
When word frequencies do not regress towards the 
mean 

R. Harald Baayen, Fermin Moscoso del Prado Martin, 
Robert Schreuder and Lee Wurm 

Ever since Gernsbacher (1984), it is widely believed that word frequency counts 
based on corpora are unreliable, particularly for the highest and lowest frequency 
words due to regression towards the mean. In this study, however, we show that 
word frequency counts across corpora are not subject to regression towards the 
mean, neither in theory nor in practice. Sampling error due to underdispersion, 
however, remains a serious concern. 

1. Introduction 

Several studies addressing frequency effects in morphological processing 
have made use of factorial designs contrasting high and low frequency 
words (e.g., Taft, 1979; Sereno and Jongman, 1997; Baayen, Dijkstra, and 
Schreuder, 1997). However, the use of such designs has been questioned 
on the grounds of the unreliability of both very low and very high word 
frequencies. The problem is described by Gernsbacher (1984) as follows: 

Acknowledging the potential unreliability of printed frequency, several have 
suggested that these probable confounds are due to regression towards the mean, 
that is, the statistical probability that with a different sample of an independent 
variable, the extreme points on a normal distribution will assume a "truer" value, 
one closer to the mean of that distribution ... Regression towards the mean is 
particularly probable when two highly correlated variables are factorially combined 
and when the measurement of either independent variable is noisy. Arranging 
groups of stimuli that are extremely high or low along one variable and 
simultaneously extremely high or low along its covariate variable, and vice versa, is 
often done by capitalizing on measurement error found in either variable. Thus, 
though it is believed that the values of each variable are well matched within either 
level of the opposite variable, it is possible that their "true" values are not. 
(Gernsbacher 1984: 276) 
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Gernsbacher's paper has led many researchers studying morphological 
processing to abandon the study of frequency effects, and to rely 
predominantly or exclusively on priming paradigms in which target words 
are their own controls. Recently, Ford, Davis, and Marslen-Wilson (this 
volume) have argued that regression designs in which the words with 
extreme frequencies are excluded are to be preferred above factorial 
designs contrasting extreme frequency classes. The claim that it is 
predominantly the extreme frequencies that are unreliable is motivated by 
the argument of regression towards the mean. In this study, however, we 
show that regression towards the mean does not take place for word 
frequency distributions. 

In what follows, we first describe the phenomenon of regression 
towards the mean, which is part and parcel of bivariate normal 
distributions. We then introduce the bivariate Poisson-Lognormal 
distribution, which is appropriate for word frequency counts. Finally, we 
present some empirical bivariate word frequency distributions, which 
illustrate the absence of regression towards the mean and the presence of 
sampling error (due to underdispersion) notably in the medium frequency 
ranges. 

2. Regression towards the mean 

What is regression towards the mean? The term 'regression towards 
mediocrity' was introduced by Galton (1822-1911) for a dataset in which 
the heights of sons (Y) was plotted against the heights of their fathers (X). 
The resulting regression line had a positive slope smaller than 1, indicating 
that a very tall father was likely to have a son who was less tall. 
Conversely, a very short father was likely to have a somewhat taller son. 
The heights of the sons 'regressed' towards the mean, and this gave 'linear 
regression' its name. Fisher (1918) showed that, given the laws of genetics, 
the slope of the regression line has to be less than one when the heights of 
sons are plotted against those of their fathers. 

It is useful to consider the properties of bivariate normal distributions in 
more detail to understand the phenomenon of regression towards the mean. 
A bivariate normal distribution (X, Y) has five parameters: the means of X 
and Y, the variances of X and Y, and the correlation ρ between X and Y. 
Let's assume for the moment that word frequencies are normally 
distributed, and for ease of exposition, let's also assume that the means of 
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X and Y are 0 and that their variances are 1, i.e., X and Y are standard 
normal random variables. How can we simulate a dataset with frequencies 
from two corpora, C x and Cy. What we need here are two distributions, a 
'general' frequency distribution and a 'sample' frequency distribution. 
The general distribution is the distribution of the population usage rates of 
the different word types (their population mean token frequencies). The 
sample distribution of a given word type is the distribution of the token 
frequencies with which that particular word type, given its associated 
usage rate, appears across different samples (corpora). 

We can generate a bivariate standard normal sample (simulating 
frequency data for two corpora) by first sampling a set of population usage 
rates from the general distribution, that should be normally distributed with 
mean 0 and variance p: N(0, p). Why we need the variance to equal the 
correlation coefficient ρ will become clear below. Subsequently, we 
generate individual token frequencies for the word types by sampling from 
their corresponding sampling distributions. For a given word G)j with usage 
rate μ̂  this sampling distribution has mean μ} and variance 1 - p. In other 
words, word token frequencies are N{ N(0, ρ), 1 - p)-distributed. By 
choosing the variances of the general and sampling distributions to be ρ 
and 1 - p, we ensure that the marginal distributions X(the frequencies from 
corpus Cx) and Y (the frequencies from corpus CY) follow a standard 
normal distribution. The variance of the marginal distributions is the sum 
of the variances of the general distribution and the sampling distribution, 
and the correlation between X and Y is p. Because we have a standard 
normal bivariate distribution, there is a very simple relation between the 
slope of the regression line and p: the slope is equal to p. 

The upper left panel of Figure 1 plots an example of 1000 points from a 
bivariate standard normal distribution with ρ = 0.9 and slope 0.9. The 
dashed line represents the line Y = X, the solid line is the regression line. 
The lower left panel of Figure 2 shows the corresponding density. Note 
that most of the observations are located around the center of the plot. 

An important property of bivariate normal distributions is that the 
amount of regression towards the mean can be expressed as a function of p. 
When ρ equals 1, i.e., X and Y correlate perfectly, there is no regression 
towards the mean. When X and Y are totally uncorrected, regression 
towards the mean is maximal. In general, the amount of regression 
towards the mean equals 1-p, the variance of the sampling distribution. 

The slope of the regression line in Figure 1 is less than 1. However, 
when the mean of X is less than the mean of 7, the regression line may 
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Figure 1. A bivariate standard normal density with p = 0.9 (left panels) and a 
bivariate Poisson-Lognormal(l, 4) density (right panels). 

have a slope greater than 1. In this case, there would not be regression 
towards the mean, but regression from the mean. Thus, one should have 
an a-priori reason for expecting regression towards the mean rather than 
regression from the mean. 

Summing up, word frequencies from two corpora will show regression 
towards the mean under the assumption that they are bivariate normal 
random variables. 
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3. Word frequency distributions 

Word frequencies, however, are not N( N(0, ρ), 1 - p)-distributed, and it is 
an open question whether the phenomenon of regression towards the mean 
still arises. In fact, it turns out that both the general distribution and the 
sampling distribution of word frequencies are non-normal. There are 
several models for the general distribution of word frequencies (see, e.g., 
Baayen, 2001). One such model, that we will use here for reasons of 
simplicity, is the lognormal model (see, e.g., Carrol, 1967). The lognormal 
distribution has density 

1 1 --^(logiJc)-//)2 

f{x) = - r = - e ^ . (1) 

If X has a Lognormal^o2) distribution, then log(.Y) follows a 
Normal^o2) distribution. For given μ and σ, the lognormal model defines 
the usage rates with which individual words appear in text or speech. 

To simulate a realistic data set of word frequencies from two corpora of 
the same size, we begin with sampling usage rates λ for the word types 
from a lognormal distribution with mean μ and variance σ2. 

Given these usage rates, we generate the token frequencies in a given 
corpus by sampling from a Poisson distribution. The Poisson distribution 
defines the probability that the frequency X of a word will be m given that 
the word has usage rate λ: 

pftl 
Pr (X = m) = e~X,m = 0,1,2,3,... (2) 

ml 

The Poisson distribution has only one parameter, the rate λ, which 
represents both the mean and the variance. In this model, a word's 
frequency is Poisson(Lognormal(p, o2))-distributed. The right panels of 
Figure 1 show a scatterplot and a density plot for two random variables X 
and Γ from a bivariate Poisson-Lognormal(l, 4) distribution. This plot was 
created by generating 1000 random reals from a Lognormal(l, 4) general 
distribution, resulting in a vector of usage rates λ-ν i = 1, 2, ..., 1000. Each 
usage rate λ^ defined a sampling distribution, for which two random 
Poisson^j)-distributed integers were generated, representing the word 
frequencies in two different corpora of the same size. In this way we 
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obtained two vectors of 1000 word frequencies, pairwise sharing the same 
usage rate. Just as in real word frequency counts, there are many words in 
this simulated data set with low frequencies, and a small number of high-
frequency outliers. For visualization purposes, we therefore plotted log(7 
+ 1) against log(Jf + 1) in the right panels of Figure 1, adding 1 to both X 
and Y in order to include the zero-frequencies in the plot. 

First note that the data points closely cluster around the line log(F+ 1) 
= log(Ar+ 1), represented by a dashed line in the upper right panel. Also 
note that we do not have a spherical scatter as in the left panels of Figure 1, 
but a variance structure that decreases with increasing frequency. For the 
lowest frequencies we have a striated pattern in the upper right panel that is 
due to the discrete nature of the Poisson distribution. Unlike in the 
bivariate normal case, where each point (X, Y) is a combination of a unique 
value of X with a unique value of Y, a coordinate pair (X, Y) of a bivariate 
Poisson-Lognormal distribution may be instantiated by a great many 
words, as illustrated by the density plot in the lower right panel of Figure 1. 
Note that there are many words in this distribution that occur zero times in 
both the C x and CY corpora. When comparing actual corpora, word 
frequency distributions are trunctated as the counts of words with zero 
frequency are not available. 

It makes no sense to calculate the Pearson correlation for X and Y given 
the gross violation of the sphericity condition. Non-parametric regression 
lines (Cleveland, 1981) fit to bivariate Poisson-Lognormal distributions 
begin slightly above the main diagonal, then dip slightly under the main 
diagonal, and end at or slightly above the main diagonal (see the solid line 
in the upper right panel). What we have here, in other words, are two 
highly but not completely correlated variables for which the slope of the 
regression line is nevertheless veiy near to 1. This is impossible in the case 
of bivariate normal distributions: If the slope is 1, then ρ is also 1, and all 
scatter has disappeared. While in the case of bivariate normal distributions 
ρ is available as a parameter that regulates the extent to which Y can be 
predicted from X and that at the same time describes the amount of 
regression towards the mean, bivariate Poisson-Lognormal distributions 
have no such parameter. The values of X and Y for a given word ω* with 
usage rate λ; predict each other within the bounds set by λ,, independently 
of whether λ; is extremely small (near 0) or extremely large. 

A scatterplot such as shown in the upper right panel of Figure 1 shows 
that the values of Y are very similar to those of X. What is the precise 
relation between Y and^Y? In other words, what is the expected value of Y 
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given a particular value of Χ, Ε [Υ \ Χ\Ί In the case of a bivariate standard 
normal distribution with slope not greater than 1, 

E[Y\X] = pE[X]. (3) 

The corresponding expression for word frequency distributions can be 
found in Good (1953). Let Ν denote the size of the sample (corpus) in 
tokens, i.e., the summed token frequencies of all types, and let V(m, N) 
denote the number of words that occur with frequency m in a corpus of Ν 
tokens. Good, acknowledging Turing, showed that the expected value of Y 
given that has the (discrete) frequency m, E[Y\X= m], is 

= 1 E[V(m +1, Ν +1)1 
E[Y\X = m] = — - (4) 

1 + 1/TV E[V(m,N)] 

Crucially, the value of m* = Ε [Υ | X = m] is slightly smaller than the 
value of m itself for all m > 1. For corpora with 1 million word tokens, the 
adjustment for the highest frequency words is roughly 1 token. For words 
occurring once, the adjustment is from 1 to 0.68 (see Baayen, 2001: 63). 
Note that even for the lowest frequency words the adjustment is down, 
from the mean, instead of up, towards the mean. In other words, the lowest 
frequency words in one corpus are expected to occur with even lower 
frequencies in another corpus, instead of with higher frequencies. 

Summing up, what this second simulation shows is that regression 
towards the mean is a phenomenon that does not generalize from bivariate 
normal distributions to other bivariate distributions. The bivariate Poisson-
Lognormal distribution (and the same holds for the other distributions 
proposed in the literature for word frequency distributions) have a different 
property, namely, the Good-Turing relation. Just as regression towards the 
mean is the hallmark of bivariate normal distributions, the Good-Turing 
adjustment is the hallmark of word frequency distributions. 
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Figure 2. Scatterplots for log(frequency+l) in two subcorpora of one million words 
of the British National Corpus (left panels) as well as for the CELEX 
frequencies (standardized to 18 million) and the summed frequencies of 
18 subcorpora of the BNC (18 million words, right panels). The top 
panels concern all monomorphemic nouns, the center panels the nouns 
that are not underdispersed, and the bottom panels the nouns that are 
underdispersed. 
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4. Word frequencies in corpora 

Now that we have demonstrated with simulations that regression towards 
the mean is a phenomenon that is not to be expected for word frequencies, 
we turn to actual corpora. Is regression towards the mean evident when we 
examine corpora? To answer this question, we created 20 corpora of 1 
million words from the 100 million word British National Corpus (BNC, 
http: //www.hcu.ox.ac.uk/BNC/). These corpora were created by going 
sequentially through the files of the BNC and assigning words to a given 
corpus until 1 million words had been read and assigned to this corpus. 
These 20 corpora make it possible to carry out 190 comparisons of two 
different corpora of 1 million words, the corpus size of the Brown corpus 
(Kucera and Francis, 1967) on which Gernsbacher (1984) based her 
conclusions. 

We then selected as a test set all English words listed as 
monomorphemic singular nouns with a length greater than one letter and a 
frequency greater than 0 in the CELEX frequency counts (Baayen, 
Piepenbrock, and Gulikers, 1995), which are based on the Cobuild corpus 
at the time that corpus comprised 18.6 million words (see Renouf, 1987, 
for a description of this corpus at that time; currently, the Cobuild corpus 
comprises some 450 million words, see http://titania.cobuild.collins.co.uk/ 
boe_info.html). The frequencies of homographs were collapsed. For each 
of the resulting 4410 nouns, we computed its frequency in each of the 
twenty subcorpora of the BNC. We also recorded the frequencies of these 
nouns as available in CELEX. 

The upper left panel of Figure 2 is a pairs plot of the frequencies in the 
first two of our BNC subcorpora. As before, we plot the logarithmic 
transforms of the frequencies, again adding 1 in order to include words 
with zero frequency in the bilogarithmic plot. Word frequency values from 
one corpus (SI) were used to predict the frequency values of those words 
in a second corpus (52). The first thing to note is that the plot has a shape 
that is quite similar to the shape generated by our Poisson-Lognormal 
simulation, and that is quite different from the shape generated by the 
bivariate normal simulation. The striated pattern for the lowest frequencies 
is, just as in the upper right panel of Figure 1, due to the discrete nature of 
word frequency counts. The solid line shows a nonparametric regression 
line, and the dashed line is the line Y=X. The second thing to note that 
there is no evidence whatsoever of regression towards the mean. This 
same pattern is seen across the different combinations of our 20 subcorpora 
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of the BNC. 
We also created one corpus of 18 million words by combining the first 

18 of the BNC subcorpora, in order to obtain a corpus size that is 
comparable in magnitude to that of the corpus underlying the frequency 
counts in the CELEX lexical database for English. The upper right panel of 
Figure 2 shows how well the CELEX frequencies (scaled from 18.6 to 18 
million) can predict the frequencies from the BNC. We observe a very 
similar pattern, with again no trace of any visible indication of regression 
towards the mean. (There are no words with zero frequency in our data set 
of simplex English nouns, however, hence there is an asymmetry in the 
plot in the sense that there are nouns that occur in CELEX but not in the 
BNC, while there are no nouns that occur in the BNC but not in CELEX.) 
The upper panels of Figure 2 clearly demonstrate that the phenomenon of 
regression towards the mean, which for theoretical reasons is expected not 
to occur, does not occur in practice when comparing actual corpora, large 
or small. 

The absence of regression towards the mean for word frequencies does 
not imply that there is no problem of sampling error. The bivariate 
Poisson-lognormal model is based on the assumption that words are used 
randomly in texts. This is a useful simplification, but words are generally 
not used at random. Many words are not distributed smoothly throughout 
different texts and corpora. Rather, they have a tendency to occur many 
times in one corpus, and may occur very few (or even zero) times in other 
corpora of the same size. This is a function of topicality, and will lead to 
certain words being used a lot in some of the texts that are sampled for 
frequency corpora, but very few times (or not at all) in many of the other 
texts sampled. This 'bunching' can lead to substantial 'sampling error' 
with zero frequency underestimating what happens in many other corpora 
and non-zero frequency overestimating what happens elsewhere. In other 
words, for the subset of words that occur bunched up in texts, a pattern 
similar to that of regression towards the mean in bivariate normal 
distributions might arise. 

One way of making this notion of words being bunched up in texts 
more precise is to make use of occupancy theory (Johnson and Kotz, 1977) 
and the concept of underdispersion. The dispersion of a word is the 
number of different texts or subcorpora in which a word appears at least 
once. In our case, if a word appears in all 20 subcorpora of the BNC, its 
dispersion equals 20. If it occurs in only 1 of these subcorpora, its 
dispersion equals 1. A dispersion of 1 is not surprising for a word with a 
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frequency of 1, but it is very surprising for a word with a frequency of, say, 
5000. To quantify the extent to which we should be surprised, we first 
calculate the expected dispersion Ε[d\ for a given word with frequency/in 
a corpus with k equally-sized subcorpora: 

E[d] = k( l - ( i - V ) . (5) 
k 

Next, we calculate the corresponding variance, 

VAR[d] = *(1 - + (k(k -1)(1 - - k2(1 - ( 6 ) 
k k k 

which allows us to calculate a Z-score: 

z-^m. (7> 
4VAR[d] 

We found that roughly 42% of the words used in this study were 
significantly underdispersed (Z < -1.96). That is, they had significantly 
more "zero" entries than are expected given their overall frequencies. The 
remaining 58% of the nouns in our data set are not underdispersed at the 
low level of granularity (of only 20 subcorpora) that we have used here. 
The center panels of Figure 2 show that for the non-underdispersed words 
the non-parametric regression line and the line Υ = X are virtually 
indistinguishable to the eye. However, as shown in the bottom panels of 
Figure 2, for the underdispersed words, the frequencies in one corpus do 
not provide an accurate estimate of the corresponding frequencies in a 
second corpus. 

First consider the bottom left panel, which compares two 1 million 
corpora from the BNC. For these small corpora, the nonparametric 
regression line is, except for the lowest frequency, below the line Υ = X. In 
other words, a word with a frequency greater than one in subcorpus S1 
tends to be paired with a lower frequency in 52. Given the granularity with 
which we have calculated the Z-scores for underdispersion, using 
subcorpora of one million words, there is no underestimation for the very 
lowest frequency words. This asymmetric pattern of sampling error differs 
from the symmetric pattern of regression towards the mean illustrated in 
Figure 1 for bivariate normal distributions. 
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Turning to the right panel, we see a symmetric pattern that is more 
similar to regression towards the mean, with the lowest frequencies in SI 
tending to have somewhat higher frequencies in 52 and the higher 
frequencies in S1 tending to be somewhat lower in 52. With corpus sizes of 
18 million, the level of granularity of our dispersion measure is now 
sufficient to render visible the underestimation for the lower frequency 
words in addition to the overestimation of the higher frequency words. It 
is crucial to keep in mind that this pattern emerges only by conditioning 
explicitly on words being significantly underdispersed. Given that we 
know a word is underdispersed, and given the knowledge that its frequency 
is extreme, we know that in another corpus its frequency will be less 
extreme. However, without prior knowledge about the topicality of a 
word, the fact that it has an extreme frequency in one corpus is not 
predictive about its frequency in another corpus, as demonstrated by the 
upper panels of Figure 2. 

Finally, a comparison of the bottom panels shows that for small corpora 
the problem with underdispersed words is more substantial than for large 
corpora. This illustrates that studies using frequency norms based on small 
corpora are especially prone to sampling error. 

5. Corpora of different size 

Thus far, we have considered corpora of the same size. We now consider 
the correlation of word frequencies in corpora of different size. The upper 
panel of Figure 3 addresses this issue by means of a simulation. The 
horizontal axis plots the simulated frequencies of 1000 words following a 
Poisson-Lognormal(l, 4) distribution. The summed token frequency of 
these words is 1354830. The vertical axis plots the corresponding 
frequencies in a corpus of 338591 tokens, a reduction in size of 1/4. The 
simulated frequencies in the smaller corpus were obtained by reducing by a 
factor 4 the lognormal(l, 4)-distributed usage rates underlying the 
frequencies in the large corpus. The dashed line represents Y = X, the line 
around which the data points would have clustered if both corpora would 
have had the same size as in Figure 2. The straight solid line, Y= -log(4) + 
X, shows the shift due to the reduction in corpus size. A word with 
frequency rate λ has a reduced rate of λ/4 in the small corpus, which in a 
bi-logarithmic plot shows up as a shift of log(4) to the right (entailing an 
intercept of -log(4)). The curved line represents a non-parametric 
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regression. Note that is is indistinguishable from Y = - l o g ( 4 ) + X for the 
higher frequencies. For the lowest frequencies, however, we see a 
deviation towards the origin. This is a simple consequence o f the discrete 
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Figure 3. Scatterplots for log (frequency + 1) for corpora of different size. The 
upper panel plots the frequencies for 1000 words following a Poisson-
Lognormal (1 ,4 ) distribution on the horizontal axis, with on the vertical 
axis the corresponding frequencies in a corpus roughly a quarter in size. 
The lower panel reverses the axes. The dashed line represents the line Y 
= X, the straight solid line the expected frequency. The curved solid line 
is a non-parametric estimate. 
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nature of word frequencies. A word cannot have an observed frequency of, 
say, 0.2, which on a logarithmic scale would map onto a negative value on 
the vertical axis of -1.61, but only a frequency of 0, 1,2, .... As a result, 
the lowest frequencies in the small corpus are slightly higher than would be 
expected given the big corpus. 

As shown in the lower panel of Figure 3, the pattern for the lowest-
frequency words reverses when we plot the frequencies in the large corpus 
on the vertical axis and those in the small corpus on the horizontal axis. 

Due to discretization, the frequencies in the big corpus are not as large 
as one would expect given the corresponding frequencies in the small 
corpus. Thus, the discrete nature of word frequencies has as its 
consequence a slightly upward curvature when the frequencies from the 
small corpus are plotted against those of the large corpus, and a slightly 
downwards curvature when the axes are reversed. For the higher 
frequencies, no such divergence emerges. This pattern is incompatible 
with that expected for regression towards the mean, which predicts a 
straight regression line with a slope less than 1. 

6. Singulars and plurals 

In Galton's study, the heights of sons (Y) was plotted against the heights of 
their fathers (X). In his study, the heights of sons regressed towards the 
mean. It might be argued that a similar situation should obtain when we 
study the relation between the frequencies of singular nouns (the fathers) 
and the frequencies of their plurals (the sons). If a singular noun has a very 
high frequency, relative to other singular nouns, then the frequency of its 
plural should not be as extreme, relative to the frequencies of other plural 
nouns. 

The assumption underlying this line of reasoning is that a given 
singular and its plural share the same probability of use p, but that their 
usage rates differ due to a difference in corpus size, Nsg for the singulars, 
and Np\ for the plurals, with Nsg > Np]. Singulars would then have usage rate 
λ88 = Nsgp and plurals would have usage rate λρΐ = Np\p. We will refer to 
this view of the relation between singular and plural frequency as the 
shared probability model. 

Is regression towards the mean expected given the shared probability 
model? And is the shared probability model a sensible model for singular 
and plural frequencies? Given that there is no regression towards the mean 
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Figure 4. The frequencies of singulars and plurals of the 6431 monomorphemic 
English nouns in the CELEX lexical database. The upper panels plot the 
frequencies of plurals against those of their singulars. The lower panels 
reverse the axes. The left panels plot the full distribution, the right 
panels exclude nouns with zero singular or plural frequency. 
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for the frequencies of words in small and large corpora, as shown in the 
preceding section, no regression towards the mean is expected. This 
expectation is born out by the upper left panel of Figure 4, which plots the 
frequencies of singulars (on the horizontal axis) and plurals (on the vertical 
axis) for the 4631 monomorphemic English nouns (including pluralia 
tantum) in the CELEX lexical database. 

The dashed line represents Y=X, the curved solid line represents a non-
parametric regression. The straight solid line is Y= log( 1877978/432759) 
+ X, and represents the expected regression line corrected for the 
difference in the size of the singular 'corpus' (1877978) and the size of the 
plural 'corpus' (432759). This graph is very similar to the upper panel of 
Figure 3, which plotted 1000 words in the plane spanned by their simulated 
frequencies in a large and a small corpus. This suggests that the sample of 
plurals might indeed be regarded as a small corpus sampled from the same 
population of lemmata from which the large corpus of singulars was 
sampled. 

However, upon closer scrutiny, it turns out that the shared probability 
model is incorrect. Recall that plotting the frequencies in the large sample 
against the corresponding frequencies in the small sample, instead of the 
other way round, resulted in plots that are each other's mirror image, as 
shown in Figure 3. A plot of singular frequencies against plural 
frequencies, however, does not result in a mirror image, as shown by the 
lower left panel of Figure 4. 

Note that the nonparametric regression line for singulars predicted from 
plurals shows an upward curvature where the corresponding lower panel in 
Figure 3 shows a downward curvature. Also note that the non-parametric 
regression line nowhere coincides with the dashed line representing the 
expected regression line under the shared probability hypothesis, except for 
the point where the two lines cross. The shared probability model 
incorrectly predicts higher singular frequencies given the plural 
frequencies than are actually observed. 

In fact, there are various linguistic reasons for rejecting the shared 
probability model, and to regard singular and plural nouns as constituting 
relatively independent populations of their own. For instance, some nouns 
only occur in the plural (e.g., trousers). For these nouns, it makes no sense 
to model them as having a usage rate λ for singulars and λ/4.34 for plurals. 
The appropriate way to model such nouns is to assign them a zero usage 
rate as singulars and some non-zero usage rate as plurals. The presence of 
these pluralia tantum, represented by the leftmost column of points in the 
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upper left panel of Figure 4, causes the non-parametric regression line in 
this panel to end well above zero, while in the corresponding panel of 
Figure 3, the non-parametric regression line reaches the origin. 

Similarly, there are many nouns that are used exclusively in the singular 
(e.g., wool), and, as can be seen in the bottom left panel of Figure 4, their 
frequencies (represented by the leftmost column of points) are also clearly 
higher than one would expect from their plural frequencies. Again, it 
makes no sense to model the singular frequency of words such as wool as 
having a usage rate that is four times that of the plural. 

In addition, while unmarked singulars tend to be more frequent than 
their marked plurals, there are nouns that show a markedness reveral 
(Tiersma, 1982, Baayen, Dijkstra, and Schreuder, 1997). For these nouns, 
the plural form is semantically unmarked, and the singular semantically 
marked. For instance, the noun eye is more than three times as frequent in 
the plural than in the singular, which is no surpise as eyes tend to come in 
pairs. Again, it is incorrect to model the frequency of eyes as four times 
the frequency of eye observed in a smaller sample. 

A final question is why, given the shared probability model, the 
prediction from the singular frequency to the plural frequency is right on 
target, while the reverse prediction results in an overestimation. The key to 
the answer is an asymmetry in the numbers of words that occur only in the 
singular (the singularia tantum) and the number of words that occur only in 
the plural (the pluralia tantum). There are 1254 singularia tantum in our 
data set, and only 162 pluralia tantum, in a total of 4631 nouns. When we 
remove the singularia and pluralia tantum from the data set and redraw the 
left-hand plots of Figure 4, the plots shown in the right-hand panels of 
Figure 4 are obtained. Note that the two graphs are now more like each 
other's mirror image, in that the non-parametric regression line is 
intermediate between the solid and dashed lines for a wide range of 
predictor values. 

Comparing the upper two panels, we find that it is thanks to the large 
number of singularia tantum that the non-parametric regression line and the 
dashed line representing the predictions of the shared-probability model 
largely coincide in the upper left panel. (The removal of pluralia tantum 
has only a small effect on the non-parametric regression line, which starts 
off at nearly the same position in the lower left corner of both graphs). 

Comparing the lower two panels, we observe that the number of 
pluralia tantum is far too small to allow the non-parametric predictions to 
coincide with those of the shared probability model. The two non-
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parametric regression lines look very similar, except at the extreme left 
hand side of the graphs. In the lower left panel, the effect of the presence 
of singularia tantum is clearly seen compared to the lower right panel. 

In the preceding section, we showed that when the shared probability 
model is correct, regression towards the mean does not take place for word 
frequency distributions. In the present section, we have seen for singular 
and plural frequencies, firstly, that the shared probability model is a non-
optimal approximation at best, and secondly, that the regression towards 
the mean again does not take place. 

7. Regression towards the mean in similarity neighborhoods 

Landauer and Streeter (1973) observed that higher-frequency words tend to 
have high-frequency neighbors (lexical competitors at Hamming distance 
1). However, as the frequency of a word increases, the likelihood that it 
will have neighbors that are even more frequent decreases, which has been 
described as regression towards the mean (Frauenfelder, Baayen, Hellwig, 
and Schreuder, 1993). Why is it that there is regression towards the mean 
in this case, and not in the examples studied in the preceding sections? 

In the previous examples, we always were concerned with paired 
observations: the frequency of a given word in one sample paired with the 
frequency of the same word (or lemma, in the case of singulars and plurals) 
in a second sample. In other words, for one and the same word we have 
always had two measurements, each yielding a frequency with some 
measurement error. For neighbors, however, we are dealing with a given 
word the frequency of which is compared to the frequencies of other words 
that happen to be similar to it. So we need a different statistical model. 

An appropriate statistical model is a Markov model generating word 
forms from transitional probabilities (Mandelbrot 1953, Nusbaum 1985, 
Frauenfelder et al. 1993, Baayen, 2001). This model defines words as 
strings of letters or phonemes from a set of pre-defined transitional 
probabilities. The higher the transitional probabilities of a word, the 
higher the probability of that word, and hence the higher its frequency. 
Neighbors that differ from a given target word in only one letter or 
phoneme share most transitional probabilities with the target word, except 
two: the transition into the differing segment and the transition from the 
differing segment back into the shared segments. Consider the neighbors 
must and mast, which differ at the second segment position. The set of all 
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neighbors sharing m_st is defined by the set of transitions m followed by 
the transitions _s. Let S denote the set of all such paired transitional 
propabilities. The higher a given probability peS, the higher the frequency 
of a target word will be. At the same, the higher ρ is, the less likely it 
becomes that there will be another ρ ' > ρ for a neighbor with a frequency 
greater than that of the target word. Thus, the comparison of the 
frequencies of a target word and one of its neighbors boils down to 
comparing two probabilities drawn from the same set of probabilities S. 
This leads directly to regression towards the mean (see Frauenfelder et al. 
1993 for detailed discussion). What this example shows, then, is that 
regression towards the mean is observed for the frequencies of different 
pairs of bigrams underlying the frequencies of different words. It can 
similarly be observed for the frequencies of different words in the same 
sample or corpus. If we sample a very high frequency word from a corpus, 
the likelihood of sampling a word with an even higher frequency becomes 
smaller with increasing frequency. This sampling situation should be 
carefully distinguished from the situation in which the same word is 
sampled in different corpora. 

8. Conclusions 

This study addressed the reliability of word frequency counts. 
Gernsbacher (1984) argued that sampling error renders printed word 
frequency unreliable, and linked sampling error with regression towards 
the mean. We have shown that this link between sampling error and 
regression towards the mean is unjustified, both in theory and in practice. 
There is no a-priori reason to assume that a high-frequency word will on 
average have a lower frequency in another corpus, or that a low-frequency 
word will have on average a higher frequency in another corpus. Both 
probability theory and detailed comparisons of corpora of 1 million words 
as well as corpora of 18 million words show that there is no regression 
towards the mean, and that on average a word with some frequency / in a 
corpus of a given size will occur in another corpus of the same size with a 
frequency that is very similar to f . 

These results show that factorial designs contrasting high and low 
frequency words cannot be discredited on the basis of the argument that 
extreme frequencies are likely to regress towards the mean. Interestingly, 
even the exclusion of the more extreme frequencies in a regression design, 
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as in the study of Ford et al. (present volume), is unwarranted. Just as 
removal of the central observations from a scattercloud leads to an 
overestimation of the true correlation, the unwarrent exclusion of the 
higher and lower frequencies results in an underestimation of the 
correlation. 

Our demonstration that there is no regression towards the mean for 
word frequencies does not imply that there is no problem of sampling 
error. We have shown that some 42% of monomorphemic nouns in 
English are significantly underdispersed, i.e., they occur in fewer 
subcorpora than one would expect given their frequency of use. Within the 
subset of the underdispersed, topical words, a phenomenon similar but not 
identical to regression towards the mean as defined for bivariate normal 
distributions can be observed. However, whether a word is a topical word 
or not cannot be predicted from its frequency alone. 

Topical underdispersed words constitute a special problem for 
experimental studies of lexical processing. Carroll (1970) proposed to 
adjust frequency counts for their dispersion. However, when detailed 
information about the distribution of the tokens over texts and subcorpora 
is missing, as in for instance the CELEX lexical database, Carroll's adjusted 
frequency measure cannot be calculated. An additional problem with 
topical words is that their mean frequency is not a valid estimate of how 
such words are really used — the median frequency is a more appropriate 
point estimator. A more principled approach to this problem has recently 
been developed by McDonald and Shillcock (2001), who argue that an 
entropy-based measure of lexical variation is superior to the simple word 
frequency count. Pursuing this approach would take us beyond the goal of 
the present paper, however, which is to clarify the confusion in the current 
literature about the supposed regression towards the mean in lexical 
statistics. 
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