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Thul et al. (2020) called attention to problems that arise when chronometric
experiments implementing specific factorial designs are analysed with the
generalized additive mixed model (GAMM), using factor smooths to
capture trial-to-trial dependencies. From a series of simulations incorpo-
rating such dependencies, they conclude that GAMMs are inappropriate for
between-subject designs. They argue that in addition GAMMs come with
too many modeling possibilities, and advise using the linear mixed model
(LMM) instead. As clarified by the title of their paper, their conclusion is:
“Using GAMMs to model trial-by-trial fluctuations in experimental data:
More risks but hardly any benefit”.

We address the questions raised by Thul et al. (2020), who clearly
demonstrated that problems can indeed arise when using factor smooths in
combination with factorial designs. We show that the problem does not
arise when using by-smooths. Furthermore, we have traced a bug in the
implementation of factor smooths in the mgcv package, which will have
been removed from version 1.8–36 onwards.

To illustrate that GAMMs now produce correct estimates, we report
simulation studies implementing different by-subject longitudinal effects.
The maximal LMM emerges as slightly conservative compared to GAMMs,
and GAMMs provide estimated coefficients that can be less variable across
simulation runs. We also discuss two datasets where time-varying effects
interact with numerical predictors in a theoretically informative way.
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1. Introduction

Barr et al. (2013) proposed as gold standard for the analysis of experimental data
with observations on combinations of subjects and items to fit maximally speci-
fied linear mixed effects models (LMMs). Bates et al. (2015) pointed out that such
models run the risk of being overspecified, and Matuschek et al. (2017) provided
detailed discussion of the balance between power and type-I error in LMMs. A
study by Baayen et al. (2017b) raised another issue, namely that in psychometric
data one often finds that sequences of response latencies observed over time as an
experiment unfolds are not independent but are auto-correlated, often at substan-
tial lags. Auto-correlation functions (ACF) for subject 1 from the British Lexicon
Project (Keuleers et al., 2012) are presented in Figure 1. The left panel presents the
ACF for the inverse-transformed reaction times. The right panel shows the ACF
for the residuals of a model with lexicality (word vs. nonword) as predictor. In
both cases, auto-correlations are markedly present even at lags of 40 trials.

The study by Baayen et al. (2017b) proposed to probe time-varying trends and
temporal autocorrelations with the generalized additive mixed model (GAMM).
Introductions to the GAMM are provided in, e.g., Baayen et al. (2017b); Wieling
(2018); Chuang et al. (2021). Baayen et al. (2017a) provide detailed discussions of
the kind of problems typically encountered when applying GAMMs to empir-
ical data. The question raised by Thul et al. (2020) is whether time-dependent
structure in the residuals of a LMM really affect the trustworthiness of the p-
values produced by the LMM. Central to the study of Thul et al. (2020) are simu-
lations for datasets implementing a design with two two-level treatments, one
of which was within-subjects (henceforth Fw) and one of which was between-
subjects (henceforth Fb). They also contrasted a design in which the within-
level factor was blocked with a design in which the within-level treatments were
uniformly distributed over experimental time.

For the modeling of time-varying trends in the data, Thul et al. (2020) defined
two kinds of functions of experimental time. One function of time implemented
a sine-wave. The other function of time implemented an auto-correlative process.
The sine-wave function was implemented in two ways, once with the same phase
but with an amplitude that varied from subject to subject, and once with the same
amplitude but with a phase that varied by subject. The auto-correlative process
implemented either an AR(1) process or an AR(2) process. When an AR(1) process
is present in the errors, then the current error is a proportion ρ of the preceding
error augmented with Gaussian noise. For an AR(2) process, the current error
depends on the preceding two errors, again augmented with Gaussian noise. In
all, the simulations of Thul et al. (2020) covered eight scenarios, the two types of
sine waves without an AR(1) or AR(2) process, the two types of auto-correlative
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processes without sine waves, and the four combinations of sine waves and auto-
correlative trends.

Figure 1. Auto-correlation function of the inverse-transformed response latencies of
subject 1 in the British Lexicon Project (left panel), and of the residuals of a model
predicting inverse-transformed reaction time from lexicality (word vs. nonword).
Substantial autocorrelations are present even at lags of 40 trials

Analyses of the simulated data indicated no serious concerns about Type I
error rates. With respect to power, however, they observed the following. Without
blocking, GAMMs (as implemented in the mgcv package for R, version < 1.8–36)
systematically outperformed LMMs by a small margin for the main effect of Fw as
well as for the interaction of Fw by Fb. With blocking, GAMMs revealed substan-
tially greater power for the LMMs for six of the scenarios, with respect to both the
main effect of Fw and the interaction, whereas for the remaining two scenarios,
the LMMs showed greater power than the GAMMs by a small margin. The power
for the between-subject factor Fb was remarkably different. For the varying ampli-
tude, AR(1), and varying amplitude in combination with AR(1) scenarios, the
GAMMs and LMMs showed the same power curves, with a slight loss of power
for the GAMMs when AR(1) noise was present. For the remaining scenarios, the
power of the GAMMs was either substantially reduced or even completely elimi-
nated, for both blocking and unblocking conditions.

The published version of Thul et al. (2020), Thul et al. (2021), includes addi-
tional simulation studies that include time-varying effects that more closely
approximate effects they observed for empirical datasets. The conclusion the
authors draw from these simulations is that, given proper randomization, time-
varying effects are orthogonal to the effects of the factors that are of theoretical
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interest, which leads them to question whether it is worth the effort to make use
of GAMMs.

Thul et al. (2020) offer little insight into why the GAMMs and the LMMs
perform so differently. Their advice is not to use GAMMs for experiments with
factorial designs,1 as these are “complex, advanced techniques that are not fully
understood” and that have “potential side-effects” (p.29), and the same point is
made in Thul et al. (2021) (p. 14). As GAMMs are grounded in solid mathematics
foundations (Hastie and Tibshirani, 1990; Wood, 2017), we subjected the kind of
data studied by Thul et al. (2020) to closer scrutiny, comparing by means of simu-
lation studies the performance of the LMMs and GAMMs.

However, it should be noted that the GAMM cannot model all the different
datasets generated by Thul et al. (2020). Whereas GAMMs can incorporate AR(1)
noise in the errors, current implementations of the gam and bam functions in the
mgcv package do not allow incorporating AR(2) noise.2 In what follows, we there-
fore do not consider simulated datasets with AR(2) noise (see Baayen et al. 2017a
for discussion of approximative strategies). In our simulations, we also do not
consider datasets with AR(1) noise, as the main problem reported for GAMMs by
Thul et al. (2020) concerns the kind of smooths requested for modeling random
wiggly curves, and not the presence or absence of AR(1) noise.

In the following sections, we first consider how time-varying processes gener-
ated with sine waves can be modeled, using on the one hand the linear mixed
model and on the other hand the generalized additive mixed model. We then
proceed to consider random time-varying processes for which the functional
form is not known. We conclude this study with analyses of some empirical data
with time-varying effects.

Before introducing our simulation studies, it is important to clarify the goal of
these simulations. This goal is not to verify or even prove that GAMMs properly
match the data generating process, that they recover the true parameter values, or
that they have well-calibrated type I/II error rates. This is impossible, as the kind

1. Thul et al. (2021) acknowledge that GAMMs can be profitably used to analyse other kinds
of data, such as data in which each observation constitutes a time series of its own, see Baayen
et al. (2017a) and Chuang et al. (2021) for examples and discussion of such data.
2. It is possible to model AR(2) noise with the corARMA() function using the gamm function
in mgcv. However, currently corARMA() does not work with factor smooths or by-smooths
with linked smoothing parameters, the two smooths used to modify the time-varying effect in
the current paper. Furthermore, gamm depends on the nlme package, which is highly restricted
with respect to the random effects constellations, and although gamm4 builds on lme4, which
provides much faster algorithms, the latter does not provide handles for including autocorrela-
tion processes in the errors. Perhaps, interleaving with the MixedModels package in Julia will
be possible in the future.
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of data to which GAMMs can be applied vary hugely, and no simulation study can
ever cover all possible parameter settings of the infinite number of possible gener-
ating models.

The simulation studies presented below therefore serve a different goal. In
general, one goal of simulation studies can be to help especially non-
mathematically trained analysts to develop a sense of the generating model.
Another goal of simulations can be to gauge the power of experimental designs
(see, e.g. Westfall et al., 2014). Yet another use of simulations is found in Bayesian
modeling, where one can define generating models and use extensive (and unfor-
tunately very carbon-hungry) simulations to sample from the posterior distribu-
tion of the parameters of interest.3 Our simulations do not fall into this class of
models, as the datasets of interest to us can be analyzed straightforwardly with the
(carbon-lean) empirical Bayes methods underpinning GAMMs.

The goal of the simulations presented below is much simpler. The study of
Thul et al. (2021) reports a serious problem for GAMMs given a particular exper-
imental design, and we therefore set ourselves the task of replicating this problem,
for both identical and very different parameter settings, with the aim of clari-
fying whether it is indeed the mathematics of GAMMs that are poorly understood
within the community of mathematical and computational statistics, as claimed
by Thul et al. (2021), or whether Thul et al. (2021) discovered a bug in the GAMM
implementation provided by mgcv.

2. Sine waves

Following Thul et al. (2020), we consider time-varying effects that take the shape
of sine waves. We begin with sine waves that vary only in amplitude but not with
respect to their phase, in combination with a two-treatment design that includes
a between-subject treatment Fb and a within-subject treatment Fw. The within-
subject treatment is blocked, such that a given subject receives one treatment level
(e.g., A) in the first half of the trials, and the other treatment level (B) in the
second half of the trials, or vice versa.

2.1 Sine waves with varying amplitudes

The response for subject i at time t, yti,

3. Readers interested in integrating GAMMs with JAGS are referred to Wood (2016).
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(1)
yti = β + bi + βWt + βBi + αi sin(t) + εti,

is the sum of a general intercept β, by-subject random intercepts bi, the within-
subject treatment βwt at time t (factor levels A, B with A as reference level), the
between-subject treatment βBi (factor levels X, Y with X as reference level), and the
sine wave sin(t), which has subject-specific amplitude αi. To complete the model
specification, the by-subject random intercepts, the by-subject amplitudes, and
the error are all defined to follow independent normal distributions:

bi ~ N (0, σb),
αi ~ N (0, σα),
εti ~ N (0, σ).

A dataset simulated according to these specifications (100 timesteps in the interval
[0, 2π], 40 subjects, β= 0, βw = 2, βb =2, σb =1, σa =32, σ =10) is amp, available in the
supplementary materials at https://osf.io/fbndc/.4 The left panel of Figure 2 visu-
alizes the sine waves for each of the subjects.

Conveniently, even though a model term like (1 + sin(t)|subject) is nonlinear
in t, it still just creates a part of the Z matrix of the model

E[y|B = b] = Xβ + Zb,

which is fixed once the data and model formula are known. Hence, the models is
linear in β and b and can therefore be fit using the lmer function from the lme4
package for R, as follows:5

lmer(Response ~ Factor_Within + Factor_Between + (1|Subject) + (0 +
sin(Time)|Subject), data = amp)

Ideally, one would want to fit a model with a population sine wave, as in general
one would want any covariate in the random effects to be also present in the fixed
effects. But as no such wave is present in the generating model, we leave this popu-
lation sine out of the model specification. Table 1 presents the estimates of the
model parameters. The true values of the treatment coefficients are all within two
standard errors of the estimated values, and the estimated standard deviations are
all quite close to the values used to generate the data.

4. We generated and made available these datasets to enable comparison for exactly the same
data points of the LMM using the implementations of the lme4 package in R and the Mixed-
Models package in Julia.
5. We are indebted to Douglas Bates for pointing this out to us.
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We can impose a constraint on the sine waves such that the positive inflection
of the sine wave always coincides with the first half of the simulated experiment,
mirroring the set-up of Thul et al. (2020) (scenario 2 as visualized in their
Figure 5). To do so, we sampled amplitudes from a normal distribution, but used
the absolute values of these amplitudes. For the present parameters (40 subjects,
σα = 32), this leads to only mild departures from normality. The sine waves in the
resulting dataset, available as ampabs in the supplementary materials, is visualized
in the right panel of Figure 2.

Figure 2. The sine waves for the individual subjects in the amp dataset (left) and the ampabs

dataset (right)

The LMM that recaptures the generating parameters fairly well has exactly the
same model specification as for the model fitted to the data with unconstrained
amplitudes. The estimated parameters are presented in the center column of
Table 2. Again, all estimates are good. However, when the sine wave is dropped
from the random effects structure,

lmer(Response ~ Factor_Within + Factor_Between + (1|Subject), data=ampabs)

the model fails to reconstruct the contrast for the within-subject treatment, as
shown in the third column of Table 2. The coefficient for βw is twice as large as
it should be, with the wrong sign. This is because the sine waves happen to have
negative values predominantly for the second level of the within-subject treat-
ment factor (mean −7.1, p <0.0001 according to a mixed model regressing the sine
wave component on the two treatment factors). Furthermore, the standard devia-
tion of the residual error is much too high, and the by-subject random intercepts
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are not recovered at all. It is also noteworthy that the standard deviations of the
fixed effects are larger in the LMM that ignores the sine wave (0.81 and 0.81 for βw
and βb) compared to the LMM that includes the sine wave (0.71 and 0.44 for βw
and βb respectively). In short, ignoring temporal effects in experimental data with
a blocked design can give rise to incorrect and misleading estimates of effect sizes
for a given dataset.

Table 1. Coefficients of the fixed effects of the LMM fitted to the amp dataset. The
parameters of the generating model are β =0, βw =2, βb = 2, σ= 10, σb =1, σα = 32

Estimate Std. Error t-value

Intercept −0.6562 0.4738 −1.385

Within-Subject Treatment = B  2.9291 0.7131  4.108

Between-Subject Treatment = Y  2.3630 0.4413  5.354

σ̂ =10.0617, σ̂b = 0.9671, σα̂ =33.8683

Table 2. Parameters of the generating model and corresponding estimates based on a
LMM that includes a sine wave, and a LMM that ignores the sine wave (ampabs dataset).
The amplitudes of the sine wave are sampled from a normal distribution, but their
absolute value is taken to ensure that the positive inflection of the sine wave always
coincides with the first half of the experiment (see Figure 2, right panel)

Generating model LMM (sine wave modeled) LMM (sine wave ignored)

β  0      −0.61     3.00

βw  2       2.83      −4.39

βb  2       2.36       2.36

σb  1       0.97       0.00

σα 32      33.74 –

σ 10      10.06      25.56

log likelihood −15048.7 −18636.9

AIC  30109.4  37283.8

How does the generalized additive model fare with this kind of data? The
GAMM toolkit as implemented in the mgcv package for R (Wood, 2017) makes
available many different kinds of smoothing splines. For the modeling of by-
subject wiggly curves, the non-linear counterpart of by-subject regression lines
with individual slopes and intercepts, factor smooths, often are a natural choice.
Factor smooths are constructed in such a way that the smooths for individual
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subjects all share the same smoothing parameter λ. This smoothing parameter
regulates the balance of staying faithful to the data (minimizing the sum of
squares) and keeping the model simple (by penalizing wiggliness). In this way, the
factor smooth implements the idea that subjects, coming from the same popula-
tion, should be similar with respect to their wiggliness, and hence identical with
respect to the amount of penalization that their smooths require. Furthermore,
for wiggly random effects, factor smooths are usually specified in such a way that
even the contributions of the linear basis function can be penalized. Finally, factor
smooths are optimized computationally for modeling with the gamm and gamm4
functions. In actual modeling, we can distinguish three situations.

1. There is no functional dependency of the response variable on the pertinent
covariate for any subject. In this case, the factor smooth will return random
intercepts, which in partial effect plots with time as predictor will show up as
horizontal lines.

2. The functional dependency of the response variable on the covariate is linear,
and could have been modeled with by-subject random intercepts and by-
subject random slopes. In this case, the GAMM will penalize all non-linear
basis functions, while retaining the linear basis function. In partial effect
plots, these random effects will show up as straight lines with non-zero slope.

3. The functional dependency of the response variable on the covariate is truly
wiggly in nature. In this case, the GAMM will return a separate unique wiggly
curve for each subject.

Because factor smooths already incorporate by-subject random intercepts, the
model specification should not request separate by-subject random intercepts. A
GAMM for the ampabs dataset with a factor smooth, requesting 20 basis function
(k =20), is specified as follows:

bam(Response ~ Factor_Within + Factor_Between + s(Time, Subject, bs=“fs”,
m= 1, k= 20), data = ampabs)

Table 3 presents the model summary obtained with mgcv version 1.8.36 or
higher. In this table, ‘edf ’ denotes the effective degrees of freedom (defined as
the sum of the shrinkage proportions of the weights of the basis functions of a
smooth) and. ‘Ref.df ’ refers to the reference degrees of freedom (Wood, 2013) that
are used in computing the test statistic and its p-values, but as the null distri-
butions are non-standard, the Ref.df are not very interpretable. We list them
for completeness only. The estimated variance components of this model are
obtained with gam.vcomp, and are presented in Table 4. This model does not pick
up the effect of the within-subject treatment, but the magnitude of this treatment
effect is estimated correctly, and the estimates of σ and σb are precise.
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Table 3. Model summary for a GAMM with a factor smooth fitted to the ampabs dataset
(β =0, βw =2, βb = 2, σb =1, σα = 32, σ= 10). fREML: 15475; AIC: 30212.13

A. parametric coefficients Estimate Std. Error t-value p-value

Intercept −0.3429 0.7864 −0.4360   0.6629

Factor_WithinB  2.3024 1.4437  1.5948   0.1109

Factor_BetweenY  2.3630 0.4413  5.3547 < 0.0001

B. smooth terms edf Ref.df F-value p-value

factor smooth Time × Subject 532.6603 798.0000 28.2142 < 0.0001

Table 4. Estimated standard deviations with 95% confidence interval for the variance
components for the GAMM fitted to the ampabs dataset, using a factor smooth. σb is the
standard deviation of the by-subject random intercepts. is the prior variance of the

coefficients of the by-subject smooths

std.dev lower upper

s(Time,Subject)1 (σt) 17.42 16.38 18.53

s(Time,Subject)2 (σb)  0.98  0.62  1.55

scale (σ)  9.92  9.69 10.16

The data can also be fitted using a by-smooth. Similarly to factor smooths,
by-smooths estimate a different wiggly curve for each level of a given factor. If
the default arguments for specifying such smooths are used, mgcv constructs by-
smooths formed by a fixed effect and a smooth effect for each subject. The fixed
effect is a subject-specific slope, while the smooth part is constructed by using
the same thin-plate splines basis functions for all subjects. While the wiggliness of
each subject-specific effect is quantified by the same smoothing penalty (typically,
the integrated squared curvature), each subject has its own smoothing parameter.
Given that the latter quantifies the strength of the penalty, subject-specific effects
can differ substantially with respect to the amount of wiggliness. In order to model
subjects as a random sample from a population characterized by similar degrees
of wiggliness, we use the id = 1 directive to enforce that the curves for the subjects
will all be estimated with the same smoothing parameter λ. To make the model
directly comparable to the one we built above using factor smooths, we also set
the parameter m to 1 to allow penalization of the linear basis function as well. As
the basis functions of by-smooths do not include an intercept (the splines basis is
orthogonal to it), by-subject random intercepts are specified separately.
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Table 5. Model summary for a GAMM with a ‘by’ smooth fitted to the ampabs dataset
(β =0, βw =2, βb = 2, σb =1, σα = 32, σ= 10). fREML: 15475; AIC: 30212.13; σ̂b =0.98; σ̂ =9.92;
Of the 40 by-subject smooths, only four are shown

A. parametric coefficients Estimate Std. Error t-value p-value

Intercept −0.3429 0.7864 −0.4360   0.6629

Factor_WithinB  2.3024 1.4437  1.5948   0.1109

Factor_BetweenY  2.3630 0.4413  5.3547 < 0.0001

B. smooth terms edf Ref.df F-value p-value

s(Subject) 18.7803 38.0000  0.9771   0.0003

s(Time):Subjects1 12.8470 19.0000 51.0953 < 0.0001

s(Time):Subjects10 12.8470 19.0000 34.2018 < 0.0001

s(Time):Subjects11 12.8470 19.0000 10.2052 < 0.0001

s(Time):Subjects12 12.8470 19.0000  0.8252   0.2242

bam(Response ~ Factor_Within + Factor_Between + s(Subject, bs=“re”) +
s(Time, by = Subject, id= 1, m= 1, k= 20), data = ampabs)

Table 5 presents the summary of this model. The estimates for the treatment
effects and their standard errors are exactly the same as for the model fitted with
a factor smooth. Furthermore, the estimates of the variance components are also
identical to those presented in Table 4. An advantage offered by the by-smooths
is that the summary reports, for each subject, whether there is a significant time-
varying effect for that subject. The disadvantage of using by-smooths as compared
to factor smooths is that factor smooths are set up in such a way that they can be
estimated more efficiently when the model is fitted via the gamm or gamm4 functions,
which can be important when working with random effects with large numbers
of levels.

Unfortunately, versions of the mgcv package prior to version 1.8–36 contained
a bug in how the factor smooths were set up. Table 6 illustrates that with the older
version (1.8–31), the effect of the between-factor is overestimated, and Table 7
clarifies that the estimate of σb is incorrectly estimated to be close to zero, with
an extremely wide confidence interval. It turns out that in the implementation
of the factor smooth, the by-subject intercept of the factor smooths was not
made orthogonal to the by-subject smooth part, in contrast to the orthogonality
enforced in by-smooths. In mgcv version 1.8–36, orthogonality is now imposed
also for factor smooths, which solves the problem.
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(2)

In the remainder of this study, we document that with the corrected factor
smooths, the kind of problems documented by Thul et al. (2020) for various kinds
of simulated data no longer occur.

Table 6. Model summary for a GAMM with a factor smooth fitted to the ampabs dataset
(β =0, βw =2, βb = 2, σb =1, σα = 32, σ= 10), using an older version of mgcv. σ̂= 9.94;
fREML: 15511; AIC: 30213.59

A. parametric coefficients Estimate Std. Error t-value p-value

Intercept −0.8714 1.0735 −0.8117 0.4170

Factor_WithinB  2.2546 1.4367  1.5693 0.1167

Factor_BetweenY  3.6016 1.1282  3.1924 0.0014

B. smooth terms edf Ref.df F-value p-value

factor smooth Time × Subject 519.0138 798.0000 28.0892 < 0.0001

Table 7. Estimated standard deviations with 95% confidence interval for the variance
components for the GAMM fitted to the ampabs dataset (σb = 1, σ= 10) with a factor
smooth, using an older version of mgcv. The standard deviation for the amplitude of the
sine waves was σα = 32; however, the parameter σt reported in the present table is the prior
variance of the coefficients of the by-subject smooths, i.e., σ2/λ in β ~ N(0, S‾σ2/λ), see
Wood (2017) for further details. Note the immensely wide confidence interval for σb

std.dev lower upper

s(Time,Subject)1 (σt) 17.1873388 1.616096e+01 1.827890e+01

s(Time,Subject)2 (σb)  0.0170401  6.914402e-125  4.199425e+120

scale (σ)  9.9430820 9.711725e+00 1.017995e+01

2.2 Sine waves with varying phase

Thus far, we have considered datasets with sine waves that all share the same
phase, and that all have their intercept at the origin. Following Thul et al. (2020),
we next consider simulated data with by-subject sine waves that all have the same
amplitude, but that differ with respect to their phase ϕ. The dataset phase, avail-
able in the supplementary materials, implements such time-varying sine waves,
using the following generating model:

yti = β + bi + βWt + βBi + α sin(t − ϕi) + εti,

with
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bi ~ N (0, σb),
ϕi ~ N (0, σϕ),
εti ~ N (0, σ),

with zero covariances. The parameters that generated this dataset are β= 0, βb = 2,
βw =2, α= 8, σb = 1, σϕ = 2, σ =8. For this dataset, the within-subject treatment is not
blocked.

The challenge that this dataset poses to the analyst is that, in addition to by-
subject random intercepts and the effects of the two treatments, the phase of the
sine wave also contributes to subjects’ intercepts. Here, one could in principle
use the non-linear mixed model using the nlme package (Pinheiro and Bates,
2000), but attempts to do so indicated the model was too unstable to be automat-
ically fitted to large numbers of simulated datasets. We therefore focus on how the
generalized additive mixed model performs, using factor smooths.

bam(Response ~ Factor_Within + Factor_Between + s(Time, Subject, bs = “fs”,
k =20, m =1), data=phase)

Table 8 provides the summary of the model, and Table 9 presents the variance
components.

The model succeeds in detecting the two treatment effects, with estimates
that contain the true values within their 95% confidence intervals. The estimates
of the variance components σb and σ are also very close to the true values. The
exact same results are obtained with a properly specified by-smooths, details are
provided in the supplementary materials.

Table 8. Model summary for a GAMM with a factor smooth fitted to the phase dataset
(β =0, βb = 2, βw = 2, α= 8, σb =1, σϕ = 2, σ= 8). fREML: 14216; AIC: 28162.59; σ̂b =1.07;
σ̂ =7.87

A. parametric coefficients Estimate Std. Error t-value p-value

Intercept −0.1883 0.3232 −0.5827   0.5601

Factor_WithinB  1.6017 0.2583  6.2022 < 0.0001

Factor_BetweenY  2.4322 0.4189  5.8057 < 0.0001

B. smooth terms edf Ref.df F-value p-value

s(Time,Subject) 307.9472 798.0000 2.8042 < 0.0001

In summary, when analysing datasets with between-subject treatments or
blocked within-subject treatments, it is necessary to uncouple the estimation of
by-subject intercepts from by-subject wiggly curves. This has always been possible
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with the mgcv package by using ‘by’ smooths, constrained to have the same
smoothing parameter, and for full equivalence with the factor smooth that we
made use of, by setting m= 1. As of mgcv version 1.8–36 such uncoupling is
performed also under factor smooths, which are more efficient when the model is
fitted with gamm or gamm4.

Table 9. Estimated standard deviations with 95% confidence interval for the variance
components for the GAMM fitted to the phase dataset with a factor smooth

std.dev lower upper

s(Time,Subject)1 (σt) 5.8174 5.2902 6.3971

s(Time,Subject)2 (σb) 1.0654 0.7524 1.5086

scale (σ) 7.8741 7.6939 8.0585

3. Power and Type-I error rate

Thus far, we have investigated individual simulated datasets, focusing on the
quality of the parameter estimates. In what follows, we inspect power and Type-I
error rates.

3.1 Sine waves with varying absolute amplitude

We evaluated performance of the LMM, the LMM with a sine random effect,
henceforth LMMsine, and GAMMs with factor smooths and ‘by’ smooths, on the
basis of 1000 simulated datasets. The generating model was identical to that given
in (1), with the same parameter values except for βb (set to 1) and for σα, which
was lowered from 32 to 8. By reducing σα, the datasets were not almost completely
dominated by the sine waves, as a consequence, the probability of observing
false positives increased. The within-subject treatment was blocked, and negative
amplitudes were converted into positive ones. By-subject random slopes for the
within-subject treatment were not included in the generating model. We fitted five
models to each simulated dataset:

1. LMMsine: a linear mixed model with a sine random effect;
2. LMMmin: a linear mixed model that ignores experimental time;
3. LMMmax: a maximal linear mixed model that ignores experimental time,

and that includes by-subject random slopes for the within-subject treatment,
following the recommendations of Barr et al. (2013), even though such
random slopes are not part of the generating model;
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4. GAMMfs: a GAMM with a factor smooth for experimental time;
5. GAMMby: a GAMM with a ‘by’ smooth for experimental time, this model

did not include by-subject random slopes for the within-subject treatment as
such slopes were not part of the generating model.

Table 10 provides a summary of the results obtained. The LMMsine provides
precise estimates for all fixed-effect parameters, as well as for the standard devia-
tions, including the standard deviation of the random sine wave amplitudes. Error
rates are nominal, i.e., in accordance with the alpha-level. Power for the between-
subject treatment is smaller than that for the within-subject treatment.

GAMMs with factor smooths or ‘by’ smooths have reduced power compared
to the LMMsine for the within-subject treatment, but power for the between-
subject treatment is comparable to that of the LMMsine, and error rates are again
slightly above nominal.

The minimal linear mixed model (LMMmin) has the greatest power of all
models for the within-subject treatment, but here it has an unacceptably high
error rate: LMMmin does not survive the confound of the within-subject effect
and the sine waves. Power for the between-subject effect is comparable to that of
the LMMsine.

A maximal LMM (LMMmax) has catastrophically low power when it comes
to detecting the effect of the within-subject treatment. Because by-subject random
slopes for the within-subject factor are included, even though random slopes are
not part of the ground truth, the random intercepts absorb the effect of the sine
wave, making it impossible for the model to detect the within-subject treatment
effect. Unsurprisingly, as can be seen in Table 10, the maximal LMM substantially
overestimates the standard deviation σb for the by-subject random intercepts.6

A final observation concerns the variances of the estimated coefficients, listed
in the rightmost subtable of Table 10. These variances are smallest for the correct
model, LMMsine, followed by the GAMMs, and largest for the misspecified
models (LMMmin and LMMmax). Thus, a misspecified model may yield, for a
particular dataset, incorrect and misleading estimates, even though in the long
run, across a thousand experiments/simulation runs, the mean coefficients are

6. For some configurations of parameters, the number of simulation runs for which a signifi-
cant effect at α= 0.01 was observed was less than 10 out of 1000. This happens for the intercept
of models LMMsine and LMMmax. However, since in all simulations, the ground truth for the
intercept is zero, power and type I error are identical, and this holds across all configurations
of parameters. Extremely low power also occurs when a model is misspecified: in this case, the
models fitted to the data are different from the mechanism generating the data. Biased tests are
a straightforward consequence. This explains why, for example, LMMmax only detects within-
subject treatments a mere 18 out of 1000 times.

A note on the modeling of the effects of experimental time in psycholinguistic experiments [15]



fine. Above, we encountered such an example for the absamp dataset (see Table 2,
which lists an LMM βw estimated at −4.39 (t =−5.4), instead of at 2). In other
words, this example illustrates that by ignoring time-varying trends in the data,
obtaining consistent results across replication experiments can be difficult.

The analyst’s best choice that emerges from Table 10 is the LMMsine. Not
only does this model provide excellent estimates of the by-subject variability in
amplitudes, it also offers the best power for the within-subject treatment and
comparable power for the between-subject treatment. That the LMMsine is
preferable over the GAMMs smooths is unsurprising. The LMMsine is given the
functional form of the time-varying effect beforehand, a sine wave, whereas the
GAMM has to reconstruct this functional form from the data.

3.2 Sine waves with varying phase

Next consider power and Type I error rate for sine waves with varying phase
and identical amplitude. The generating model was based on the formula given
in (2), with three modifications. First, we included the interaction effect Fb by
Fw (βbw =−3). Second, we increased σ to 16 to make it more difficult for the
models to detect the treatment effects. Finally, an additional error term for by-
subject random slopes was added, with standard deviation (σbw) set to 1. Similar
to the simulation presented in Section 2.2, the within-subject treatment was not
blocked.

We fitted three models, GAMMfs, GAMMby, and LMMmax. Given that by-
subject random slopes were part of the generating model, the model formulae
of GAMMfs and GAMMby also include this random effect: s(Subject,
Factor_Within, bs=“re”). Simulation results of 1000 runs are presented in Table 11.
The power of the different models is roughly the same, except for the within-
subject treatment, where the power of the LMMmax is substantially reduced. In
addition, LMMmax’s estimates of σ and σb are also slightly less accurate than those
of the GAMMs; however, LLMmax provides a better estimate of σbw. With respect
to Type I errors, all models show nominal performance. Finally, GAMMs emerge
with lower variances for all the treatment effects, indicating that a properly spec-
ified GAMM offers researchers improved opportunities for obtaining consistent
results across replication studies.

3.3 Simulations with the parameters of Thul et al. (2021)

In the preceding simulations, we have used parameter settings that are different
from those of Thul et al. (2021), as this allows us to verify that the problem they
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observed generalizes. In what follows, we report two simulations studies using
the parameter settings used by Thul et al. (2021), and using their software to
generate the datasets, to illustrate that with their code and parameter settings, the
problem they reported is no longer present when a more recent version of the
mgcv package is used.

We used the sim_2×2 function from the autocorr package to generate 100
datasets for the first scenario of Thul et al. (2021), i.e., sine with varying phase.
Given that in this scenario, the power difference between LMM and GAMM is
the largest with the condition of maximum effect size, for both the randomized
and blocked designs (Figure 6 and 7 in Thul et al. (2021)), following their para-
meter settings, we set the effect size for the within-subject factor to 0.25, for the
between-subject treatment to 0.5, and for the interaction to 0.5. Subsequently we
fitted LMMs and GAMMs7 with the fit_2×2 function, once with an older version
of mgcv (1.8–31), and the other time with version 1.8–36.

The upper part of Table 12 shows that, regardless of alpha levels and for
both the randomized and blocked designs, GAMMs (fitted with the old version)
slightly outperform LMMs for the within-subject treatment and interaction
effects, but fail more often to detect the between-subject effect, replicating the
results reported by Thul et al. (2021). When we fitted the same datasets with the
new version of mgcv (where the orthogonalization problem of factor smooths is
fixed), the power of GAMMs becomes the same as that of LMMs, as shown in the
lower part of Table 12. In addition, the variance of the βb is also now much lower
than it was, and is now comparable to the estimates of LMM.

3.4 From sine waves to random time-varying effects

In the preceding discussion, we adopted the characterization of time-varying
effects in psychometric data implemented in some of the key simulations reported
in Thul et al. (2021), the sine wave. However, we have never encountered regular
sinusoid trends in experimental time for real data. Actual time-varying effects
look very different from sine waves, as illustrated in Figure 3 for the data of three
subjects in the British Lexicon Project. None of these temporal effects is well-
charactized by a sine wave. Furthermore, subjects 1 and 2 (left and center panels)
have quite small partial effects compared to subject 10 (right panel, note the differ-
ence in the scales on the Y-axis). In addition, there is more jitter in the curve for
subject 1 as compared to the curve of subject 2. All three subjects tune into the

7. Thul et al. (2021) considered two kinds of factor smooths, one in which the linear basis func-
tion is not penalized (directive m is set to 2), and one in which it is (directive m is set to 1). In this
simulation, we set m to 2.
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Table 10. Sine waves with varying absolute amplitude: Mean estimated parameters and
number of simulation runs out of a total of 1000 in which a treatment effect is significant
at α = 0.01. In the generating model, β = 0, βw = 2, βb = 1, σα = 8, σb = 1, σ= 10. σt pertains
to the wiggliness of the by-subject time-varying effects. For the simulations for the Type I
Error rate, βw = βb = 0. LMMsine’s estimated standard deviation of the amplitude: σ̂α =
7.96 for both power and type I error simulations. Variances: The variances corresponding
to the means of the fixed-effect parameters

Mean estimated parameters
and power

Estimated std.
deviations

Variances of
estimated

coefficients

β n(β) βw n(βw) βb n(βb) σ σb σt VAR[βw] VAR[βb]

LMMsine 0.0132 8 1.9915 658 0.9812 380  9.9984 0.9696 0.4211 0.1981

GAMMfs 0.0215 13 1.9750 423 0.9812 379  9.9770 0.9722 5.6891 0.6328 0.1981

GAMMby 0.0215 13 1.9750 423 0.9812 379  9.9770 0.9722 5.6891 0.6328 0.1981

LMMmin 0.0263 112 1.9653 829 0.9812 378 11.4731 0.7674 1.0551 0.1981

LMMmax 0.0260 0 1.9653 18 0.9819 397 10.3121 5.1189 1.0551 0.2023

Mean estimated parameters
and type I error

Estimated std.
deviations

Variances of
estimated

coefficients

β n(β) βw n(βw) βb n(βb) σ σb σt VAR[βw] VAR[βb]

LMMsine 0.0132 8 −0.0085 9 −0.0188 19  9.9984 0.9696 0.4211 0.1981

GAMMfs 0.0215 13 −0.0250 9 −0.0188 19  9.9770 0.9722 5.6891 0.6328 0.1981

GAMMby 0.0215 13 −0.0250 9 −0.0188 19  9.9770 0.9722 5.6891 0.6328 0.1981

LMMmin 0.0263 112 −0.0347 377 −0.0188 19 11.4731 0.7674 1.0551 0.1981

LMMmax 0.0260 0 −0.0347 0 −0.0181 18 10.3121 5.1189 1.0551 0.2023

task during the first 10,000 trials. Subjects 1 and 10 become faster in a gradual
way, whereas subject 2 speeds up performance rapidly in a relatively narrow time
interval of some 2,500 trials.

At shorter time scales, time-dependent effects can also be highly variable,
as illustrated in the left panel of Figure 4. This trellis graph presents the partial
effects of factor smooths for 48 subjects in a primed auditory lexical decision
experiment with 380 trials (see Chuang, 2017; Chuang et al., 2021, for further
details). The vertical positioning of the curves provides an indication of whether
subjects are fast or slow responders. Some subjects are quite stable over time,
others show undulating patterns, some become slower near the end of the experi-
ment, whereas yet others speed up as the experiment progresses.

To simulate datasets with random time-varying trends, we first construct k
basis functions, then weight these by (possibly scaled) coefficients sampled from
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Table 12. Mean estimates and power (in counts out of 100 simulation runs) for a LMM
and (unpenalized) GAMM, fitted to simulated datasets generated with the functions
developed by Thul et al. (2021). Parameter settings are βw =0.25, βb = 0.5, βbw =0.5. α is set
to either 0.05 or 0.01; power is presented as the count of simulations in which an effect is
reported to be significant (0.05/0.01). The upper part of the table lists results obtained
with an older version of mgcv (1.8–31), whereas the lower part presents results obtained
with mgcv version 1.8–36. The numbers in bold highlight that the low power for between-
subject treatment effects is fixed with the new version

Estimated parameters and power Variances of estimated coefficients

βw n(βw) βb n(βb) βbw n(βbw) VAR[βw] VAR[βb] VAR[βbw]

randomized LMM 0.244 62/34 0.539 78/47 0.536 67/47 0.012 0.041 0.058

GAMM 0.248 66/38 0.518 49/24 0.530 70/46 0.012 0.085 0.058

blocked LMM 0.221 20/14 0.539 78/47 0.552 31/13 0.053 0.041 0.176

GAMM 0.251 60/34 0.520 50/25 0.534 61/45 0.015 0.085 0.061

randomized LMM 0.244 62/34 0.539 78/47 0.536 67/47 0.012 0.041 0.058

GAMM 0.248 67/39 0.539 78/47 0.530 70/46 0.012 0.041 0.058

blocked LMM 0.221 20/14 0.539 78/47 0.552 31/13 0.053 0.041 0.176

GAMM 0.248 55/34 0.539 78/47 0.535 64/42 0.015 0.041 0.063

Figure 3. Partial effects for the factor smooths fitted for three subjects in the British
Lexicon Project. Note that the scale of the Y-axis is much wider for subject 10 (right
panel)

a normal distribution with mean zero, and finally add them to obtain a random
wiggly curve (the supplementary materials include R code). The right panel of
Figure 4 illustrates the kind of curves generated by this function.

To clarify potential advantages or disadvantages of using GAMMs or LMMs
for data with wiggly random effects, we simulated datasets in which the within-
subject treatment was not blocked, as this is the design for which Thul et al.
(2021) recommend using the LMM rather than the GAMM. The parameters of
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Figure 4. Empirical and simulated wiggly curves. Left: Partial effects for the factor
smooths for the 48 subjects in a primed auditory lexical decision experiment on Taiwan
Mandarin with 380 trials. Right: Random curves generated with the standard deviation
for the weights on the basis functions set to 2

the model generating the data are β =0, βw =1, βb =2, βbw = −3, σ =10, σb =4, σbw = 2.
The standard deviation for the random weights for the basis functions σtprs was set
to 2. Table 13 reports performance, evaluated over 1000 simulation runs, of three
models, a GAMM with factor smooths (GAMMfs), a GAMM with by-smooths
(GAMMby), and a maximal linear mixed model (LMMmax).

Type I error rates are nominal, except for the within-subject treatment:
although fine at α= 0.05, they are too high for α =0.01 for all three models. Power
for the within-subject treatment is slightly superior for the GAMMs. With respect
to the between-subject treatment, here the power of GAMMs lags behind that
of LMMmax, in line with what Thul et al. (2021) observed for their simulations.
However, for the interaction of the two treatments, the reverse holds: here, the
GAMMs outperform LMMmax, without compromising on the type I error rate.
The right-hand side of the table shows that again GAMMs offer estimated effect
sizes that are less variable across simulations. With respect to the estimates of
the standard deviation parameters, the GAMMs are more precise for σ and σb,
but LMMmax does better for σbw. Overall, GAMMs emerges as a good choice, a
choice that comes with the advantage of offering the analyst insight into the time-
varying trends in her data.
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4. Interactions with time in experimental data

Thus far, we have considered simulated data only. Thul et al. (2021) (in contrast
to Thul et al. (2020)) also report some simulations modeled on empirical experi-
mental data. In what follows, rather than adding more simulation studies seeking
to approximate actual datasets, we illustrate what can be achieved when GAMMs
are applied to actual experimental data, moving from analysis of variance to
multiple regression, as it is here that GAMMs truly come into their own.

How important is it to have insight into time-varying trends in chronometric
data? According to Thul et al. (2021), time-varying effects, which they dub
“nuisance variation”, can occasionally be of interest in their own right, but more
often they can be treated as irrelevant and ignored. They argued that GAMMs
come into their own when the experimental trials themselves are time series, as
is the case for, e.g., pupil dilation curves (van Rij et al., 2019). In this section,
we argue that also for simple sequences of response variables, investigating time-
varying effects can yield valuable insights.

Baayen et al. (2017b) observed for one dataset that subjects with more wiggly
curves made more errors. Variability in performance can have many sources,
ranging from the level of skilled performance and practice (Segalowitz and
Segalowitz, 1993) to working memory capacity and degree of ADHD. Mock et al.
(2018) observed increasing variability in performance for subjects with higher
values on a scale measuring ADHD. They conducted an experiment requiring
subjects to respond to mathematical problems using a touchpad. One measure
they considered was the minimal curvatures of the swipes made. Minimal curva-
tures increased in the course of the experiment. Interestingly, these changes were
greater for subjects with higher ADHD scores, as can be seen in contour plots
presented in Figure 5. Contour lines connect data points with the same expected
value of the response variable. The left panel adds 1SE confidence regions around
these contour lines, and the right panel presents the fitted values using color
coding, in the same way as familiar from topographic maps. The effect of trial for
a given value of ADHD can be assessed by tracing a horizontal line at the desired
ADHD value. For ADHD =1.5, no contour lines are crossed, hence there is little
effect of trial for subjects with this score. Conversely, for ADHD = 2.75, several
contour lines are crossed, with a positive gradient, indicating that subjects with
this ADHD score evidenced increasingly large values of the response variable as
the experiment proceeded. In other words, GAMMs may be of use to researchers
interested in individual differences and how such differences lead to different
response patterns over experimental time.

As an example of a dataset with reaction time as response variable that illus-
trates this point, consider again the data of subject 1 in the British Lexicon Project.
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Figure 5. Interaction of Trial by ADHD-score in a model fitted (using a tensor product
smooth) to the minimum curvature of swipe movements in an arithmetic task. In the left
panel, the colored lines indicate 1SE confidence regions, in the right panel, darker colors
denote lower values of minimum curvature, and brighter, more yellow colors indicate
higher values of the response

Reaction times were collected during 50 sessions, so we included a smooth for
session, and trial number within session as temporal predictors. A Gaussian
Location-Scale GAM was fitted to the inverse-transformed responses to word
trials, with as lexical predictors frequency of occurrence (log frequency), length
in letters (word length), and neighborhood size (log N-count). Figure 6 presents
the partial effects of the predictors, and Table 14 provides the model summary.
The effects of word length and neighborhood density on mean reaction time are
small compared to the large effect on the mean of frequency, which interacted
with session number. This interaction is visualized in the rightmost panels of
Figure 6. Reaction times decreased over the course of the sessions. In the early
sessions, there was a strong U-shaped effect of frequency; for instance, for session
10, when moving parallel along the vertical axis, a negative gradient is followed
by a positive gradient. Thus, although the lowest-frequency words elicited the
longest reaction times in this session, somewhat longer reaction times are present
for very high-frequency words as compared to intermediate frequency words. In
later sessions, the U-shaped effect disappeared, leaving a smaller-sized frequency
effect that leveled off for words with above-average frequency. The variance of
reaction times (visualized in the bottom panels of Figure 6), decreased substan-
tially with frequency, and to a lesser extent with length. Variance in RTs was not
predictable from a further interaction of frequency by session number.
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Figure 6. Partial effects in a Gaussian Location Scale GAM fitted to the inverse-
transformed reaction times to words of subject 1 in the British Lexicon Project. In the
contour plots, darker colors indicate shorter reaction times. In the upper right, green
contour lines specify 1 SE up, and red lines 1 SE down from their respective contour lines
in black

Table 14. Model summary of a Gaussian Location-Scale GAMM fitted to the inverse-
transformed reaction times of subject 1 to words in the British Lexicon Project

A. parametric coefficients Estimate Std. Error t-value p-value

Intercept (mean) −1.7367 0.0019 −932.6938 < 0.0001

Intercept (variance) −1.5717 0.0062 −253.7814 < 0.0001

B. smooth terms (mean) edf Ref.df F-value p-value

s(trial within session) 11.4179 14.2413  251.7092 < 0.0001

te(session, log frequency) 18.3005 20.5734 5281.5619 < 0.0001

s(word length)  4.7944  5.8089   31.3746 < 0.0001

s(log N-count)  3.5946  4.4088   65.4796 < 0.0001

C. smooth terms (variance) edf Ref.df F-value p-value

s(log frequency) 4.3186 5.2081 632.8609 < 0.0001

s(word length) 3.9879 4.9434  49.5434 < 0.0001

s(log N-count) 4.0608 4.9153  12.4410   0.0300
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The interaction of session number by frequency is of theoretical interest, as it
challenges theories that model the word frequency effect by means of fixed resting
activation levels of word units. Such theories will need to consider response
biases that change over the many sessions of megaexperiments, as participants
are seeking to optimize their word/non-word decision making. In connectionist
approaches (see, e.g., Harm and Seidenberg, 2004), changes in the effect of
frequency might be argued to be a consequence of continued learning.

5. Discussion

Thul et al. (2020) called attention to problems that arise when modeling time-
varying effects in experiments with between-subject and within-subject treatment
factors using generalized additive models with factor smooths. We have shown
that these problems do not arise when a ‘by’-smooth is used, and that from mgcv
version 1.8–36 onwards, these problems also no longer occur with GAMMs using
factors smooths.

Thul et al. (2020) claimed that the linear mixed model is safe to use for coun-
terbalanced data, even in the presence of time-varying effects. We have presented
a series of simulation studies showing that once the smooths for time-varying
effects are properly specified, GAMMs show excellent performance, on a par with
or better than the LMM. GAMMs also perform very well for blocked designs,
where the LMM suffers catastrophic loss of power. Thul et al. (2021) observed
that when trial-to-trial dependencies exist, blocked designs can be problematic
for LMMs, and that researchers therefore should make sure to proper counter-
balance. However, for some research questions, blocked designs may actually
be necessary. GAMMs thus enable running experimental designs that cannot
be properly analysed with the LMM, if strong time-varying effects are present
in the data. In addition, GAMMs may offer estimates of treatment effects that
are less variable across simulation runs than those produced by LMMs. This
makes GAMMs especially attractive for replication studies. From a methodolog-
ical perspective, this finding highlights the danger inherent in judging a statistical
model not by its faithfulness to the forces shaping the data, but by power and type
I error: both power and error rate may look good, but when the true complexity
of the data is left unexplored, as illustrated by the present example simulations,
results across replication experiments run the risk of being less consistent than
they need be.

Thul et al. (2021) argued that time-varying effects in chronometric experi-
ments “can usually be safely ignored” (p. 15) when time-varying effects are not of
interest. However, recommending a modeling strategy that makes it impossible
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for the field to detect time-varying effects seems ill-advised. We have therefore
presented an example in which a strong predictor for reaction times in the visual
lexical decision task, word frequency, interacted with experimental time in a theo-
retically informative way.

Finally, if a mathematical function is available that describes a non-linear
effect, the non-linear mixed model (cf. Pinheiro and Bates, 2000) may provide
more precise fits, although the algorithms of the nlme package are stretched
beyond their limits for the sinusoid time-varying effects present in our simula-
tions. We are indebted to Douglas Bates for pointing out to us that the varying-
amplitude sine waves in the simulations of Thul et al. (2021) are straightforward
to model using LMMs. Our simulations show that prior knowledge of the func-
tional form of the time-varying effect leads to improved results compared to
GAMMs. However, since mathematical models predicting the complex ways in
which subjects go through an experiment over time are not available, in the fore-
seeable future, the generalized additive (mixed) model will remain a useful tool
for coming to grips with time-varying effects in experimental data.

Thul et al. (2021) raise a more general issue, namely, that GAMs would come
with too many researcher degrees of freedom, that the costs of their use is there-
fore not well justified, and that hence the field is better served by restricting itself
to the LMM, at least for the analysis of behavioral experiments with factorial
predictors and between-subject designs. It is understandable that a field that
is plagued by a replicability crisis (Francis, 2012; Open Science Collaboration,
2015) is eager to embrace fixed procedures for the statistical evaluation of its
data. Nevertheless, one-size-fits-all procedures come with their own disadvan-
tage. Limiting statistical analysis to the linear mixed model blocks progress, even
for simple datasets with factorial predictors. Researchers will be discouraged to
test for potential time-varying effects and possible interactions with predictors of
interest, and as a consequence, empirical evidence on whether such effects exist,
and if they exist, what their prevalence is, will not be forthcoming.8

We note here that lexical predictors that are numeric rather than categorical
often have nonlinear effects, and that, as demonstrated in the present study, such
nonlinear effects may interact with experimental time in theoretically informative
ways. Thul et al. (2021) may well be right that interactions of experimental time
with factorial variables may be rare, but they cannot be ruled out in principle, and

8. For clarity, we note that for datasets where issues of temporal dependencies, and potentially
non-linear covariates, are not at issue, the linear mixed model is an excellent choice, and we
recommend the MixedModels package for Julia as offering the most optimized implementation
currently available.
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with the updated code, it is straightforward to clarify for a given dataset whether
time-varying effects are present, and whether they interact or not.

For a field to make innovative scientific progress, one of the things it has to
do is encourage its researchers to explore experimental data with novel statistical
methods that enable improved insight into the full complexities of experimental
datasets. Novel findings about non-linearities will then naturally be followed by
further studies seeking to replicate these non-linearities and the details of their
functional form.

But what if GAMMs come with ‘excessive researcher degrees of freedom’, and
that therefore replication studies with GAMMs are not viable? In response to this
concern of Thul et al. (2021), we first note that in practice, the choices available to
the analyst when using GAMMs are highly constrained by the data under inves-
tigation. Indeed, GAMMs have been developed in response to analytical needs
across a wide range of sciences; psychology and linguistics are newcomers and,
as usual, late adapters. Given the interdisciplinary needs driving the development
of GAMMs, unsurprisingly, GAMMs offer the analyst a wide spectrum of tools
for understanding data. But many of these tools are not relevant for any specific
dataset. For instance, smoothing on a sphere, or smoothing with isotropic thin
plate regression splines, should not be used for modeling the interaction of time
by frequency of use. Here, tensor product smooths are appropriate. Any honest
and conscientious user of GAMMs will find her modeling options to be highly
constrained.

Second, experiences with GAMMs have clarified that starting with maximal
GAMMs is ill-advised: a five-way tensor product for five covariates is likely to
be completely uninterpretable. Progress is best served by studying interactions
in low dimensions; here, exploratory visualization in combination with theo-
retical guidance are indispensable. Once non-linearities have been detected in
exploratory studies, replication studies are essential both for consolidating results,
and for establishing guidelines for best practice in data analysis.

At this point, the question arises of what may be expected to replicate. It
is useful to distinguish here between two kinds of non-linearities that can be
observed in psycholinguistic data.

On the one hand, we may observe non-linearities that we can consider as
a source of noise, such as random wiggly curves for temporal effects that play
out in the course of an experiment. To the extent that such wiggly curves are
the consequence of fluctuations in attention, they are way beyond the capacity
of any existing theory of attention as long as subjects are selected randomly and
extensive background data on these subjects is not available. We do not expect to
be able to replicate such curves even for replication experiments with the same
materials and the same subjects, as attention is likely to shift and vary at different
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moments in time as the experiment unfolds. However, if the model is appropriate
for the data, we may expect to find similar non-linear noise components across
replication experiments.

On the other hand, we may observe non-linearities that are systematic and
within reach of theoretical explanation. For instance, the effect of frequency of
occurrence in lexical decision tasks has repeatedly been observed to be nonlinear.
GAMMs enable us to obtain precise predictions of the non-linear effect of
frequency on reaction time, both in terms of mean and in terms of variance,
and as a next step, the challenge for theories of lexical processing is to provide a
mathematical explanation for why the observed specific non-linearities arise (for
an example of a mathematical model for a GAM regression surface, see Baayen,
2010). In other words, observed systematic non-linearities that are part of the
‘ground truth’ (and within theoretical reach) are expected to be replicable.

In summary, Thul et al. (2021) are correct to call attention to problems that
arise when factor smooths are used that do not orthogonalize by-subject random
intercepts with respect to the by-subject smooth part. This problem has been fixed
in mgcv version 1.8–36: factor smooths now yield the same result as the corre-
sponding ‘by’ smooths. However, the claim of Thul et al. (2021) that GAMMs
would be “complex, advanced techniques that are not fully understood” and that
can have “potential side-effects” (p. 14) is not convincing, as it is based on expe-
rience with one particular software (mgcv) and one particular feature of that
software (factor smooths, but not ‘by’ smooths). Generalising the results of their
study to all possible simulation settings, models and software implementations of
GAMMs seems quite a leap of faith.
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Mathematical notation

β general intercept

b by-subject random intercept

βw within-subject effect

βb between-subject effect

βbw interaction effect between Fb and Fw

α amplitude of sine wave

ϕ phase shift for sine wave

ε error

σb standard deviation for by-subject random intercept

σbw standard deviation for by-subject random slope for βw
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(3)

prior variance of the coefficients of the by-subject smooths, σ2/λ in β ~ N(0, S‾σ2/λ), i.e.,
the multiplier of the penalty

σα standard deviation for sine wave’s amplitude

σϕ standard deviation for sine wave’s phase shift

σ standard deviation for error

σtprs standard deviation for the basis functions’ random weights

Appendix. Factor smooth interactions and orthogonality

Why should it be problematic to not orthogonalize the bases for penalized and unpenalized
components of a factor smooth interaction term? It seems likely that this relates to the implicit
assumption that the random coefficients associated with these two components are indepen-
dent a priori. To see the problem, consider the simple model

yi = aj(i) + bj(i) (xi − x̄) + ϵi,

where x̄ is the mean of the xi’s and j(i) indicates the factor level j ∊ {1,…,L} to which the i-th
observation belongs. The aj’s and bj’s are independent, with variance and and zero means.
In other words, aj(i) denotes random intercepts, and bj(i) denotes random slopes. This model
seems reasonable – independence just says that we do not expect the overall mean of the yi’s to
be related to its rate of change with respect to xi. And the orthogonality of the intercept (which
is a vector of ones 1 = [1, 1,…,1]T) and x − x̄ guarantees the independence between aj and bj will
be maintained in the posterior.

But, suppose that we re-parameterize to arrive at

so that

The covariance matrix of ( ) is therefore

(For the diagonal elements, we use the equality Var(aX + bY) = a2Var(X) + b2Var(Y), and for the
covariances, we note that .

Hence, while modelling (a, b) as independent was reasonable, this will not be appropriate
for (unless x̄= 0). Indeed, if we decide to model as independent the covariance
matrix with diagonal elements and , that best matches V0 will be such that and ,
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are biased estimates of the corresponding diagonal entries of V0 (which is the true covariance
matrix, that is the one used to generate the data).

Here is a practical illustration. We first simulate some data from model (3):

set.seed(98)
n <- 100000
L <- 10000
x <- runif(n) − 0.5                   # this is x-mean(x) in (3)
g <- rep(1:L,n/L)
a <- rnorm(L)                         # sigma_a = 1
b <- rnorm(L)*0.1                     # sigma_b = 0.1
y <- a[g] + b[g] * x + rnorm(n)*.1
g <- factor(g)

We then fit the correct model with independent random effects:

library(lme4)
lmer(y~(1|g)+(x-1|g))

which outputs:

Linear mixed model fit by REML [‘lmerMod’]
Formula: y ~ (1 | g) + (x − 1 | g)
REML criterion at convergence: −101098.3
Random effects:
Groups Name        Std.Dev.
g      (Intercept) 1.00258
g.1    x           0.09925
Residual           0.10010
Number of obs: 100000, groups: g, 10000
Fixed Effects:
(Intercept)

0.01275

The standard deviations of the random effects are close to their true values, σa =1 and σb =0.1.
Now we shift x to remove the independence between intercept and slope, but fit the same model
which assumes independence between the random effects:

x1 <- x+4              # this is x in (3), with mean(x) = 4
lmer(y~(1|g)+(x1-1|g))

Linear mixed model fit by REML [‘lmerMod’]
Formula: y ~ (1 | g) + (x1 − 1 | g)
REML criterion at convergence: −101509.3
Random effects:
Groups  Name         Std.Dev.
g       (Intercept)  0.98451
g.1     x1           0.08087
Residual             0.10104
Number of obs: 100000, groups: g, 10000
Fixed Effects:
(Intercept)

0.01002

The variance estimates are biased downward, in fact the true standard deviations of the random
effects are . The downward bias is due to the fact that the

negative correlation between the random effects is being ignored. Fitting a model with corre-
lated random effects avoids the problem:
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lmer(y~(x1|g))

Linear mixed model fit by REML [‘lmerMod’]
Formula: y ~ (x1 | g)
REML criterion at convergence: −102017.6
Random effects:
Groups   Name        Std.Dev.  Corr
g        (Intercept) 1.07779

x1          0.09933   −0.37
Residual             0.10009
Number of obs: 100000, groups: g, 10000
Fixed Effects:
(Intercept)

0.01265

How is the problem described here relevant to factor smooth and by-smooths effect fitted in
mgcv? In mgcv the random effect on the intercept is modelled as independent from the smooth
part (which we can think of in terms of polynomials bases x, x2, x3, …). That is, the corre-
lation between the random intercept and the smooth part is assumed to be zero. But, if the
intercept is not orthogonal to the spline basis functions used to form the smooth part, the
problem described above might occur. Factor smooth interactions constructed under mgcv
version lower than 1.8–36 where affected by this problem, while orthogonalization between the
intercept and the rest of the smooth has always been enforced in by-smooths.
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