff]~iN)r e--~tiN (9) 
i r! 

E l V(N)I = V(N) .  (13) 

Carroll (1967) develops an algorithm for 
obtaining estimates of the population mean and 
variance that does not make use of (11) and (12). 
Using property (7) of the structural token distribu- 
tion (6), he considers the distribution of the loga- 
rithmic transform y = log(n), obtaining estimates 
of the number of types n~ in the interval (log(n) - 
e, log(n) + e) by dividing Pr(log(zr) - e ~< log(~r) 
~< log(n) + e) by :r. By partitioning the area 
under the normal curve of log(n) corresponding 
to the interval (--co, 0) into a large number of 
areas Ai, followed by summation of the fractions 
Ai/~r i, the theoretical vocabulary size S is calcu- 
lated. Once the areas A i and the corresponding 
probabilities ~r i are fixed, E[nr(N)] can be ob- 
tained using the compound Poisson law (9). In 
order to allow comparison with Carroll's (1967) 
data we have used this algorithm for the analyses 
reported below. Consequently means and vari- 
ances in the following discussion should be under- 
stood as having been calculated for the lognormal 
transform y ---- log(z). 

Carroll (1967) is, to our knowledge, the first to 
have observed that for word frequency distribu- 
tions sample relative frequencies are biased esti- 
mates of population probabilities. 

E[V(N)] ---- )[ (1 -- e -~'N) (10) This is clear from the fact that the minimum value of a 
i word probability computed from a sample is 1/N, where 
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N is the size of the sample. There will be a large number of 
word types in the population that will not appear even 
once in the sample. The probability that a word type of a 
given probability will appear once or more in the sample is 
a function of that probability; only the more frequent 
words will have very high probabilities of appearing at 
least once in a sample of moderate size. This fact is the 
explanation for the tendency of the lognormal plots of 
moderately sized samples to bend downwards at their 
lower end . . . .  (1967, p. 408) 

Khmaladze and Chitashvili (1989) show that this 
bias is due to the large number of very low 
frequency types characteristic for lexical frequency 
distributions, and work out its statistical conse- 
quences. 2 The extent of the bias caused by the 
large number of rare words in most word fre- 
quency distributions can be illustrated by com- 
paring the estimates /~ and ~r obtained by (13) 
with the estimates m and s based on the sample 
relative frequencies. As shown in Table 1, the two 
kinds of estimates diverge considerably, illustrat- 
ing the necessity of the estimation procedure 
developed by Carroll. 

TABLE 1 
Correct and biased estimates of the parameters of the 
lognormal law for the Cobuild corpus, Pushkin's 'The 
captain's Daughter,' and the Dutch derivational suffixes -je 
(huis/e, 'small house'), -ing (generering, 'generation'), -er 

(loper, 'walker') and -heid (goedheid, 'goodness'). 

/J ~ m s 

Cobuild --3.3220 1.0062 --6.9533 7.1189 

Pushkin --3.0290 1.0970 -6.7842 4.4401 

-/e -2 .9324 0.9382 --6.2268 2.0899 
-ing -2 .4780 0.8055 --5.9132 1.6608 
-er --2.1900 0.9500 -5.2636 1.6936 
-heid -2 .0800 1.1450 -4 .9102 2.7167 

The highest frequency types tend to appear 
with somewhat higher frequencies than one would 
expect on the basis of the lognormal hypothesis. 
Herdan (1960) seeks to explain this fact by calling 
attention to the exceptional frequential properties 
of function words, typically the highest frequency 
words in the distribution. Removal of the function 
words from the distribution, he argues, will bring 

the resulting distribution of content words in line 
with the lognormal curve. Unfortunately, this 
solution is somewhat unsatisfactory since it is 
often only the last two or three highest frequency 
types that are exceptional in my data. The problem 
is not related to function words as such --  many 
function words are not exceptional at all. More- 
over, a similar upward curvature can be observed 
for the distributions of morphological categories, 
distributions in which no function words are 
involved. The problem is a problem of discretiza- 
tion: modelling a discrete randoni variable by a 
continuous one leads to a smooth line where in the 
discrete case one finds abrupt jumps at the right 
hand side of the graph. In fact, the lognormal 
model does not rule out the possibility of a word 
type having a frequency exceeding the sample size. 
This illustrates a general property of the models 
discussed here, namely that they are inaccurate for 
the study of the highest frequency types. However,  
since the model may give a fairly accurate charac- 
terization of the left hand side of the distribution, 
and may thus be a useful tool for estimating S, it is 
worthwhile to consider the goodness of fit in some 
more detail. 

In order to assess the goodness of fit of the 
lognormal model to the Pushkin data, we com- 
pared the observed vocabulary V(N) and the 
numbers nr(N ) of types occurring r times for r -- 
1, 2, . . .  , 15 with the corresponding expected 
values using (3). The results are somewhat dis- 
appointing: Z 2 = 38.99, q -- 0.000366. For  the 
distribution of written language in the Cobuild 
corpus (Sinclair, 1987) the fit is even worse: g 2 = 
5195.30, q = 0.000000. Although the extremely 
high g 2 value may in this case be due to the 
circumstance that in general it is extremely diffi- 
cult to obtain acceptable fits for very large 
samples, we shall see that a reasonable fit can be 
obtained with the extended generalized Zipf 's law. 
The high Z 2 value obtained for the Cobuild corpus 
data forces us to conclude that the lognormal 
model is not the correct distribution here. 

Surprisingly, a very good fit is obtained for the 
Dutch suffix -heid, used to coin abstract nouns 
from adjectives, such as snelheid, 'speed,' from 
snel, 'quick.' Here  Z 2 = 5.94, q = 0.97. This 
extremely high value of q cannot be attributed 
wholly to the small size of the distribution (N = 
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2251), since for the Dutch suffix -er (e,g. schrijv- 
er, 'writer'), which creates agent nouns from verbs, 
the g 2 value equals 37.13 (q -- 0.001) for only 
slightly larger N (2345), while for the diminutive 
suffix -]e (e.g. huis-je, 'small house') we have that 
q -- 0.06 for N -- 2580. 

Comparing the q values obtained for the 
distributions listed in Table 2 with the corre- 
sponding vocabulary growth rates n l / N  suggests 
that there is a positive correlation between good- 
ness of fit and growth rate, such that samples with 
higher growth rates are more likely to be modelled 
by the lognormal law than samples with low 
growth rates. An observation in favor of this 
tentative correlation concerns the shape of the 
lognormal curve of the Dutch nominalizing suffix 
-ing (N ---- 7881) shown in Figure 1. Note that 
after r = 20 the token distribution shows a steady 
upward curvature that does not harmonize well 
with the lognormal hypothesis. Not  surprisingly, 
the g 2 value obtained is high (;~2 = 78.45, q = 
0.000000). These findings suggest that the log- 
normal model may be a reasonable model for 
perhaps literary texts (Pushkin) but certainly not 
for corpora  (Cobuild), for affixes with a high 
degree of productivity ( -heM) but not for affixes 
with a low vocabulary growth rate (-ing). 

Finally, consider the question in what way the 
lognormal hypothesis might shed light on the 
factors shaping word frequency distributions. 
Carroll (1969), in answer to criticism of, for 
example, Mandelbrot  (1962), that application of 
the lognormal model to word frequency distribu- 
tions amounts to 'curve fitting' without any intrin- 

sic motivation, develops the following rationale. 
Suppose that the choice for a particular vocabu- 
lary item w is determined by a series of binary 
choices, and suppose that the 'choice probabilities' 
corresponding to each choice constitute a random 
variable X that is symmetrically distributed 
around 0.5, each probability p having a comple- 
mentary probability 1 -- p. The probability of 
selecting w is now given by 

m 

Pr(w) ----- l-[j_ 1Xj, (14) 

with m the depth of the decision tree. Assuming 
that log(X) is JV (/~, 0 "2) distributed, log(FIT'_ 1X j) -- 
X~_ 1 log(Xj) is lognormally distributed with param- 
eters m/z and m t l  2. Carroll (1969) considers in 
detail possible densities for X for fixed and 
variable decision path length m, obtaining results 
that suggest that some form of asymptotic log- 
normal generating function might well give rise to 
adequate fits to observed data. 

This rationale has some intuitive appeal in the 
case of word frequency distributions obtained for 
word association experiments, and might be 
reasonable for continuous text, assuming that the 
conditions for selecting a particular word change 
as we move through the text, and including 
different semantic and grammatical features in the 
decision tree. Interestingly, this rationale may shed 
some light on why good fits are obtained for -heM, 
-]e and perhaps -er, while the model appears to 
be less well suited for dealing with -ing or the 
distribution of monomorphemic  nouns in Dutch. 
Since in the case of -heid and -je the semantics of 
the relevant morphological categories are highly 

TABLE 2 
Parameters, growth rate n l / N  , sample size N and goodness of fit statistics for selected word frequency distributions: the lognormal 

model. Dutch N: monomorphemic nouns (Dutch) in the Eindhoven corpus. 

distribution N ft 6 nl / N Z 2 q df 

-heid 2251 -2.0800 1.1450 0.114 5 . 9 4  0.967845 14 
-]e 2580 -2.9324 0.9384 0.253 2 2 . 9 2  0.061521 14 
-er 2345 -2.1900 0.9500 0.093 37.14 0.000703 14 
Push~n 28471 --3.0290 1.0970 0.084 38.99 0.000366 14 
Dutch N 37836 -2.4395 0.8691 0.008 49.00 0.000009 14 
-ing 7881 --2.4780 0.8055 0.038 7 8 . 4 5  0.000000 14 
Cobufld 15713145 --3.3220 1.0062 0.000 263.77 0.000000 18 
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Figure 1. Loguormal plot for -ing nominalizations in the Eindhoven corpus. The lower curve represents the token distribution, 
the upper curve the type distribution. The horizontal axis is scaled logarithmically, the vertical axis is scaled proportional to the 

error function. Under the lognormal hypothesis, the two curves should show up as parallel straight lines. 

transparent, the choice for a particular derived 
item can be understood as being conditioned by a 
particular node in the decision tree, in the sense 
that almost all abstract nouns or diminutives in 
the language belong to these morphological cate- 
gories, which therefore can be viewed as consti- 
tuting natural branches of the decision tree. 
Assuming that such natural branches are isomor- 
phic with the tree itself, we have that these cate- 
gories should again be lognormally distributed. Of 
course, many branches in the decision tree will be 
highly heterogeneous with respect to the morpho-  
logical constituency of their elements. The low q 
value obtained for -ing may well be correlated 
with the fact that this nominalizing suffix is 
substantially affected by type and token blocking 
(van Haeringen, 1971; Rainer, 1988) and to some 
extent by loss of semantic transparency, so that 
there is no branch in the decision tree with only or 
predominantly formations in -ing. In the light of 
Carroll's rationale, such distributions must be 
considered as artificial groupings of lexical items 
rather than as natural semantic sets in the decision 
tree. If this line of reasoning is correct, obtaining a 
good lognormal fit to a morphological frequency 

distribution would by itself be a litmus test for 
productivity. 

3.2. The generalized inverse Gauss-Poisson law 
Sichel's (1975, 1986) generalized inverse Gauss- 
Poisson law is based on the structural type dis- 
tribution 

G(at) -- ~ I[~ i ~< atl" (15) 
i 

Given G(at), the expressions (9) and (10) can be 
rewritten in the sense of Stieltjes integral as 

E[V(N)I = I~  (1 - e-N~)dG(at) (16) 

f~ (Nat)r e-N~dG(at). (17) EInr(N)] ---- r ~ -  

Writing ~p(~t) for G'(at)/S, the (normalized) 
probability of selecting at random a type i for 
which ati ~< at, Sichel (1975, 1986), following up 
a suggestion by Good (1953), reports that excel- 
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lent results are obtained for 
b'-c 

~p(~r)= (2/bc)r ~r-~e ( - 7 -  4~), (18) 
2Kr(b) 

where Kr(b ) is the modified Bessel function of the 
second kind of order ~ and argument b. Hence we 
have 

f ]  (Nx)r e-N~O(x)dx (19) EIn,(N)] = S r! 

E[V(N)I = S I~ (1 -- e-Na)lp(Yr)d~, (20) 

Given the mean of the distribution ~p(:r), 

bc K~,+l(b) 
E[~] = 2 gy(b) ' (21) 

and using 

1 
Eln I = ~-  n~ = -S-, (22) 

i = l  

S can be determined as the reciprocal of E[ar]. 
Solving (20) leads to 

El V(N)I = 

Kr(b{l+cN}'/2) ] (23) 2 Ky(b) 1 -- 
c N . ~ / 2  . .  be Ky+l(b) (1+  ) ~r(b) 

Let 

E[n,(N)] 
a(r, N) ---- (24) 

EIV(N)] 

denote the ratio of the number of types with 
frequency r in the sample to the number of 
different types in the sample. This ratio can be 
rewritten as 

1 
a(r, N) 

(1 -- ON)-Y/ZKy(au(1 -- ON) '/2) -- Kr(aN) 

(0.5aNON) r 
Kr+,(aN ), (25) 

r! 

where a N ~ b~/(1 + cN) and O N = cN/(1 + cN). 
Note that the parameters a N and ON, introduced 
for simplification, are functions of the sample size 

N, while the parameters b, c and 7 are population 
invariants. As before, parameters are estimated by 
requiring 

E[nl(N)I ---- a (1, N)E[ V(N)I -- n,(N) 

E[V(N)] ---- V(N). (26) 

Simplified expressions can be obtained when y is 
fixed a priori at -0 .5 ,  in which case (26) com- 
pletely determines all parameters. When y is free, 
it is chosen such that the •2 value is minimized 
while satisfying (26). Note that although a different 
structural distribution is involved, Sichel's model 
avoids direct estimation of population probabili- 
ties on the basis of sample relative frequencies 
fii/N in the same way as Carroll's lognormal model. 
Of course, both models cannot avoid using sample 
data to estimate the structural distribution, and the 
precision with which the population parameters 
are estimated will depend on the extent to which 
sample parameters such as nl(N ) and V(N) 
deviate from the corresponding expectations. 

Table 3 summarizes the results obtained with 
this model for a number of word frequency dis- 
tributions. No accurate fit can be obtained for the 
written language of the Cobuild corpus. In fact, the 
best fit (in the sense of Z 2) has a point of inflection 
at r -- 2 that is absent in the data. Evidently, the 
model thinks that the rare types in the distribution 
should be nearly exhausted, contrary to fact. 
Interestingly, we have found that the low value of 
q obtained for the Cobuild data is not due to the 
size of the sample. When smaller random samples 
taken by sampling without replacement are con- 
sidered of 30000 or 1000000 tokens, the minimal 
X 2 values obtained remain unacceptably high. This 
suggests informally that either no satisfactory fit is 
obtained for whatever sample size, or that a reli- 
able fit is obtained, in which case the parameters 7, 
b and c are to all practical purposes independent 
of the sample size N. 

An important property of Sichel's model is that 
it allows for the possibility that the mode of the 
frequency spectrum is situated at some r > 1. 
Frequency distributions with this characteristic are 
typical of 'pathological language' (Mandelbrot, 
1962) in the case of text counts, and of unproduc- 
tive morphological categories and sets of simplex 
items as they occur in large corpora (Baayen, 
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TABLE 3 
Parameters, sample size and goodness of fit statistics for selected word frequency distributions: the generalized inverse 

Gauss-Poisson distribution. Dutch N: monomorphemic nouns (Dutch) in the Eindhoven corpus. 

N y b c X 2 q df 

-heid 2251 -0.725 0.035341 0.084489 7.53 0.8729 13 
-je 2580 -0 .50  2.859e-7 0.005644 19.95 0.0965 13 
-er 2345 -0 .36  0.001963 0.016792 10.38 0.6628 13 
-ing 7881 -0 .40  0.109813 0.009787 9.38 0.7436 13 
Dutch N 37836 --0.35 0.081843 0.007995 12.87 0.4577 13 
Pushkin 28471 --0.85 0.034795 0.022650 24.13 0.1409 18 
Cobuild 15713145 -0.1 0.030076 0.000353 920.38 0.0000 18 

1989). Unfortunately, the grouped frequency 
distributions with shifted modes that have come to 
my attention are subject to so much noise that it is 
extremely difficult to trace whether a particular 
theoretical model is valid. 

One serious drawback of Sichel's inverse Gauss- 
Poisson distribution is that it has no rationale. 
From a linguistic point of view, the absence of a 
rationale brings application of the model uncom- 
fortably close to 'curve fitting,' however useful that 
may be when one is interested in estimating S. 

3.3. The extended generalized Zipf law 
Orlov and Chitashvili (1982ab, 1983ab) develop a 
model that is a generalization of Zipf's law. Recall- 
ing the notation a(r, N) for the ratio of the 
number of types occurring r times in a sample of 
size N to the total number of types occurring in 
that sample, the generalized Zipf's law states that 
for some sample size Z 

a(r,  z )  = 

f~ (~7"~Z) r e-~Zde(ar) 
r! 

~(1  -- e-~Z)dG(ar) 

f~ [In(1 +y)]~-lyO 
(1 + y)r+l(1 + y)e dy 

f~ [ln(1 + y)l~-'y ~-' dy 
(1 + y)e+' 

(27) 

Note that Z does not appear in the right hand side 
of (27). In fact, the sample size Z is uniquely 
determined by the fact that (27) holds. Con- 
versely, larger or smaller samples from the same 
population will not be adequately characterized by 
(27). By making use of the non-parametric extrap- 
olation result (Good and Toulmin, 1956; Kalinin, 
1965) 

= ~ E[n~(Z)] ( ~ ) l ( 1 - t f  -r, (28) EIn~(N)I j~r 

where t = N/Z, the following expressions for the 
expectations of V(N) and nr(N) can be obtained 
for what we will refer to as the extended gener- 
alized Zipf's law: 

E[n~(N)I = 

f~ [ln(1 + y ) l ~ - l y  a C ( Z ,  Or, fl, ~')t r ( t  q- y)r+l(1 -+- y)/~+l dy (29) 

E[ V(N)] -- 

c(z ,  a, r, r)t ['° 
[ln(1 + y)]~-lya-1 

(t + y )  (1 + y)e 30 
(30) 

where 

c(a, a, ~, r) = 
V (z) 

I[ [in(1 + y)l'-'y °-' 
(1 + yf+~ 

(31) 

dy 
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The expected number  of types for the sample size 
Z, denoted by V (z), is estimated by 

l/(Z) 

I( ° [ln(1 +y)]~-~y"-~ dy 
I (1 +y)~+l  

z , (32) 
r0 f j lln(i+y)y-,yO-: [ 1 l+y] dy 
, (I+Y) ~+zp" (l+y)Z~. - _ Zp*y] 

with /)* denoting the maximal sample relative 
frequency, a population constant for not too small 
N. This completes the formal description of this 
model. 

The way in which the extended generalized 
Zipf ' s  law is obtained can be justified by con- 
sidering the so-called triangle scheme (or scheme 
of series) experiment model. For  example, the 
Poisson distribution H(2)  is a good approximation 
to the binomial distribution when N --' o0 and 

--" 0. For  fixed ~z k, a particular Poisson approxi-  
mation 1-lk(2k) is appropr ia te  only for some single 
value of N, since in general 2 = Nn.  Suppose 
I-Ik(,~,k) gives a good fit for N ---- Z, then for N # Z 
we have that rIk(t2k) is valid for sample size N 
when t = N/Z. This is the way in which the 
parameter  t should be understood in the case of 
the generalized Zipf ' s  law, which should not be 
interpreted as some limiting distribution for N --" 
o0 but as a 'limiting' distribution for N -" Z. 

We consider the goodness-of-fit  for the model  
with the parameter  7 fixed at unity. Note  that 7 
completely disappears f rom (27), 30 that we are in 

fact dealing with a three parameter  model, the 
extended counterpart  of the Waring-Herdan-  
Muller distribution (Muller, 1979). In this case S 
is given by 

v<Z> fl 
S -- (33) 

fl - a 

Table 4 summarizes the results obtained. No satis- 
fying fits ensued for the suffixes -je and -er. In the 
case of -er, it appears  that the extended Waring- 
Herdan-Muller  model  is inadequate. Possibly, 
allowing the parameter  y to assume values other 
than unity may lead to better  results. In the case of 
-je, however, the failure to obtain a good fit can be 
traced to the expression for V(z) (32), which is 
computationally unsatisfactory for small a and ft. 
In fact, machine precision errors give rise to 
theoretically impossible negative values for V(z) 
precisely in the area of parameter  space where a 
good fit for -je is most  likely to be found. For  the 
other morphological  distributions good fits are 
obtained. Note  that a satisfactory fit was obtained 
for the Pushkin data with a -- 1, in which case the 
model simplifies to the extended version of the 
Yule-Simon model, as we shall see below. Finally 
note that the fit obtained for the Cobuild data (q -- 
0.0016 for r = 1--40)  is not unreasonable for a 
15.7 million corpus. 

We now turn to the rationale of the generalized 
Zipf ' s  law, a model  subsuming a range of word fre- 
quency laws that appear  as limiting distributions of 
linguistically motivated stochastic processes. In its 
simplest form, with a = fl = y fixed at unity, a ( r )  

TABLE 4 
Sample size, parameters and goodness-of-fit statistics for selected word frequency distributions: the extended generalized Zipf's 

law with y = 1. Dutch N: monomorphemic nouns (Dutch) in the Eindhoven corpus. 

N a fl t X 2 q df 

-]e 2580 0.8675 0.7280 1.050 154.36 0.0000 13 
-er 2345 0.5700 3.3170 0.006 66.67 0.0000 13 
-ing 7881 0.8500 2.4126 0.500 4.84 0.9786 13 
-heid 2251 0.8000 8.1121 0.010 8.93 0.7779 13 
Dutch N 37836 0.8500 1.8052 3.000 15.71 0.2651 13 
Pushkin 28411 1.0000 5.5420 0.057 24.18 0.1491 18 
Cobufld 15713145 0.9100 2.9520 12.000 68.75 0.0016 38 
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reduces to Zipf's law (Zipf, 1935): 

1 
a(r )  (34) 

r(r + 1) 

Particular choices for a,  fl and y lead to the 
following generalizations: 
1. Yule-Simon (Simon, 1955) (a  = y = 1) 

a ( r ) =  ( r +  f l - - 1 ) ( r +  fl) ' (35) 

2. Waring-Herdan-Muller (Herdan, 1960, 1964; 
Muller, 1979)(y---- 1) 

F(fl + 1)a r(r+fl-a) 
a ( r ) = r ( f l + l _ a )  r ( r + f l + l ) '  (36) 

3. Karlin-Rouault (Rouault, 1978) (fl = 0, y = 1) 

a t ( r - a )  
a(r )  = F(1 - a )F( r  + 1) ' (37) 

4. Zipf-Mandelbrot (Mandelbrot, 1962) (a  -- 
fl ---- 1) 

1 1 
a ( r ) =  rr ( r +  l )  r " (38) 

Let us briefly review the rationales for these 
models. 

The Yule-Simon model appears as the limiting 
form (under the condition of equilibrium) of a 
stochastic process that is constructed to reflect the 
way in which an author writes a text. It explores 
the consequences of assuming (i) that there is a 
constant probability a of using a new type in the 
text, and (ii) that the probability of re-using any of 
the types that already occurred r times in the text 
is proportional to rn,. N. This is equivalent to fixing 
the probability of any particular type i for which 
f/, N = r proportional to the frequency f/. N" Thus we 
have that the probability of selecting type i at 
sampling stage N is given by 

P~,N = I[f,u > 0l(1 -- a) @ -  + I[f,N = 0]a. (39) 

L~insk~ and Radii-Weiss (1980) discuss a gener- 
alization of Simon's original scheme by allowing 
the re-use of any type that has already appeared r 
times to be some function ~ of n r. Rewriting ~ in 

terms of the probability of selecting a particular 
item i for which f/, n = r we obtain 

Pi, u = IIf//,N > 0](1 - a)¢i,N(f~,N) + 

+ I[L N = 0]a. (40) 

We may construct ¢ as a linear function of f ,u: 

with C N the appropriate normalizing factor and ai 
and b i varying for each type i. In its simplest form, 
a i = a], b i = bj for all i, ], it can be shown that a(r )  
can be expressed as (36) (Khmaladze and Chi- 
tashvili, 1989). Thus the Waring-Herdan-Muller 
law appears as a generahzation of Simon's model. 

The Karlin-Rouault distribution appears as the 
limiting form in the Markov scheme for generating 
words as strings of letters. Note that the Karlin- 
Rouault distribution is a special case of the 
Waring-Herdan-Muller model (a  is free, fl is fixed 
at 0). Interestingly, the Karlin-Rouault law defines 
the prototypical LNRE distribution, in that there 
is a formal proof that the law of large numbers is 
not valid for distributions governed by (37) 
(Khmaladze and Chitashvili, 1989). 

The Zipf-Mandelbrot law is obtained when 
assumptions concerning optimization of cost of 
coding and information transmission are added to 
the Markovian word formation scheme. 

While the generalized Zipf's law itself is sup- 
ported by a series of well-motivated, although 
undoubtedly highly simplified, rationales, we are 
still left with the question of how to interpret and 
motivate the parameter t of the extended gener- 
alized Zipf's law. Orlov (1983a, b) suggests that 
the sample size Z defines an optimal frequential 
balance for literary texts. For instance, in the case 
of Pushkin's The Captain's Daughter (t = 0.057, 
a = 1, fl = 5.542, q = 0.1491), he would argue 
that the Yule-Simon model describes the virtual 
size of the text, a text size not reached by far in this 
relatively short novel, but nevertheless a sample 
size that the author would have considered as ideal 
for a larger novel on the same subject. More 
generally, Orlov claims that rich texts are charac- 
terized by t < =  1, and that poor or repetitive 
texts have t >> 1. He predicts that short stories 
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will show up with rather small values of t, while 
well-written voluminous novels will reach comple- 
tion at approximately the characteristic sample 
size Z. Conversely, long winded novels, as well as 
large corpora,  are predicted to show up with t 
values substantially larger than unity. These pre- 
dictions are born out for our data. For  instance, 
the Cobuild distribution requires t = 12 where 
Pushkin's novel has t = 0.057. A similar inversion 
with respect to the value of t can be observed for 
productive versus unproductive morphological 
categories: for productive -heid t is small (0.010), 
for 'unproductive'  monomorphematic  nouns t = 
3.0. This suggests that t appears as a parameter of 
lexical richness c.q. productivity. 

Having obtained an interpretation for t, we may 
proceed to inquire what factors necessitate its 
introduction. Since t specifies the distance a 
particular distribution is removed form the sample 
size at which the generalized Zipf 's law is valid, it 
can be viewed as a measure of the extent to which 
the rationale of the model is a realistic one. 
Perhaps the most important property of these 
rationales is that they are valid for limiting distri- 
butions for N -- oo, often under conditions of 
equilibrium. Since these conditions are not met by 
empirical distributions, the introduction of t 
serves to allow 'ideal' theoretical limiting distribu- 
tions obtained under simplified assumptions to 
describe frequency distributions at particular 
stages of their development through (sampling) 
time. 

4. Morphology and Semantics 
Although the rationales discussed above give 
some indication of the kind of factors that shape 
the grouped frequency distribution, it is fruitful to 
return to the rank-frequency distribution to con- 
sider in some more detail how semantic and 
morphological factors codetermine the 'morphol- 
ogy' of the rank-frequency distribution. This will 
serve as a point of departure for evaluating the 
rationales discussed in section 3. 

The problems at hand are best introduced with 
reference to Figure 2. The left hand plot shows the 
rank-frequency distribution of monomorphematic  
content words in a 1,000,000 sample of Dutch. 
The right hand graph summarizes the distribution 
of all types in this sample, including function 
words and morphologically complex formations. 
The question with which we will be concerned 
is how to account for the differences between 
the two curves. None of the rationales for word 
frequency distributions discussed is of any help. 
Simon's stochastic process is indifferent to the 
properties of its items, and Mandelbrot 's Mar- 
kovian source for words as strings of phonemes 
does not take morphological structure into account. 
It is also unclear in what way Carroll's rationale 
for the lognormal model might be of relevance 
here. 

Taking up the issue of morphological structure 
first, recall that we have considered two kinds 
of word frequency distributions, distributions of 
running text and distributions of morphological 
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Figure 2. Rank-frequency curves for Dutch stems. The left hand graph presents the distribution of monomorphemic content 
words, the right hand graph the complete distribution, including function words and morphologically complex formations. 
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categories. The analysis of the frequential charac- 
teristics of morphological categories reveals that 
each category has its own (conditional) growth 
rate and theoretical vocabulary size, depending on 
the productivity and extent of use of the category. 
Within texts as wholes morphological categories 
again appear at different rates. From the textual 
point of view, the growth rate ~v(N)  of the 
vocabulary as a whole, 

,~v (N) -  EInl(N)] (42) 
N 

can be analyzed as the sum of the (non-conditional) 
growth rates 

~ c ( N ) -  E[nc,.,(N)l 
N 

of the individual morphological categories c i in the 
language: 

,~v(N) = ~ EInc,.j(N)] (43) 
i N 

The contribution of morphology to 5~v(N ) is 
substantial: for the Cobuild data on written English 
the morphologically complex types occurring once 
represent 64.39% of all types occurring once only, 
with the contribution of once occurring com- 
pounds being seriously underestimated due to 
compounds with intervening space characters in 
the orthography not having been recognized as 
such in the CELEX analysis. The difference in the 
tails of the distributions of Figure 2 can therefore 
be traced to the substantial influx of morpho- 
logically complex words. Evidently, for a rationale 
for word frequency distributions to be acceptable 
from a linguistic point of view, the role of 
morphology should be taken into account. 

We now turn to the divergence between the two 
curves of Figure 2 for the highest ranks i. Recall 
that none of the models discussed above has 
anything to say about the frequential behavior of 
these types. Nevertheless, this behavior remains of 
interest, the more so since Mandelbrot's law (1) 
explicitly deals with the systematic departure of 
the highest frequency types from Zipf's law by 

means of the parameter B. Mandelbrot derived (1) 
invoking external principles such as 'optimal 
coding' and 'maximalization of information trans- 
mission.' Miller (1957) criticized these external 
principles as 'straining one's credulity,' showing 
that (1) appears under the assumption of random 
spacing for the case in which all letters are 
equiprobable. Rouault (1978), however, has 
shown that the limiting form of any Markovian 
source for word frequency distributions is given by 
(37) and not by (38) or (34). From this point of 
view, it is profitable to consider whether Mandel- 
brot's external principles of minimization of cost 
of coding and maximalization of information 
transmission might not be supported by language- 
internal evidence. An informal suggestion in this 
direction is developed in Baayen (1991 a), where 
the density 3 structure of the lexicon is used as a 
criterion for evaluating the explanatory value of 
models for word frequency distributions. Interest- 
ingly, a Markovian source for words as strings of 
phonemes or letters gives rise to word distri- 
butions with density effects (Nusbaum, 1985). 
Unfortunately, the frequency-density correlation 
is not modelled correctly, the density effects 
emerging in distorted form. This can be traced to 
the unnatural surplus of hapax legomena appear- 
ing in this word formation scheme. Hence some 
way of enforcing a more intensive use of the word 
types that have already appeared in the generation 
process is required. Since the Karlin-Rouault law 
and the Yule-Simon law both appear as special 
limiting forms of the Waring-Herdan-Muller law, 
one possibility that suggests itself is to combine a 
Markovian word generator with a stochastic 
process of the kind suggested by Simon. The 
Markovian word generator can be thought of as 
defining a probability distribution that reflects the 
relative ease with which (monomorphemic) words 
can be pronounced by the human vocal tract, 
while the Simonian stochastic process can be 
interpreted as simulating factors pertaining to 
language use, relatively independently of the 
pronounceability of these words. Baayen (1991 a) 
reports a computer simulation in which an initial 
frequency distribution ( f )  was obtained by means 
of a Markov process generating a large subset of 
phonotactically legal (possible) Dutch words. This 
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initial distribution (f/) served as the starting point 
for a stochastic process defined by 

Pi, u----Ilf/,u > 0] -CN N 

+ I[f~, N ---- 0] a qi ( 4 4 )  
~ / q j f l f j  N = 0] 

where CN is the normalizing constant 

rnr,  (rnrN) 
CN ---- -- ~ ~ - -  log - - - ~  

r 

and (qi) the initial (Markovian) probability distri- 
bution of types. Qualitatively satisfying results 
were obtained for the distribution of monomor- 
phemic content words of Dutch summarized in 
Figure 2, both with respect to the overall shape of 
the rank-frequency curve as with respect to the 
frequency-density correlation. 

The motivation for choosing the entropy func- 
tion 

H r N  - ~ -  mr'~N l o g ( ~ ]  (45) 
' N 

for LS.nsk3~ and Radil-Weiss's (1980) ~ function is 
of main interest here. It is a semantically motivated 
means to obtain a better trade-off in the distribu- 
tion between maximalization of information trans- 
mission and optimization of the cost of coding this 
information. In order to minimize the cost of 
coding, formalizing the cost of coding for word y 
as C ( y )  = -log(Pr(y)), the highest frequency 
words should be re-used. In order to maximize 
information transmission, on the other hand, the 
lowest frequency types should be re-used (H,.,N is 
maximal for uniformly distributed rn,.,N/N ). Thus 
we have two conflicting requirements, which 
balance out in favor of a more intensive use of the 
lower and intermediate frequency ranges given 
Hr, N. Interestingly, H,.,N is motivated on language- 
internal grounds. The use of Hr, N implies that 
higher frequency words contribute less to the 
average amount of information than might be 
expected on the basis of their relative frequencies. 
This harmonizes well with the greater number of 

(shades of) meaning that higher frequency words 
are known to have (see e.g. Reder, Anderson and 
Bjork, 1974; Paivio, Yuille and Madigan, 1968). 
Since a greater number of meanings implies an 
increased contextual dependency for interpreta- 
tion, the amount of information contributed by 
such types out of context (under conditions of 
statistical independence) is less than what would 
be predicted on the basis of their relative frequen- 
cies. The results obtained suggest informally that 
the semantics of the higher frequency words 
codetermine the shape of the head of the rank- 
frequency distribution of (monomorphemic) con- 
tent words in Figure 2. For formal modelling of 
this semantic effect the limiting properties of (44) 
should be studied, or preferably, in order to avoid 
the unnatural constant vocabulary growth rate a 
given with (44), the stochastic process defined by 

1{ 
Pi, u = ~ IIZ, N = O]qi - 

i, N 0, rnrN ,Og(rnrN)l 
N - ~  , (46) 

with C~v the appropriate normalizing factor, as 
suggested by Khmaladze and Chitashvili (1989) in 
general for dynamic models of this kind. Note that 
the parameter a has been eliminated, and that the 
probability of using new words decreases with 
increasing N, as required. 

Finally, note that the introduction of function 
words into the distribution greatly reduces the 
downward curvature at the head of the rank- 
frequency distribution, as can be seen when the 
two graphs of Figure 2 are compared. Interest- 
ingly, function words are generally semantically 
well-defined, implying that they should not be 
governed by (45). In turn, this leads to the predic- 
tion that they should appear with higher frequen- 
cies than content words, as is indeed the case. 

In sum, we have argued that the existing 
rationales for word frequency distributions are too 
simplistic from a linguistic point of view in that 
they neglect the semantic and morphological 
factors which codetermine the shape of word 
frequency distributions. 
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5. Estimating the Theoretical Vocabulary Size 
The three parametric models discussed in the 
present paper all allow the theoretical vocabulary 
size to be estimated. Since there are instances 
where each model is found to give a reasonable fit, 
we select the model for which the q value is 
maximal for the estimation of S, this being the 
model which has the maximum likelihood of being 
correct. Selection according to the criterion of 
maximum q shows (see Table 5) that the log- 
normal model has the weakest coverage, the other 
two models being roughly equivalent as to their 
range of applications. 

Although the fits obtained are quite good, it is 
of interest to ascertain whether the predictions 
about S are reliable. First consider the morpho- 
logical categories listed in the first half of Table 5, 
for which ~ is calculated on the basis of the Dutch 
Eindhoven corpus (600,000 tokens, Uit den 
Boogaart, 1975). When we compare ~ with the 
number of types V t listed in the CELEX database 
(which combines counts for a 42 million corpus 
with information taken from the van Dale dic- 
tionary (van Sterkenburg and Pijnenburg, 1984), 
we observe substantial differences. In the case of 
-heid, -je and -er we seem to be dealing with 
overestimation. In the light of their high degree of 
productivity, however, it may well be that the 
dictionary-based estimates are too low -- it is not 
sensible nor feasible for a dictionary to list all 
possible (and mostly completely predictable) 
formations with these suffixes. Note that the 
diminutive suffix -je, which is extremely produc- 

tive in Dutch, appears with a value for S that 
approximates 'infinity,' the number of possible 
types predicted on the basis of recursion by the 
calculus of morphology for productive affixation 
in general. 

Unfortunately, the number of types S is seri- 
ously underestimated in the case of - ing  4 and 
monomorphemic nouns. This discrepancy can be 
traced to three factors. First, due to its smallish 
size, the Eindhoven corpus covers only a small 
range of the topics that are discussed in the 
language at large. Hence the estimates of S may be 
accurate only for the kind of language used to 
discuss the relatively limited range of topics that 
appear in the Eindhoven corpus. Second, the 
dictionary count overestimates the number of 
types available to individual speakers. Generally, 
speakers are versed in only a limited number of 
fields of expertise. Their vocabularies will only 
contain those types that pertain to the fields they 
have mastered. When the dictionary count is used 
to estimate S, it is tacitly assumed that the 'ideal' 
speaker is knowledgeable in all these technical 
areas, contrary to fact. Hence it may be unrealistic 
to compare estimates based on the Eindhoven 
corpus with the dictionary counts, especially so in 
the case of monomorphemic nouns. Third, the 
possibility that the fundamental but irrealistic 
assumption underlying all of the models discussed 
in the present paper, namely that words occur 
independently in texts, introduces a bias. Word 
types are re-used with more than chance fre- 
quency in texts. Once a particular topic is 

TABLE 5 
Goodness of fit q, sample vocabulary size V and estimates of the theoretical vocabulary size S for the lognormal law (L), the 
generalized inverse Gauss-Poisson law (GP) and the extended generalized Zipf's law (Z). The last column lists external estimates 

Vt of the theoretical vocabulary size. 

distribution model q df V ~¢ V l 

-heid L 0.97 14 466 3888 
-je GP 0.10 13 1031 1239156496 
-er GP 0.66 13 460 1620 
-ing Z 0.98 13 942 1772 
Dutch N GP 0.46 13 1495 1876 

2399 

1342 
2897 
4008 

Pushkin Z 0.15 18 4783 14590 21197 
Cobuild Z 0.05 18 29086 30920 31101 
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broached, the vocabulary items related to that 
topic have a substantially raised probability of 
being re-used. This has the effect of lowering the 
estimated growth rate of the vocabulary and 
introducing a bias in the estimation of S. Hence S 
as estimated by the models studied here should be 
interpreted as a lower bound for the theoretical 
vocabulary sizeP 

Finally, consider the Pushkin and Cobuild data 
in the second half of Table 5. For Pushkin's novel, 
the fact that ~ << Vt, where V t is based on a count 
of types in Pushkin's complete works (Orlov, 
1983b, p. 204), should probably be traced to the 
difficulty of generalizing to an author's vocabulary 
on the basis of a single text belonging to one 
particular literary genre only. As to the Cobuild 
data, it is interesting to observe that a 15.7 million 
word count allows a reasonable prediction of the 
number of lemmas available in the CELEX data- 
base .6 

The results obtained illustrate a simple meth- 
odological point, namely that the assumptions 
underlying a statistical model should really be 
satisfied if it is to be a reliable tool. In the present 
case, the mathematically convenient but linguis- 
tically unrealistic assumption of statistical inde- 
pendence gives rise to the paradoxical situation 
that, even though excellent fits are obtained, the 
theoretical vocabulary size need not be estimated 
accurately. Although a lot of progress has been 
made in the area of word frequency distributions 
since Zipf's early studies, the main challenge for 
future research in this area is to construct linguis- 
tically less naive models that do not build on the 
unrealistic assumption that in language words 
appear at random. 
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Notes 
Non-parametric methods for obtaining estimates of the 

theoretical vocabulary size S on the basis of the grouped 
frequency distribution are developed in Good and Toulmin 
(1956), Efron and Thisted (1976), Kalinin (1965) and in 't 
Veld (1984). Unfortunately, the expressions obtained for S 
do not lend themselves to empirical calculation, which is the 
reason that this paper focusses on parametric models. 
2 Khmaladze and Chitashvili (1989) present a detailed 

analysis of distributions with Large Numbers of Rare Events. 
They show that theoretical LNRE distributions can be 
defined for which the law of large numbers is not valid, in that 
sample relative frequencies cannot be used to estimate 
population probabilities. To all practical purposes, the same 
holds for many empirical word frequency distributions, even 
though the mathematical conditions defining the LNRE 
property are not rigorously met. 
3 Defining a neighbor of a target word i as word that differs 
in exactly one phoneme (or letter) from i, it can be observed 
(Landauer and Streeter, 1973) that higher frequency words 
have more neighbors than lower frequency words, and that 
higher frequency words have higher frequency neighbors than 
lower frequency words. These density effects are weak but 
significantly present. 
4 Interestingly, -ing has been listed more exhaustively than 
-er. A count of types in the 42 million INL corpus available 
under CELEX reveals 842 types in -er and 2036 in -ing. 
Comparing this with the 1342 and 2897 types found in the 
dictionary, it appears that the types in -er in the corpus 
represent 62.7% of the types in the dictionary. For -ing the 
corresponding percentage is 70.3%. The difference in cover- 
age is significant (Z = 4.85). 
5 Conversely, the interpolated values of V for N '  < N tend 
to be too large. The same problem has been observed for 
Muller's (1977) non-parametric reduction method, which is 
based on the binomial probability distribution (see e.g. 
Brunet, 1978; Ratkowsky, 1988; Martin, 1970). Interestingly, 
the parametric models discussed in the present paper give rise 
to interpolation curves that are virtually indistinguishable 
from those obtained on the basis of Muller's technique, 
provided that the fit to the grouped frequency distribution is 
sufficiently accurate. 
6 The CELEX database contains all lemmas found in the 
Longman Dictionary of Contemporary English, London: 
Longman, 1978, and in the Oxford Advanced Learner's 
Dictionary of Current English, Oxford, OUP, 1974. 
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