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This methodological study provides a step-by-step introduction to a compu-
tational implementation of word and paradigm morphology using linear
mappings between vector spaces for form and meaning. Taking as starting
point the linear regression model, the main concepts underlying linear
mappings are introduced and illustrated with R code. It is then shown how
vector spaces can be set up for Latin verb conjugations, using 672 inflected
variants of two verbs each from the four main conjugation classes. It turns
out that mappings from form to meaning (comprehension), and from
meaning to form (production) can be carried out loss-free. This study
concludes with a demonstration that when the graph of triphones, the units
that underlie the form space, is mapped onto a 2-dimensional space with a
self-organising algorithm from physics (graphopt), morphological functions
show topological clustering, even though morphemic units do not play any
role whatsoever in the model. It follows, first, that evidence for morphemes
emerging from experimental studies using, for instance, fMRI, to localize
morphemes in the brain, does not guarantee the existence of morphemes in
the brain, and second, that potential topological organization of morpho-
logical form in the cortex may depend to a high degree on the morpholog-
ical system of a language.
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1. Introduction

Introductions to linguistics and textbooks on morphology frame the discussion of
form variation in terms of the theoretical construct of the morpheme, defined as
the smallest linguistic unit combining form and meaning (see, e.g., Spencer, 1991;
Plag, 2003; Booij, 2012; Lardier, 2014). Unsurprisingly, the vast majority of studies
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on morphological processing assumes that morphemes are well-established theo-
retical notions and also exist in the mind. The dominant view of the mental
lexicon in psychology and cognitive science is well represented by Zwitserlood
(2018, p. 583):

Parsing and composition – for which there is ample evidence from many
languages – require morphemes to be stored, in addition to information as to
how morphemes are combined, or to whole-word representations specifying the
combination.

as well as by Butz and Kutter (2016, Chapter 13), according to whom “morphemes
are the smallest meaning bearing grammatical units”. Words are believed to be
built from morphemes, and the meanings of complex words are assumed to be
a compositional function of the meanings of their parts. In a morpheme-based
lexicon, an agent noun such as worker can be derived by unification of the repre-
sentations of its constituents (Lieber, 1980). Thus, given the verb work

< work; [V];WORK) >

and the derivational morpheme

< -er; [N|V];AGENT() >

the nominalization

< work-er; [[[V][N|V]]N]; < AGENT(WORK) >>

is obtained. Reflecting a longstanding confound, the term ‘morpheme’ is often
used in experimental work on the mental lexicon, to refer solely to the form part
of the linguistic morpheme (i.e., the ‘morph’). In comprehension, accessing this
form is seen as essential for gaining access to its meaning and its combinatorial
properties (Taft, 1994; Marantz, 2013). In production, given the semantics to be
expressed, a morphemic form is selected and aligned with the form of its base to
prepare for articulation (Levelt et al., 1999).

However, the theoretical construct of the morpheme as the smallest unit
combining form and meaning is highly problematic. Aronoff and Fudeman (2011)
explicitly back off from the idea that morphemes are linguistic signs.

We have purposely chosen not to use this definition. Some morphemes have no
concrete form or no continuous form … and some do not have meanings in the
conventional sense of the term.

Beard (1977) observed out that in language change, morphological form and
morphological meaning follow their own trajectories, and as a consequence the
theoretical construct of the morpheme as a minimal sign combining form and
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meaning stands in the way of understanding the temporal dynamics of language
change. Matthews, in his introduction to morphology (Matthews, 1974, 1991),
pointed out that the inflectional system of a language such as Latin is not well
served by analyses positing that its fusional system is best analyzed as under-
lyingly agglutinative (see also Hockett, 1960). One striking example of the non-
compositional nature of inflectional morphology is provided by Estonian. In this
language, most of the plural forms of nouns are built starting with the form of the
partitive singular, without the semantics of these plural forms expressing in any
way the semantics of the singular and the partitive (e.g., for jalg ‘foot’, jalga, parti-
tive singular, jalgadele, adessive plural, see Erelt, 2003; Blevins, 2006).

A word-based perspective is common to a range of morphological approaches.
As Booij (2018) clarifies, construction morphology is

… word-based morphology. That is, complex words are not seen primarily as a
concatenation morphemes, but as independent meaningful units within which
certain subcomponents (morphemes) may be distinguished on the basis of para-
digmatic relations with other words. That is, morphology is not to be equated
with the ‘syntax of morphemes’. Morphological schemas characterize the ‘Gestalt’

(p. 4–5)of complex words and their holistic properties.

In what follows, we restrict the use of the term morpheme to the concept of the
morpheme as a minimal linguistic sign combining form and meaning in a syntax
of minimal signs and combinations thereof, a concept that goes back to post-
Bloomfieldian American structuralism (Blevins, 2016). A word-based perspective
is fully compatible with notions of word-internal structure. We will use the term
exponent (a term that goes back to Matthews) to refer to recurrent units of sub-
word form (or form variation). These subcomponents or variants correlate with
paradigmatic relations between words. Exponents are often understood in real-
izational models as the phonological ‘spell-out’ of one or more morphosyntactic
properties (Stump, 2001), but they can also be interpreted discriminatively, as
markers that distinguish larger meaningful units.

Although realizational theories eschew the construct of the morpheme, they
embrace the construct of the exponent. For the most part, realizational models
have focused on patterns of inflectional exponence. For example, the rule
proposed in Matthews (1991,p. 127) spells out regular plurals in English by
concatenating [z] to the noun stem x.

(1) < [Plural, x]N → x+ [z] >

The notion of an exponent as a ‘spell-out’ or ‘marker’ can also be extended to
the derivational domain. The constructional schema proposed by Booij (2016)
(Example 3) illustrates this for English deverbal agent nouns,
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(2) < [x]v i er]N j ↔ [Agent of SEM i ] j >

where the verbal stem x is followed by the exponent er. For derived words with
their own shades of meanings, further subschemata may be required. For worker,
http://www.dictionary.com/ lists several meanings, including (1) a person or
thing that works, (2) a laborer or employee, (3) a person engaged in a particular
field, activity, or cause, or (4) a member of a caste of sexually underdeveloped,
nonreproductive bees, specialized to collect food and maintain the hive. Schema
(2) is adequate for the first reading. The other meanings require additional
subschemata. For the worker-bee, such a subschema could be:

(3) < [x]v i er]N j ↔ [IS_BEE[Agent of SEM i ] j ] >

Using the computational mechanism of inheritance hierarchies, the idiosyncratic
part of the lexical entry for worker-bee, [IS_BEE[]] can be separated out from
the more general agentive nominalization defined by (2). Inheritance hierarchies
have been applied most systematically in approaches that aim to factor variation
into patterns of varying levels of generality, from patterns that characterize whole
word classes, through those that distinguish inflection classes or subclasses, down
to lexical idiosyncrasies. The most highly developed of these approaches include
models of Network Morphology (Corbett and Fraser, 1993; Brown and Hippisley,
2012) and allied DATR-based accounts (Cahill and Gazdar, 1999).

For constructional analyses of inflectional paradigms, second-order schemata
can be set up. The second-order schema formulated by Booij (2016) (Example 39)
for English singular and plural nouns,

(4) < [(xi )ω-j ↔ [N i , +sg] j ↔ [SING[SEM i ]] j >≈< [(xi -z)ω-j ↔ [N i , +pl] j ↔
[PLU[SEM i ]] j >

illustrates that whereas a fully compositional calculus is set up for the meanings
of complex words (cf. Jackendoff, 1990), the forms of these words are not hierar-
chically structured. Thus, an exponent realizing one or more semantic functions
is nothing more than an additive change to the phonological form of a word.

At a high level of symbolic abstraction, realizational and constructional theo-
ries isolate variation in form and meaning and clarify how form and meaning
can go together in complex words. This type of analysis may be of practical
value, especially in the context of adult second language acquisition. It is less
clear whether the corresponding theories, whose practical utility derives ulti-
mately from their pedagogical origins, can be accorded any cognitive plausibility.
Constructional schemata, inheritance, and mechanisms spelling out exponents
are all products of descriptive traditions that evolved without any influence from
research traditions in psychology. As a consequence, it is not self-evident that
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these notions would provide an adequate characterization of the representations
and processes underlying comprehension and production. It seems particularly
implausible that children would be motivated to replicate the descriptive scaf-
folding of theoretical accounts and attempt to establish the systems of ‘inflection
classes’ proposed for languages such as Estonian or the ‘templates’ associated with
languages like Navajo.

The representations in current morphological theories and descriptions also
tend to gloss over the actual details of words’ forms as they are used in daily
life. In spontaneous conversational speech, words can have substantially reduced
forms (Ernestus et al., 2002; Johnson, 2004; Kemps et al., 2004). Furthermore, the
actual phonetic realization of an exponent may depend on the semantic function
that it realizes (Plag et al., 2017). Another complication is that the meanings of
words, as illustrated above for worker, can be much richer than specified by the
semantic function in constructional schemas such as (2). It therefore makes sense
for Booij (2018) to characterize morphological schemas as the ‘Gestalt’ of complex
words, but this raises new questions about the extent to which a schema such as
(3) is truly transparent to the more general schema (2) of which it is an idiosyn-
cratic instantiation.

The conception of words as ‘recombinant Gestalts’ (Ackerman et al., 2009)
highlights a further difficulty. Realizational models retreat from the static form-
meaning correspondence encapsulated in the structuralist morpheme. However,
they retain a dynamic counterpart in assuming a stable correlation between the
differences in meaning and differences in form between words. In the case of
regular English plurals, the difference between the presence or absence of the
‘plural’ feature correlates with the presence or absence of the marker [z]. However,
Gestalts do not work in this way. For example, the partitive singular of jalg ‘foot’
cited above, jalga, contrasts with the nominative singular jalg. Yet the contrast
between partitive and nominative singular case is not realized by the presence or
absence of -a. Although -a discriminates partitive and nominative singular forms,
it is the theme vowel of jalg, and occurs in the genitive singular and nearly all
forms of the noun.

A further problem is that morpho-syntactic features are not necessarily tied
to a specific semantic function. For instance, ablative case in Latin can realize
semantic functions that in English would be expressed by prepositions as different
as from, with, by, in, and at. The reason that exponents such as o (for a particular
class of masculine nouns) and ae (for a particular class of feminine nouns) are
analyzed as realizing the ablative is that words with these exponents occur with
the same range of abovementioned prepositional meanings. In other words, the
morphosyntactic feature ‘ablative’ does not represent a semantic function, but a
distribution class. This brings us to Word and Paradigm Morphology.
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The approach of Word and Paradigm Morphology (Matthews, 1974, 1991) is
different from that of construction morphology, in that proportional analogies
between words within paradigms are assumed to make the lexicon as a system
productive. As explained by Matthews (1991),

In effect, we are predicting the inflections of servus by analogy with those of
dominus. As Genitive Singular domini is to Nominative Singular dominus, so x
(unknown) must be to Nominative Singular servus. What then is x? Answer: it

(p. 192f )must be servi. In notation, dominus : domini= servus : servi.

Only words exist, and an exponent such as the -i that realizes the genitive singular
for masculine (and neuter) nouns of particular declension classes is implicit in
the paradigmatic relations that characterize the Latin noun system. Importantly,
exponents themselves have no independent existence, at best, they are a descrip-
tive device useful to highlight paradigmatic analogies between the only units that
do exist: full words.

An important aspect of Word and Paradigm Morphology is that morpho-
syntactic features in general represent distribution classes (Blevins, 2003, 2016), as
explained above for the Latin ablative. But the same pertains to, for instance, the
English singular, the use of which includes reference to single instances for count
nouns (the pen), but also reference to non-individuated quantities (the milk), cate-
gories (the evil), and organizations (the church). The similarity in meaning of geni-
tive or ablative forms in Latin, or the singular in English, then follows from the
distributional hypothesis, which proposes that linguistic forms with similar distri-
butions have similar meanings (Weaver, 1955; Firth, 1968; Landauer and Dumais,
1997). Thus, Matthew’s analogy of forms

dominus : domini =servus : servi.

is actually paralleled by an analogy of lexical co-occurrence distributions d:

d(dominus) : d(domini) =d(servus) : d(servi).

We can highlight the complex system of multidimensional analogies at issue by
writing

(5)

However, for this perspective on inflectional morphology and paradigmatic
analogy to become computationally tractable, it is essential to (1) define words’
forms in such a way that similarities between words can be calculated, (2) to
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represent the meanings of words in a distributional way so that the semantic
similarity between words can be quantified, and (3) to formalize paradigmatic
analogy mathematically so that it becomes computationally tractable. The theory
laid out in Baayen et al. (2018) provides a simple but effective implementation of
these ideas.

Word forms are represented by vectors of zeroes and ones specifying which
triphones make up these forms. The choice for triphones is motivated by two
considerations. First, phones are inherently contextual; for instance, information
about the place of articulation of plosive is carried by formant transitions in adja-
cent vowels. Second, triphones encode information about partial order: evidence
for the triphones han and and implies a directed path han → and. For languages
with strong phonotactic constraints, diphones are expected to be more effective as
sublexical units of form (Pham and Baayen, 2015). For a richly inflecting language
such as Latin, it is conceivable that four-phone sequences are also effective sublex-
ical units. Given form units such as triphones, each word form is conceptualized
as a point in a high-dimensional form space. How similar two forms are can be
evaluated straightforwardly with the Pearson correlation of the pertinent form
vectors.

Word meanings are also represented by numeric vectors, taking inspiraton
from computational models of distributional semantics (see, e.g., Landauer and
Dumais, 1997; Shaoul and Westbury, 2010; Mikolov et al., 2013). In what follows,
we use the Pearson correlation to evaluate the similarity between semantic
vectors. Another commonly used measure is the cosine similarity. Which measure
is optimal depends in part on how semantic vectors are calculated. For the present
study, the correlation measure turns out to be effective and is therefore selected.

Given vector representations for forms and meanings, we can now evaluate
mathematically (and computationally) how similar words are and how similar
meanings are. In other words, we can evaluate the similarities between the repre-
sentations on the top row of (5) and the corresponding representations on the
bottom row. What is still missing is a way of evaluating analogies within the rows
of (5). For this, Baayen et al. (2018) propose to use the linear mapping from linear
algebra. They show that for English, their Linear Discriminative Learner (LDL)
model, which implements such mappings, is remarkably succesful for the compu-
tational modeling of basic inflectional and derivational morphology.

The present study extends the LDL model to a language with a much richer
inflectional system, Latin. We constructed a dataset that contains, for 8 verbs
selected from the four major conjugation classes of Latin, all of the 6 forms
in each of 14 paradigms. For each of the 672 paradigm forms in this dataset,
we constructed the corresponding form vectors. We also constructed semantic
vectors. Baayen et al. (2018) derived semantic vectors for English from a corpus.
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In the present study, we simulated semantic vectors, leaving the construction of
real semantic vectors from corpora of Latin to future research.

In what follows we pursue three goals. First, we seek to clarify, by means of a
case study of a non-trivial inflectional system, whether it is actually possible for
LDL to produce and understand inflected forms computationally without having
to hand-craft stems, exponents, inflection classes, and inheritance hierarchies.

Our second goal is to provide an accessible introduction to the basic mathemat-
ical concepts used in LDL, and to provide a step-by-step guide to how this model
can be applied using the statistical programming environment R (R Core Team,
2017). A package for R that implements Word and Paradigm Morphology with
Linear Discriminative Learning (WpmWithLdl) can be downloaded from http://
www.sfs.uni-tuebingen.de/~hbaayen/publications/WpmWithLdl_1.0.tar.gz.

Our third goal is to reflect on the cognitive plausibility of form units such
as morphemes and exponents. A vast majority of experimental studies interprets
effects observed in the laboratory as evidence for the psychological reality of the
morpheme (see, e.g., Zwitserlood, 2018). However, reasoning from the conse-
quent to the antecedent confuses necessity with sufficiency. We illustrate this
fallacy for a study reporting the supposed localization of morphemes in the brain
(Bozic et al., 2010) by showing that our model predicts topological clustering of
form that would seem to support the existence of morphemes – even though
there are no morphemes or exponents whatsoever in our model. The hypothesis
that we will put forward is that experimental effects traditionally understood as
evidence for morphemes (or exponents) can be explained just as well with LDL.

Before introducing the Latin dataset, let us briefly clarify the similarities
and differences between LDL and realizational/constructional theories of
morphology (R/CM). Both LDL and R/CM assume that

1. morphology is word-based,
2. a word has at least one form and at least one meaning,
3. word forms do not have an internal hierarchical structure (no syntax of

morphemes),
4. the meaning of an inflected or derived word incorporates ‘grammatical’

meanings such as agent or plural,
5. especially derived words can have their own idiosyncratic semantics, and
6. the system is productive.

LDL and R/CM differ in the following respects:

1. In R/CM, the word forms of complex words are constructed from persistent
stems and exponents, whereas in LDL, there are no units for stems nor for
exponents.
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2. In R/CM, meanings tend to be tacitly associated with grammatical features.
When specified, these meanings often take the form of monadic units, such
as SEM i in (2), or compositional functions, such as PLU[] in (4); in LDL, all
meanings are represented by semantic vectors, importantly, inflectional and
derivational meanings are represented by their own specific semantic vectors.

3. In R/CM, the meaning of a complex inflected word is determined by the
features associated with the word. The meaning of a complex derived word
is assumed to be a compositional function of the meanings of its parts. LDL,
by contrast, is a discriminative theory in which the meaning of a transparent
complex word is obtained by integrating over the semantic vectors of the
base word and the semantic vector of the inflectional or derivational function
(see Baayen et al., 2018, for detailed discussion). The semantic vector of a
derived word, based on its own distribution, can differ from that obtained by
integrating over the semantic vectors of stem and derivational function. The
greater this difference, the more the derived word is perceived as semantically
opaque (see also Marelli and Baroni, 2015).

4. In R/CM, representations and operations (such as inheritance) on repre-
sentations are agnostic with respect to the tasks of production and compre-
hension. In LDL, production and comprehension have their own specific
mappings (which mathematically are (approximately) each other’s inverse).

In summary, LDL is a computational implementation of Word and Paradigm
Morphology in which analogy, formalized as linear mappings over vectorized
representations of form and meaning, drives comprehension and production. In
this approach it is no longer necessary to hand-craft forms for stems and expo-
nents, or to set up inflectional classes and inheritance hierarchies. LDL appears to
work well for English (Baayen et al., 2018). But does it also work for more complex
inflectional systems such as the conjugations of the Latin verb? As a first step
towards addressing this question, we first introduce our dataset of Latin verbs.

2. Latin conjugations

The dataset on Latin conjugations is available in the R package WpmWithLdl.
To install the package, assuming the package source (WpmWithLdl_1.0.tar.gz) is
available in the directory visible to R, proceed as follows:

install.packages("WpmWithLdl_1.0.tar.gz", repos=NULL)

The Latin dataset is available for use after executing the following commands:

library(WpmWithLdl)
data(latin)
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The words under examination in this study are the finite verb forms of two
verbs from each of the four major conjugation classes of Latin. For each verb,
14 paradigms (each with 3 persons ×2 numbers) were included (present/past ×
active/passive × indicative/subjunctive; perfect/pluperfect × indicative/subjunc-
tive; future × active/passive). Table 1 presents the 14 inflected forms for the first
person singular of the verb vocaare, terrere, carpere, and audire, each belonging
to one of the four conjugation categories. Long vowels are represented by vowel
doubling. It can be seen that each conjugation class has its own idiosyncracies. For
instance, the first person singular of the 1st conjugation class does not contain the
theme vowel characteristic for this class; the 2nd conjugation class has a perfect
form without the v exponent found in the 1st and 4th classes; the 3rd conjugation
class has a different stem form for the perfect tenses; and the 3rd and 4th conjuga-
tion classes do not make use of the b exponent for the future as used in the 1st and
2nd conjugation classes. In total, there are 672 different verb forms in the dataset.

Table 1. The 14 inflected forms for the first person singular of the verbs vocaare, terrere,
carpere, and audire, each of which represents one of the four conjugation classes

CLASS I CLASS II CLASS III CLASS IV tense voice mood

vocoo terreoo carpoo audioo present active ind

vocem terream carpiam audiam present active subj

vocor terreor carpor audior present passive ind

vocer terrear carpiar audiar present passive subj

vocaaboo terreeboo carpam audiam future active ind

vocaabor terreebor carpar audiar future passive ind

vocaabam terreebam carpeebam audieebam past active ind

vocaarem terreerem carperem audiirem past active subj

vocaabar terreebar carpeebar audieebar past passive ind

vocaarer terreerer carperer audiirer past passive subj

vocaavii terruii carpsii audiivii perfect active ind

vocaaverim terruerim carpserim audiiverim perfect active subj

vocaaveram terrueram carpseram audiiveram pluperfect active ind

vocaavissem terruissem carpsissem audiivissem pluperfect active subj

The task that we set ourselves is to find a mapping from the Latin verb forms onto
their meanings, and also a mapping from these meanings onto the corresponding
forms, without making use of morphemes, exponents, and stems, and without
having to set up inflectional classes. A trivial and uninteresting mapping would be
to pair each of the 672 word forms with a monadic form unit, indexed from i =1, 2,
…, 672, and to set up a second set of monadic semantic units, indexed from j= 1,
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2,…, 672. We can then define pairs (i, j) and a function f (i) = j as well as a function
g( j) = i that produce the meaning unit given a form unit, and a form unit, given
the meaning unit of a pair, respectively. Such a full listing set-up is uninteresting
as it does not do justice to the similarities between forms, the similarities between
meanings, the analogies between forms and meanings, and the productivity of the
system.

The approach that we adopt in what follows is to pair each word form i with
a numeric vector c i characterizing its form and a second numeric vector s i char-
acterizing its meaning. Below, we explain how form vectors and semantic vectors
can be set up. Here, we note that the word forms can now be conceptualized as
points in a high dimensional form space {C}, and that word meanings can likewise
be conceptualized as points in a second high-dimensional space {S}. We are inter-
ested in a mapping F that takes the points in {C} as input and produces the points
in {S} as output. This mapping represents the comprehension of inflected forms.
Likewise, we can set up a mapping from {S} to {C} to represent the production of
inflected forms. In this study, we constrain these mappings to be linear. In what
follows, we first introduce the mathematics of linear mappings. We then return
to Latin and show how a form space and a semantic space can be constructed.
We then examine how succesful linear mappings are for moving back and forth
between form and meaning.

3. Introduction to the mathematics of linear mappings

Anyone who has run a linear regression analysis has made use of a particular
instantiation of a linear mapping. Consider a dataset with n observations, each
consisting of a response yi and k predictors xi 1 ,xi 2 , …, xik . By way of example,
the response could be reaction time to words in a lexical decision task, and the
predictors could be frequency of occurrence, word length, number of neighbors,
…. A data table for such a data set with k =2 predictors is of the form:

y 1 x 11 x 12
y

2 x 21
X

22
⫶ ⫶ ⫶

yn
Xn1 Xn2

The estimates ŷ1, ŷ 2,…, ŷn predicted by a linear regression model for observations
i =1, 2, … n are a weighted sum of the data points xi 1 , xi 2 , …, xik (i =1, 2, …, n),
with weights β̂0, β̂ 1,…, β̂k estimated from the data. For the above dataset with two
predictors (k =2), we can write
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(6)

Here, β̂0 represents the estimated intercept, and β̂1 and β̂2 the estimated slopes for
the predictors x.1 and x.2 respectively. Using notation from linear algebra, we can
restate this equation more succintly as follows. First, let

let

and let

We use lower case bold font to denote column vectors, and upper case bold font
to denote matrices (bundles of column vectors). The column vector with sums
on the right hand side of (6) is the product of X and β̂ . How to calculate the
product of two matrices is illustrated for two 2×2 matrices in Figure 1. To obtain
the value in the cell in the upper right of the resulting matrix (c 12), one takes the
first row of the first matrix and the second column of the second matrix. These
two vectors are aligned, the values are pairwise multiplied, and the resulting prod-
ucts are summed. The same procedure generalizes to larger matrices. In general,
given matrices A (r rows and s columns) and B (s rows and t columns), the product
C = AB is an r × t matrix such that the element in the i-th row and j-th column of
C is given by
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Thus, for the product of two matrices to be defined, the number of columns of the
first matrix should be the same as the number of rows of the second matrix. In the
case of the regression weights β̂ , the number of rows of the 3×1 column matrix β̂
equals the number of columns of X . Hence, (6) can be rewritten as

(7) ŷ=Xβ̂ .

In standard linear regression, we have one vector of observations, y. However, we
can consider multiple response vectors simultaneously, which we bring together
by placing their vectors into the rows of a matrix Y . We can now generalize (7) to
obtain the following model:

(8) Ŷ=XB̂ ,

Figure 1. Matrix multiplication illustrated for 2 ×2 matrices: c 12 is a 11 b 12 +a 12 b 22

with B̂ the matrix with the estimated regression weights. Geometrically, we can
think of (8) as describing a mapping from one set of points in an n-dimensional
space {X}, each point given by a row vector of X , onto another n-dimensional
space {Y} in which each point is given by a row vector of Y . Ideally, B maps
each point in {X} exactly onto its corresponding point in {Y}, but in practice, the
mapping will often be approximate only. As in standard linear regression, we have
to estimate the mapping B from the data. Given B , we can then obtain an estimate
Ŷ of Y , which provides the estimated locations of the data points in {Y}.

Figure 2 illustrates the geometry of such a mapping for two spaces {C} and {S},
and two mappings, F and G. The matrix C defines three datapoints in {C}, a, b,
and c, with coordinates (1, 2), (−2, −2), and (−2, 1) respectively (shown in blue in
the left part of Figure 2). The transformation matrix F maps these points onto the
points (2, −4), (−4, 4), and (−4, −2) shown in red in the right part of this figure.

From the perspective of standard regression, C comprises two predictors, the
x-coordinate and the y-coordinate. Each data point specifies values for these coor-
dinates, and thus represents points in the plane spanned by the x and y axes, as
shown in the left part of Figure 2. The first column of the matrix F , which maps
points in {C} onto points in {S}, specifies the regression weights that we need to
obtain the predicted x-coordinates in the space {S}, and the second column of F
likewise provides the regression weights for the predicted y-coordinates in {S}.
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Figure 2. Matrix F maps the row vectors of C onto the row vectors S ; conversely, matrix
G maps the row vectors S back onto those of C

An important property of a mapping from space {X} to space {Y} using some
transformation matrix F is that there is a reverse mapping (which may be approx-
imate only) from space {Y} back onto space {X} with a second transformation
matrix, denoted by G in Figure 2. Just as matrix F maps points in {C} onto points
in {S},

CF = S,

matrix G maps points in {S} back onto points in {C}:

SG = C .

The following code snippet in R illustrates these mappings; %*% is R’s operator for
matrix multiplication.

C = matrix(c(1, −2, −2, 2, −2, 1), nrow = 3, ncol = 2)
S = matrix(c(2, −4, −4, −4, 4, −2), nrow = 3, ncol = 2)
F = matrix(c( 2, 0, 0, −2), nrow = 2, ncol = 2)
G = matrix(c(0.5, 0, 0, 0.5), nrow = 2, ncol = 2)
C%*%F

[,1] [,2]
[1,]    2   −4
[2,]   −4    4
[3,]   −4   −2

S%*%G

[,1] [,2]
[1,]    1   −2
[2,]   −2    2
[3,]   −2   −1
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Given the points in spaces {C} and {S}, the question arises of how to obtain the
transformation matrices F and G that map points from one space onto the other.
For this, we require the matrix inverse. The inverse of a 2× 2 square matrix A ,
denoted by A −1, is defined as follows:

If the determinant a 11 a 22 − a 21 a 12 is zero (i.e., when a 11 a 22 = a 21 a 12), the inverse
is not defined, and A is referred to as a singular matrix. In R, the inverse of a non-
singular, square matrix is obtained with solve:

solve(F) # gives G

[,1] [,2]
[1,]  0.5  0.0
[2,]  0.0 −0.5

solve(G) # gives F

[,1] [,2]
[1,]    2    0
[2,]    0    2

The product A −1 A of a square matrix A is the identity matrix I , i.e., a matrix with
1 on the main diagonal and 0 elsewhere. For instance,

solve(F) %*% F

[,1] [,2]
[1,]    1    0
[2,]    0    1

The matrices C and S are not square matrices, so we cannot use solve to obtain
their inverse. We therefore derive the transformation matrix with a small detour,
as follows.

(9) C F = S
C T CF = C T S

(C T C ) −1 C T CF = (C T C) −1 C T S
IF = (C T C) −1 C T S
F = (C T C) −1 C T S

In this derivation, we pre-multiply C with its transpose because this results in a
matrix that is square and smaller in size,
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t(C) %*% C

[,1] [,2]
[1,]    9    4
[2,]    4    9

and because it is square, we can now apply optimized algorithms as implemented
in solve to obtain its inverse:

solve(t(C) %*% C)

[,1]        [,2]
[1,]  0.13846154 −0.06153846
[2,] −0.06153846  0.13846154

By multiplying C T C with its inverse, the left hand side of (9) simplifies to the
transformation matrix F , which is found to be equal to (C T C )− 1 C T S. When
working with large matrices in which rows can be similar – which is often the case
for language, since words can be similar in form or similar in meaning – it is often
not possible to use solve, as the matrix can be too close to singular. In practice, we
therefore use the Moore-Penrose generalized inverse, which is implemented in R
as the ginv function of the MASS package. The generalized inverse of X is denoted
as X′ .

Once F has been estimated, the predicted data points in {S} are given by
Ŝ=CF. We can rewrite this equation as follows:

(10) Ŝ = CF
= C (C T C ) −1 C T S
= HS ,

where H is the so-called hat matrix of the linear regression model.
In what follows, C denotes an n × k matrix describing the form properties of n

words, with cell Cij taking on the value 1 if word form i contains triphone j, and 0
otherwise. Thus, words are observations in a k-dimensional triphone space, and
triphones are predictors for words. Furthermore, we will use S to denote an n ×
k matrix the row vectors of which are real-valued semantic vectors of length k.
Ideally, these vectors are estimated from corpora using one of the methods from
computational distributional semantics. As described below in more detail, we
simulated semantic vectors. Thus, words are points in a k-dimensional semantic
space, and the k ‘axes’ of this space function as the semantic predictors of the
words.

From S and C , we derive two hat matrices, one for comprehension ( Hc ) and
one for production ( Hp ):

(11) Hc = C ( C T C ) − 1 C T ,
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(12) H p = S(S T S ) − 1 S T.

These hat matrices in turn allow us to estimate the semantic vectors predicted by
the form vectors Ŝ and the form vectors predicted by the semantic vectors Ĉ:

(13) Ŝ = H c S,

(14) Ĉ = H p C.

The R code for these calculations is:

Hcomp = C %*% ginv(t(C)%*%C)%*%t(C)
Hprod = S %*% ginv(t(S)%*%S)%*%t(S)
Shat = Hcomp %*% S
Chat = Hprod %*% C

where we use the generalized inverse to invert matrices. For the present simple
example, the predicted matrices are identical to the ‘observed’ matrices.

4. Matrices for form and meaning in Latin

To implement the linear mappings between form and meaning in Latin, we first
load the Latin dataset in the R package WpmWithLdl.

library(WpmWithLdl)
data(latin)
head(latin)

Word Lexeme Person Number   Tense  Voice Mood
1    vocoo vocare     p1     sg present active  ind
2   vocaas vocare     p2     sg present active  ind
3    vocat vocare     p3     sg present active  ind
4 vocaamus vocare     p1     pl present active  ind
5 vocaatis vocare     p2     pl present active  ind
6   vocant vocare     p3     pl present active  ind

In this dataset, inflected word forms are listed in the first column Word. The
second column Lexeme specifies the verb (indexed by the infinitive), while the
remaining columns specify words’ inflectional features. Before we can study
mappings between form and meaning, and between meaning and form, we have
to define the matrices representing words’ forms and meanings. The pertinent
matrices, C and S , that we examine in this study are calculated with the function
learn_mappings. This function requires a formula as its first argument, in which
all the classes (i.e., column names of the content lexomes and inflectional features)
required to construct the semantic matrices should be included. (Note that the
column name of the content lexome should always be the first element in the
formula.) The directive grams = 3 requests triphones as sublexical units of form.
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m = learn_mappings(~ Lexeme + Person + Number + Tense + Voice + Mood,
data = latin,
grams = 3)

The object m is a list with a series of data objects relevant for modeling with LDL.
The C and S matrices are included in this list. For convenience, we extract the
matrices from m.

C = m$C
S = m$S

Details on how exactly the form matrix is constructed from the dataset can be
found in the code and documentation of the make_C_and_T_matrices function.
The upper left corner of the C matrix

C[1:8, 1:10]

#vo voc oco coo oo# oca caa aas as# cat
vocoo    1   1   1   1   1   0   0   0   0   0
vocaas   1   1   0   0   0   1   1   1   1   0
vocat    1   1   0   0   0   1   0   0   0   1
vocaamus 1   1   0   0   0   1   1   0   0   0
vocaatis 1   1   0   0   0   1   1   0   0   0
vocant   1   1   0   0   0   1   0   0   0   0
clamoo   0   0   0   0   1   0   0   0   0   0
clamaas  0   0   0   0   0   0   0   1   1   0

illustrates how the form of word i is specified as a binary vector with a 1 in cell
cij coding the presence of the j-th triphone in that word. The matrix with words’
semantic vectors has the same layout,

S[1:8, 1:6]

S1         S2        S3       S4        S5         S6
vocoo     1.592302  4.922176 −17.843929 24.26317 −7.730605  8.4711810
vocaas    6.352683  4.876391 −11.263886 29.82994 −8.820140  7.0834959
vocat    −1.848716  3.010773  −8.257137 26.58054 −4.947933  3.7924824
vocaamus  3.308614 10.414789 −25.433244 20.01480 −6.083262  1.1607091
vocaatis  7.309295 10.449995 −20.196866 26.59721 −8.302275 −0.8591813
vocant   −1.456805  7.218377 −17.234230 25.80952 −4.285191 −1.8888300
clamoo   −6.233772 −3.664891 −18.952648 12.45618 −6.196328  7.2665484
clamaas  −3.245372 −4.525140 −14.427739 19.93702 −6.849744  4.0173962

but the column features are no longer straightforwardly interpretable. For
semantic features obtained with Latent Semantic Analysis (Landauer and Dumais,
1997), the features S 1, S 2, … would represent latent variables. For the vector space
used by Baayen et al. (2018), the features would reflect the association strength
between the words in the rows of the matrix with those words in a corpus that
show the highest variability in lexical co-occurrence. The present study makes use
of simulated semantic vectors. One important reason for working with simulated
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semantic vectors for this study is that it is rarely the case that all possible inflected
variants of a word are found in a corpus (see Karlsson, 1986; Loo et al., 2018a, b, for
detailed discussion), and that as a consequence corpus data would be too sparse
to derive proper semantic vectors.

One way of creating simulated vectors is to simply create a matrix with
random numbers, without any correlational structure for the rows of the matrix.
Such a matrix, however, does not do justice to the semantic similarities between
words. For instance, one would expect inflectional variants of the same verb to
be more similar to each other semantically than inflectional variants sampled
from different verbs. To remedy this problem, in the semantic_space function,
we assigned each lexome (including both content lexomes and all inflectional
features) a semantic vector using standard normal random variates. The semantic
vector of a given inflectional form was then the sum of its original random vector
and the semantic vectors of all the pertinent lexomes. In this way, forms that share
more lexomes would be more similar to each other than forms share less or no
lexomes. The similarity structure among word forms can be seen in Figure 3, a
heatmap of the correlation matrix for the row vectors of S. In R, this heatmap is
obtained with the following code, where we transpose S as in R correlations are
calculated for column vectors.

heatmap(cor(t(S)))

The yellow blocks on the diagonal bring together forms with the same lexomes.
For example, in the right-upper corner sit all plural word forms, and within that
block are small clusters of word forms with the same person (p1, p2, p3). The
details of this simulated matrix are not of interest. What is important is that the
matrix reflects, in a high-dimensional vector space, the major morpho-syntactic
similarities specified in the dataset. (Another possible solution to the lack-of-
semantic-similarity problem in S is to use the mvrnorm function from the MASS
package. This function takes as one of its inputs a variance-covariance matrix.
By choosing appropriate covariances in the variance-covariance matrix, we can
generate row vectors of S with a correlational structure that respects the morpho-
syntactic similarity of the word forms. Incorporating this method is possible in
the semantic_space function by setting with_mvrnorm = TRUE. More details can be
found in the documentation of this function.)

5. Mappings between form and meaning

We are now ready to consider mappings from C (form) to S (meaning), and back
from S to C. Note that these mappings will almost always be different, compare,
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Figure 3. Heatmap for the correlation matrix of the row vectors of the simulated
semantic matrix S . The supplementary materials include a pdf of this heatmap with a
larger granularity such that the individual forms can be read off on the bottom and right
side of the plot. Brighter yellow indicates stronger positive correlations

e.g., the mappings F and G in Figure 2. And although in this simple example, F
and G are each other’s exact inverse, for more realistic and large matrices, this will
no longer be the case, even though the inverse of, e.g., G may similar to a consid-
erable extent to F.

5.1 Comprehension: From form to meaning

Using Equation (11), we obtain the predicted semantic vectors Ŝ by first calculating
the hat matrix H and then multiplying this matrix with the semantic matrix S .
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Hcomp = C %*% ginv(t(C) %*% C) %*% t(C)
Shat = Hcomp %*% S

For evaluating model performance for word i, we compare a given predicted
vector ŝi with the semantic vectors sj of all words j= 1, 2, …, n, using the Pearson
correlation. The word for which this correlation is greatest is selected as the
word meaning that is recognized. The function accuracy_comprehension carries
out these comparisons, and returns a list with both accuracy across all word
forms and the correlation coefficients of the selected predicted vectors ŝ s with the
targeted vectors s i . Performance turns out to be 100% accurate.

res = accuracy_comprehension(m)
res$acc

[1] 1

There is a small number of homophones in the Latin dataset:

forms=table(latin$Word)
forms[forms>1]

audiam audiar carpis curris sapiam sapiar
2      2      2      2      2      2

For these homophones, accuracy_comprehension selects the paradigm form with
the best supported features as the word recognized. For audiam, for instance, we
have the following ranking of forms:

semantic_neighbors("audiam")

form         r        Word Lexeme Person Number      Tense
361      audiam 0.9451450      audiam audire     p1     sg    present
49       audioo 0.9113651      audioo audire     p1     sg    present
265      audiam 0.8622304      audiam audire     p1     sg     future
553  audiiverim 0.8328309  audiiverim audire     p1     sg    perfect
457    audiirem 0.8266663    audiirem audire     p1     sg       past
649 audiivissem 0.8245681 audiivissem audire     p1     sg pluperfect
61    audieebam 0.8029150   audieebam audire     p1     sg       past
363      audiat 0.7949122      audiat audire     p3     sg    present

Voice Mood
361 active subj
49  active  ind
265 active  ind
553 active subj
457 active subj
649 active subj
61  active  ind
363 active subj

In the above output, r refers to the correlation of the predicted semantic vector
with the observed semantic vector of the paradigm form. As long as the two
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homophones are assumed to be truly identical in form (see Gahl, 2008; Plag et al.,
2017, for discussion of why this assumption may need to be relaxed) they will map
onto exactly the same semantic vector. Thus, for any pair of homophones, one
paradigm form will be mapped on the semantic vector for the same paradigm
slot, whereas the other form will miss out on its own semantic vector and will
instead be confused with the paradigm slot of its dominant homophonic twin.
Without contextual disambiguation, there is no way in which the model could
have performed better.

The use of semantic vectors might seem overly cumbersome given that one
could set up, for each word, an indicator matrix of lexical and inflectional features.
Such a matrix can be extracted from the m object:

T = m$ms3$matrices$T
dim(T)

[1] 672 22

T[1:8, 1:10]

vocare clamare terrere docere audire sapire carpere currere p1 p2
vocoo         1       0       0      0      0      0       0       0  1  0
vocaas        1       0       0      0      0      0       0       0  0  1
vocat         1       0       0      0      0      0       0       0  0  0
vocaamus      1       0       0      0      0      0       0       0  1  0
vocaatis      1       0       0      0      0      0       0       0  0  1
vocant        1       0       0      0      0      0       0       0  0  0
clamoo        0       1       0      0      0      0       0       0  1  0
clamaas       0       1       0      0      0      0       0       0  0  1

This matrix has far fewer columns than S. A mapping from C to T is possible

That = Hcomp %*% T

and is succesful:

n_identical_features = rep(0, nrow(latin))
for (i in 1:nrow(latin)) {

n_identical_features[i] = sum(round(That[i,]) == T[i,])
}
table(n_identical_features)

n_identical_features
18  20  21  22
4   1   2 665

The only forms for which the observed and predicted features are not identical
are, unsurprisingly, the six homophones.

latin[n_identical_features != 22,]

Word  Lexeme Person Number   Tense   Voice Mood
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74  carpis carpere     p2     sg present  active  ind
265 audiam  audire     p1     sg  future  active  ind
271 sapiam  sapire     p1     sg  future  active  ind
313 audiar  audire     p1     sg  future passive  ind
319 sapiar  sapire     p1     sg  future passive  ind
374 carpis carpere     p2     sg present  active subj
380 curris currere     p2     sg present  active subj

In five out of the six homophones, the features of the dominant homophonic
twin are selected. The only exception is carpis, where the Mood features of the
two homophonic words (ind and subj) are equally supported for both words,
suggesting that both senses of this word form are equally activated.

round(That[which(latin$Word=="carpis"),],2)

vocare clamare terrere docere audire sapire carpere currere p1 p2
carpis      0       0       0      0      0      0       1       0  0  1
carpis      0       0       0      0      0      0       1       0  0  1

p3 sg pl present past perfect future pluperfect active passive ind
carpis  0  1  0       1    0       0      0          0      1       0 0.5
carpis  0  1  0       1    0       0      0          0      1       0 0.5

subj
carpis  0.5
carpis  0.5

Whereas it is possible to map from C to T, an accurate mapping in the reverse
direction is not possible, as we shall see below. The problem that we encounter
here is that a linear mapping from a lower-dimensional space into a higher-
dimensional space can only have an image in that larger space that is of the same
dimensionality (rank) as the lower-dimensional space (Kaye and Wilson, 1998).
For instance, a linear mapping from a space {A} in ℝ2 to a space {B} in ℝ3 will
result in a plane in {B}. All the points in {B} that are not on this plane cannot be
reached from {A}.

A further problem associated with predicting lexical and inflectional features
is that, as mentioned above, the matrix T provides a very impoverished repre-
sentation of the semantics of the Latin inflectional forms. In Word and Paradigm
Morphology, morpho-syntactic features do not represent semantic primitives, but
rather distribution classes. Such distributional classes are much better represented
by semantic vectors than by binary coding for inflectional features. The excellent
performance observed for the mapping of C onto S, rather than the mapping from
C to T , therefore, is the result of primary interest.

5.2 Production: from meaning to form

For speech production, we consider the mapping from the semantic matrix S onto
the form vectors of C . The pertinent hat matrix H is
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Hprod = S %*% ginv(t(S) %*% S) %*% t(S)

With H , we obtain the predicted form vectors Ĉ

Chat = Hprod %*% C
rownames(Chat)=rownames(C)
round(Chat[1:8, 1:8],2)

#vo   voc   oco   coo  oo#  oca  caa   aas
vocoo     1.00  1.00  0.44  0.42 0.50 0.44 0.49 −0.02
vocaas    1.01  1.01  0.06  0.04 0.04 0.91 0.90  0.43
vocat     1.00  1.00  0.00  0.02 0.02 0.97 0.50 −0.02
vocaamus  1.00  1.00  0.03  0.03 0.06 0.84 0.79 −0.10
vocaatis  1.02  1.02 −0.01  0.01 0.01 1.01 0.96  0.16
vocant    1.00  1.00 −0.03 −0.03 0.03 0.87 0.43  0.00
clamoo   −0.01 −0.01  0.00  0.00 0.46 0.15 0.20  0.09
clamaas   0.00  0.00 −0.02 −0.03 0.13 0.02 0.07  0.40

The resulting form vectors provide information on the amount of support for the
individual triphones, but do not, as such, indicate how the triphones should be
ordered to obtain a proper characterization of a word’s form.

We therefore need to consider all the ways in which phone triplets can be
joined into legal word forms. Triphones contain intrinsic order information: a
triphone such as abc can be joined with bcd but not with dcb. We can exploit this
partial ordering information efficiently using graph theory.

We assign triphones to the vertices of a graph, and connect these vertices with
a directed edge when the corresponding triphones have the proper overlap (bc
for abc and bcd). Figure 4 shows the graph of all the triphones contained in the
Latin dataset, and the triphone path of the word sapiivisseemus is marked in red.
The path starts with the word-inital triphone #sa and ends with the word-final
triphone us# (with the # symbol representing word boundary). Each edge in the
graph is associated with a weight. For a given word i, these weights are taken from
the predicted form vector ĉi (the row vector of Ĉ corresponding to the semantic
vector si that is the input for production). Using j and k to index the positions of
triphones in the columns of Ĉ , the weight on an edge from triphone tj to triphone
tk is set to ĉik , i.e., to the k-th value in the predicted form vector ĉi . The support
for a path in the graph can now be defined as the sum of the weights on the edges
of this path. Importantly, from a word’s predicted form vector ĉ i , we calculate all
m paths p 1, p 2, …, p m (m≥ 1) with path weights ω 1 ,ω 2 ,…, ωm that start with an
initial triphone and end with a final triphone.

To find these paths, we make use of the igraph package (Csardi and Nepusz,
2006), which provides the all_simple_paths function to trace all paths that start
from a given vertex and that do not contain cycles. (As cycles can be traversed
ad libitum, paths with cycles cannot be enumerated.) From all simple paths, we
select those that proceed from an initial triphone to a final triphone. A word’s
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Figure 4. The triphone graph of sapiivisseemus. The path that links all the triphones in
the word is highlighted in red

path can contain a cycle, however, as illustrated in Figure 5 for terreerees. (In
this figure, for representational clarity, vertices and edges that have little or no
support from the mapping from meaning to form have been suppressed.) Cycles
of length two and length three can be extracted from the graph with the functions
which_mutual and triangles from the igraph package. The function speak from
WpmWithLdl inserts such cycles, if present, into any path where this is possible.
Any new (and longer) paths found are added to the list of paths, and their asso-
ciated path weights are calculated. It turns out that in order to avoid paths with
unjustified repeated cycles, a path with a cycle is accepted as valid only if there is
one, and only one, vertex of that cycle that is encountered twice in that path.

At this point, we have a set of candidate paths, each of which corresponds
to a word that can be selected for articulation. The question is how to select the
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Figure 5. The triphone graph of terreerees. The triangle (3-step cycle) in the path is
highlighted in red

proper word. The weight of a path is not a good guide for selection, as longer
paths typically have high path weights. A heuristic that works quite well, but not
without error, is to adjust path weights for path length. What works even better
is ‘synthesis by analysis’. For each candidate path, we take the triphones and map
these back onto semantic vectors using the comprehension model. Each of the
resulting semantic vectors can then be correlated with the semantic vector that
is targeted for realization in speech. The path that generates the highest correla-
tion can now be selected for articulation. For a general framework within which
this interplay of comprehension and production receives justification, see Hickok
(2014).

A snag that has to be dealt with at this point is what to do when the highest
correlation is shared between multiple candidate paths. Here, the edge weights
come into play. Lower edge weights indicate weak links in the path, links that are
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not well supported by Ĉ . We therefore want to avoid, as much as possible, paths
with weak edge weights. We also want to avoid unnecessary long paths. Let R
denote the ratio of a path’s length divided by the smallest edge weight in the vector
of edge weights ω of that path:

henceforth the length to weakest link ratio. We select for production that path for
which R is smallest.

This algorithm is implemented in the function speak of WpmWithLdl. We
illustrate its use for the first word of the Latin dataset (pos = 1).

s1 = speak(pos = 1, grams = 3, threshold = 0.1,
amat = m$am, data = latin,
C = m$C, S = m$S,
Bcomp = m$Bcomp, Chat=m$Chat)

s1$candidates

[1] "vocoo"      "vocaaveram" "vocaaverat"

s1$prediction

[1] "vocoo"

s1$cors

vocoo vocaaveram vocaaverat
1.0000000  0.8258359  0.7184197

s1$length_weakest_link_ratio

vocoo vocaaveram vocaaverat
11.90476   71.42857   62.50000

In the call to speak, the threshold = 0.1 directive thins the graph by removing all
vertices for which ĉ ij <0.1. Without thinning, the number of possible paths that
are calculated by all_simple_paths can become very large – even for the present
small dataset, the number of paths can run into the thousands. Discounting of
vertices and corresponding edges that are highly unlikely to contribute serious
contending path candidates speeds up calculations substantially.

The amat = m$am directive tells speak where it can find the adjacency matrix
that defines the graph. The adjacency matrix is calculated by learn_mappings and
returned in its output list with under the name am. This output list also makes
available the transformation matrix B̂ c , which is used to calculate the semantic
vectors corresponding to the candidate paths.
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To speed up evaluation for all forms in the Latin paradigms, we run speak in
parallel on four cores.

library(doParallel)

no_cores=4
cl <- makeCluster(no_cores)
registerDoParallel(cl)
rs = foreach(i=1:nrow(latin), .packages=c("igraph", "WpmWithLdl")) %dopar%

speak(pos = i, grams = 3, threshold = 0.1,
amat = m$am, data = latin,
C = m$C, S = m$S,
Bcomp = m$Bcomp, Chat=m$Chat)

stopCluster(cl)

Model accuracy is straightforwardly evaluated by comparing the predicted words
with the observed words.

preds = sapply(rs, FUN = function(lis) lis$prediction[1])
dfr = data.frame(preds = unlist(preds),

obs = latin$Word,
stringsAsFactors=FALSE)

sum(dfr$preds == dfr$obs)

[1] 670

For 670 out of 672 paradigm cells, the predicted form corresponds to the targeted
observed form. The two cases where the model misses the correct form are

dfr[dfr$preds!=dfr$obs,]

preds         obs
428  curriaaris   curraaris
524 curreereris currereeris

The first of these, curriaaris, is a non-existent form that, remarkably, perfectly
predicts the semantic vector of its paradigm slot.

rs[[which(latin$Word=="curraaris")]]$cors

curreetur      curris   curriaaris curriaareetur    curraaris
0.5891857   0.6920681    0.9915895   0.6378089      0.9248290

curraareetur
0.5774105

The attractor for curriaaris is audiaaris (a form from the fourth instead of the
third conjugation):

latin[grep("iaaris", latin$Word),]

Word Lexeme Person Number   Tense   Voice Mood
410 audiaaris audire     p2     sg present passive subj
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In the case of curreereris,

head(round(rs[[which(latin$Word=="currereeris")]]$cors, 2),8)

curreebaaminii      curreeris       curreereris     curreris
0.67           0.66              1.00         0.66

currereebaaminii    currereeris cuccurreebaaminii cuccurreeris
0.79           1.00              0.55         0.57

round(rs[[which(latin$Word=="currereeris")]]$length_weakest_link_ratio, 2)[c(3,6)]
curreereris currereeris

36.67       36.67

we turn out to have a perfect tie, with a non-existing form pre-empting (by alpha-
betic order) the correct form. This tie can be resolved by replacing triphones by
4-phones, in which case production performance is completely error-free.

What does not work at all is mapping from the T matrix specifying morpho-
syntactic features to the C matrix with triphones (or 4-phones).

Hprod = T %*% ginv(t(T)%*%T)%*%t(T)
Chat = Hprod %*% C
n_identical_features = rep(0, nrow(latin))
for (i in 1:nrow(latin)) {

n_identical_features[i] = sum(round(Chat[i,]) == C[i,])
}
table(n_identical_features)

n_identical_features
244 245 246 247 248 249 250 251 252 253 254

2   6  17  32  53  69 117 151 136  70  19

There are only 19 forms for which all 254 features are correctly supported. It is
impossible to map, with any reasonable degree of accuracy, the low-dimensional
space {T} onto the high-dimensional space {C} when, as in the present study, the
mapping is constrained to be linear.

6. A novel perspective on traditional evidence for morphemes

We have shown that, once meanings and forms are reconceptualized as points
in spaces with high dimension k in ℝ k , it is possible to set up linear mappings
from form to meaning, and from meaning to form. These simple linear mappings
achieve an astonishingly high degree of accuracy, without having to define stems,
morphemes or exponents, theme vowels, and inflectional classes.

This result raises the question of how to interpret the large body of exper-
imental results that has been argued to support the psychological reality of the
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morpheme. To address this question, we begin with noting that the experimental
literature typically reasons as follows.

First, a hypothesis is set up which has a conditional form: “if morphemes are
real (P), we should observe effect Q”. For instance, if words consist of morphemes
as beads on a string, we should expect to find some kind of probabilistic gaps
between the morphemes in a word. Such gaps can be operationalized through low
transitional probabilities at morpheme boundaries (Hay, 2002; Hay and Baayen,
2003). Now some experiment is run, and effect Q is indeed observed. For
instance, at morpheme boundaries, inter-keystroke intervals are longer
(Weingarten et al., 2004; Bertram et al., 2015). Having observed effect Q, the
conclusion drawn is that morphemes must indeed exist (P).

However, two premises are at issue here. The first is the conditional claim that
if morphemes exist, effect Q should follow (P → Q). The second premise is that
morphemes exist (P). When both premises are true, it follows that effect Q must
exist:

P → Q,P ? Q.

However, from observing effect Q, and given the validity of premise P → Q, we
cannot conclude that morphemes exist (P). Affirming the consequent

P → Q,Q ? P

is a fallacious line of reasoning, as P was never asserted as the only possible condi-
tion for Q. To continue with the current example of morpheme boundary effects,
Baayen et al. (2018) show that such effects at morpheme junctions can arise in
the present theory, even though this theory eschews morphemes or exponents
alltogether (see also Seidenberg, 1987). The reason is that in a word’s graph, edge
weights tend to be substantially lower when at the end of a stem paths fork to
support different inflectional variants. The lower the edge weights at such forks
are, the more costly the production of the triphone that the edge connects to.

One kind of evidence that has been advanced to support morphemes comes
from neuroimaging studies. For instance, Bozic et al. (2010) compared the Bold
response in fMRI to simple English words (e.g., cream) on the one hand with the
Bold response to words with a final d or s, which typically realizes number and
tense inflection in English (e.g., played, packs). They reported that (potentially)
inflected words gave rise to a stronger Bold response, compared to their control
condition, in the left inferior frontal area BA 45, and conclude from this that

that left frontal regions perform decompositional computations on grammatical
morphemes, required for processing inflectionally complex words.

(Bozic and Marslen-Wilson, 2010,p. 5–6)
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The logic of their reasoning is that if decompositional morphological processes
exist, there must be brain areas that are differentially engaged. Having found
differentiation in BA 45, the conclusion is that this area performs morphological
decomposition. However, the conclusion that morphological decomposition
exists (and apparently, for whatever reason, is executed in BA 45) is premature, as
it is possible that area BA 45 lights up in an fMRI scanner for reasons other than
morphological decomposition.

Given that there are good reasons to reject the morpheme as a useful theo-
retical construct, and given that even exponents may not be required, we have
to address the question of what factors other than morphological decomposition
could give rise to topologically concentrated Bold responses in fMRI scans. It is at
present unclear whether the fMRI effects reported are actually trustworthy, given
the replicability crisis in both psychology and neuroimaging (Button et al., 2013;
Open Science Collaboration, 2015) and the laxness of the criteria in neuroimaging
with respect to by-item and by-subject variability. Nevertheless, the issue of the
topological organization of linguistic representations is of theoretical interest, and
has been pursued for morphology by Pirelli and collaborators using temporal self-
organizing maps (TSOMs Ferro et al., 2011; Chersi et al., 2014; Pirrelli et al., 2015).
In TSOMs, word forms become paths in a 2-D plane. However, in our experience,
self-organizing maps do not scale up well to realistically sized lexicons.

Within the present framework, the question of the topological organization of
morphological form can be addressed straightforwardly at the level of triphones.
As mentioned above, we opted for triphones as central form features for two
reasons. First, triphones do justice to the modulation of speech sounds by their
context. The place of articulation of stops is retrievable from formant transitions
present in adjacent vowels. Second, triphones provide rich information about
sequencing, which we have exploited to construct wordform paths in triphone
graphs. Thus far, however, we have remained agnostic about the topological orga-
nization of the vertices in these graphs. If triphones have some cognitive reality,
and if there are cell assemblies subserving triphone-like units, then it makes sense
to reflect on the spatial organization of triphones on a surface. In what follows, we
make the simplifying assumption, just as TSOMs do, that this surface is a plane
in ℝ2.

To obtain a mapping of triphones onto a plane in ℝ2, we make use of an
algorithm from physics that has been transferred to graph theory with the goal
of obtaining well-interpretable layouts of large graphs, graphopt (http://www
.schmuhl.org/graphopt/). The graphopt algorithm, which has also been imple-
mented in the igraph package, uses basic principles of physics to iteratively deter-
mine an optimal layout. Each node in the graph is given both mass and an electric
charge, and edges between nodes are modeled as springs. This sets up a system in
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which there are attracting and repelling forces between the vertices of the graph.
This physical system is simulated until it reaches equilibrium. In other words, the
graphopt algorithm provides us with a simple way of implementing spatial self-
organization of triphones.

Figure 6 (produced with the function graph_topology_flect) presents the
results of the graph-opt algorithm applied to the triphones of the Latin dataset.
Triphones that are unique for a given inflectional function (perfect, pluper-
fect, future, and past) are highlighted. Interestingly, triphones show consid-
erable topological clustering depending on what inflectional function they
subserve. For instance, triphones unique for the perfect are strongly represented
in the upper part of the graph. This clustering, however, does not imply that it

Figure 6. Topology of tenses in the triphone graph of the Latin dataset, using the
graphopt layout. Note the local topological coherence of the triphones subserving the
perfect, the pluperfect, the future, and the past
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is in the upper part of the plane that inflected forms realizing the perfect are
decomposed or combined. The clustering arises as a consequence of physical
constraints on low-level units that have to be allocated to a 2-D plane. Figure 7
(obtained with the graph_topology_segments function) shows that in the very
same network, triphones that are unique to the five vowels of Latin also show
considerable clustering. (For phoneme-like clustering in the cortex, see Cibelli
et al. (2015) and references cited there.) One might take clusterings like this to
imply that phonemes exist in our model, yet there are no units for phonemes at all
in the system that underlies the graph, but only sequences of triples of phones –
and these units have a very different theoretical motivation than the phoneme in
structuralist linguistics and offshoots thereof. A conjecture that follows from the
present results is that the details of how triphones self-organize is highly depen-
dent on how a language organizes its morphology.

Figure 7. Topology of vowels in the triphone graph of the Latin dataset, using the same
graphopt layout as for Figure 6
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We end this section with a brief note on double dissociations in aphasia and their
implications for understanding the nature of morphological processing. Selec-
tive impairments, such as relatively unimpaired performance on irregular forms
and impaired performance on regulars, are often taken as providing evidence
for distinct processing components. However, as shown by Juola (2000), double
dissociations can arise in non-modular neural networks when across many simu-
lation runs the network is lesioned randomly. We expect that similar results are
within reach for the present approach, as linear mappings are equivalent to two-
layer linear networks. Furthermore, when topological organization is imposed, as
in Figure 6, local lesions in for instance the upper left of this figure, can have an
effect that is easily misunderstood as the perfect tense morpheme (or exponent)
having been lost.

7. Concluding remarks

We have shown that it is computationally possible to map 672 different inflec-
tional forms of Latin onto their semantic vectors, and to map these semantic
vectors back onto their corresponding word forms, without requiring constructs
such as stems, affixes, exponents, morphemes, allomorphs, theme vowels, and
inflectional classes. We have also shown that when the basic units of analysis,
triphones, are allowed to self-organize in a 2-dimensional plain, patterns emerge
that are reminiscent of morphemes (or exponents) and phonemes, without such
units being part of the generating system.

Interestingly, it is apparently not necessary to harness the power of deep
learning to see clusterings resembling traditional units emerge. Together with the
results of a much larger-scale study for English (Baayen et al., 2018), we conclude
it is worthwhile to explore in further detail the potential of linear mappings for our
understanding of lexical processing in comprehension and speech production.

Some caveats are in order, however. In actual language use, it is typically the
case that only a minority of the set of possible inflectional forms is used, as shown
by Karlsson (1986) and Loo et al. (2018a, b). For more realistic modeling of Latin
inflectional morphology, a corpus of Latin will be indispensible. A corpus will not
only allow us to test how well the present theory works for sparse data, but it will
also make it possible to start working with actual semantic vectors rather than
simulated ones. Given a corpus-informed model, it will also become possible to
address the productivity of the system (see Baayen et al., 2018, for more detailed
discussion and computational implementation) and the role of principal parts.

Undoubtedly, there are limits to what can be done with simple linear
mappings. Possibly, these limits constrain morphological form. Even in Latin,
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periphrastic constructions were in use, possibly in order not to stretch the
fusional system beyonds its limits. It is also conceivable that there are black holes
in a system, areas where uncertainties about which path to follow are too great
to allow production with confidence. A possible case in point is the Polish geni-
tive, see Dabrowska (2001) for detailed discussion of the problem and Divjak and
Milin (2018) for a possible solution.

A further complication is that human performance is not error-free. The
larger context within which words are used is of vital importance for both
comprehension and production. One of the reasons that words ‘by themselves’
are fragile is the high variability of word forms, a factor that we have ignored
alltogether in this study. This variability characterizes not only the spoken word
(Johnson, 2004), but also printed words. A printed word (given font and font
size) might seem invariable, but how it actually appears on the retina depends on
angle and viewing distance. As a consequence, there is much more variability in
actual lexical processing than in the present simulations, and as a consequence
the present practically error-free performance observed for small simulated data
sets does not carry over to full-scale lexical processing (for detailed discussion
and modeling results for auditory comprehension of real speech, see Arnold et al.
(2017); Baayen et al. (2018); Shafaei Bajestan and Baayen (2018)).

Nevertheless, the results obtained thus far are promising in that they suggest
that linear mappings between vectors of form, anchored in triphones, and vectors
of reals representing meaning are surprisingly effective. In this study, we have
made use of simulated semantic vectors, constructed in such a way that vectors
of words that share more features are more similar to each other. Interestingly,
performance does not degrade for random semantic vectors, which is mathe-
matically unsurprising as uncorrelated semantic vectors are less confusable and
hence afford more accurate mappings. Importantly, once we drop the assumption
that meanings are symbolic and representable by isolated units, or by highly
specific semantic logical functions, and that instead we start entertaining the
possibility that meanings are representations in a high-dimensional vector space,
then mappings between form and meaning become much simpler. This result
holds irrespective of whether meanings are equated with distributional vector
space models constructed from corpora, or whether such vectors are seen as
imperfect probes of much richer distributional models of our experience of the
world. Thus, linear discriminative learning offers a new perspective on the func-
tional architecture of lexical processing in comprehension and production.
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