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Abstract

Mixed-effect modeling is recommended for data with repeated measures, as often encountered

in designed experiments as well as in corpus-based studies. The mixed-effect model provides

a flexible instrument for studying data sets with both fixed-effect factors and random-effect

factors, as well as numerical covariates, that allows conclusions to generalize to the pop-

ulations sampled by the random-effect factors. Mixed-effect models can straightforwardly

incorporate two or more random-effect factors. By providing shrinkage estimates for the

effects associated with the units sampled with a given random-effect factor, the mixed model

provides enhanced prediction accuracy. Mixed-effect models also make available enhanced

instruments for modeling interactions of random-effect and fixed-effect predictors. As mixed-

effects models do not depend on prior aggregation, they also offer the researcher the possi-

bility to bring longitudinal effects into the statistical model.
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1. Introduction

Consider an experiment in which the duration of the first vowel in a word is studied. It is

expected that this duration is determined in part by the number of syllables following in

the same word, in part by whether the vowel is syllable final, in part by the position of the

word in the sentence, by the speech rate, and possibly by the frequency of the word. If our

interest is in the generality of vowel shortening, different vowels will be studied, in different

words, and produced by different speakers. For this type of experiment, mixed models are

an excellent choice.

In this example, the factor syllable Position (with levels final and non-final) is a fixed-

effect factor, as its two levels exhaust all possible values that the predictor Position can

take. By contrast, the factor Speaker is a random-effect factor, as its levels, identifiers for

the different speakers, are randomly sampled from a much larger population of speakers.

Word is another random-effect factor, as the words sampled for the experiment represent

only a small proportion of the words known to the speakers.

Classical analysis of variance and regression analysis run into problems for data sets com-

bining fixed and random-effect factors, especially when more than one random-effect factor

has to be brought into the analysis. Often, researchers aggregate their data to obtain means

or proportions for subjects (averaging over items) or for items (averaging over subjects).
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In psycholinguistics, the work by Clark (1973) and Forster & Dickinson (1976) led to the

practice of averaging both over subjects and over items, with an effect accepted as significant

only if it reaches significance both ‘by subjects’ and ‘by items’. Mixed-effect models provide

the researcher with a more sophisticated tool for analyzing repeated measures data that is

both more flexible, more powerful, and more insightful.

2. Basic Concepts

Let X1 denote the fixed-effect factor Position and let X2 represent the covariate Fre-

quency of occurrence. Suppose that 10 vowels are selected, and that the question of interest

is whether the duration of the i-th vowel, Yi, can be predicted from Position (final ver-

sus non-final) and Frequency. The linear model decomposes the dependent variable into a

weighted sum

Yk = β0 + β1X1k + β2X2k + β12X1kX2k + εk, k = 1, 2, . . . , 10. (1)

Fixed-effect factors are coded numerically using dummy coding, such that a factor with n

levels contributes n − 1 predictors to the model. Of the many ways in which factors can

be coded numerically, treatment coding is the most straightforward and the most easy to

interpret, especially in the case of analysis of covariance. One level of the factor is selected

as default or reference level. Although the selection of the reference level can be guided by

theoretical considerations, technically, any level can serve as reference level. For the two-

level factor Position, treatment coding adds one extra predictor, X1 in (1), consisting of
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ones and zeroes. Observations for the reference level, say non-final, are assigned a zero, and

observations for the other, contrasting level (final) are assigned a one. As a consequence, the

β weight for Position represents the difference (or contrast) between the group mean for

the syllable-final vowels and the group mean for the vowels followed by a non-empty coda.

This β weight, although technically a slope for a ‘degenerate’ numerical predictor (consisting

only of zeroes and ones), is referred to as a contrast coefficient.

The model defined in (1) includes an interaction term for Position by Frequency. This

interaction allows for the possibility that two different regression lines are required for Fre-

quency, one for non-final vowels and a different one for final vowels. As a consequence, two

intercepts and two slopes have to be defined. With treatment coding, the regression line for

the reference level (non-final) is specified by the intercept β0 and the slope for frequency β2.

The coefficients of the regression line for final vowels is obtained by adjusting these slopes

and intercepts (by β1 and β12) respectively (see Table 1) to make them precise for the data

points with the final vowels. In summary, for a fixed-effect factor, one level is selected as the

baseline, and coefficients are invested to adjust slopes and intercepts for the other levels of

the factor.

When dealing with a random-effect factor, it does not make sense to select one — arbi-

trary — level (e.g., a given speaker, or a specific word) as reference level: Such a reference

level is unlikely to be representative of the population sampled. Therefore, mixed models

dispense with fixing a reference level and contrasts for random-effect factors. Instead, the

β coefficients for the intercept, covariates, and fixed-effect factors are taken to represent the
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β0 the intercept (group mean) for the reference level non-final

β0 + β1: the intercept (group mean) for final

β2 the slope for frequency for non-final vowels

β2 + β12: the slope for frequency for final vowels

Table 1: Treatment coding in analysis of covariance: the contrast coefficients β1 and β12

specify the differences in intercept and slope between the non-final and final vowels.

population average for each of the populations sampled by the random-effect factors. For

any given random-effect factor, adjustments are implemented to allow precise predictions for

the individual units sampled, such as the individual speakers in an experiment or corpus.

These adjustments (technically referred to as Best Linear Unbiased Predictors or blups)

are assumed to follow a normal distribution with mean zero and some unknown standard

deviation (to be estimated from the data). Instead of investing n−1 coefficients for a simple

main effect for a random-effect factor with n levels (e.g., n speakers), only one parameter is

invested, a standard deviation characterizing the spread of the adjustments.

By way of example, consider a data set in which vowels are elicited in m words from n

speakers, and that a simple main effects model is appropriate. A first model,

Yij = [β0 + b0i] + [β1 + b1i]X1j + [β2 + b2i]X2j + εij, i = 1, 2, . . . , n; j = 1, 2, . . . ,m, (2)

b0i ∼ N (0, σ1), b1i ∼ N (0, σ2), b2i ∼ N (0, σ3), εij ∼ N (0, σ),

calibrates the model, for each speaker i, for that speaker’s speech rate (through the adjust-

ments b0i to the intercept β0), as well as for that speaker’s sensitivity to the position of
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the vowel (through the adjustments b1i to the contrast coefficient β1) and for that speaker’s

specific sensitivity to frequency of occurrence (through the adjustments b2i to the slope β2).

Each of the sets of adjustments b.i is assumed to be normally distributed with zero mean. In

other words, a random-effect factor (whether speaker, word, text, or syllable) is represented

as a source of random variation around the population parameters {β}. This is the sense in

which a random-effect factor is ‘random’.

Model (2) is incomplete, in that it does not take into account that the words in which

the vowels are embedded are repeated across speakers. To incorporate word as a second

random-effect factor, (2) has to be modified as follows,

Yij = [β0 + b0i + b0j] + [β1 + b1i + b1j]X1j + [β2 + b2i]X2j + εij, (3)

i = 1, 2, . . . , n; j = 1, 2, . . . ,m;

b0i ∼ N (0, σ1), b1i ∼ N (0, σ2), b2i ∼ N (0, σ3),

b0j ∼ N (0, σ4), b1j ∼ N (0, σ5), ε ∼ N (0, σ),

with crossed random effects for speaker and word. Adjustments to the intercept are often

referred to as random intercepts. Similarly, adjustments to slopes are known as random

slopes. In the case of adjustments to a contrast coefficient, one can speak of random contrasts.

In (3), there are by-speaker random intercepts (b0i) as well as by-verb random intercepts (b0j).

Likewise, there are both by-speaker and by-verb random contrasts (b1i, b1j). The model

includes random slopes for frequency only for speaker (b2i). It is not possible to include as

well by-verb random slopes for frequency, as this would lead to an unsolvable confound with
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frequency itself, which is a by-verb property. In other words, it is only possible to include

by-subject random slopes and contrasts for item properties, and by-item random slopes and

contrasts for subject properties. For instance, subjects may require adjustments to the slope

of the frequency effect, while words may require adjustments to the slope of the effect of

aging (see, e.g., Baayen & Milin, 2010).

Whenever in addition to random intercepts, one or more random slopes (or contrasts) are

associated with a given random-effect factor, the possibility arises that the random intercepts

and random slopes (or contrasts) are correlated. Assuming multivariate normality, the full

specification of the random effects for (3) is therefore given by the matrices

Mspeaker =



σ1 r12 r13

r21 σ2 r23

r31 r32 σ3


, Mword =

 σ4 r45

r54 σ5

 , (4)

where rkl = rlk specifies the correlation of the adjustments k and l estimated for the popu-

lation of speakers or the population of words. In other words, the adjustments for a given

random-effect factor are assumed to be multivariate normal with zero means and unknown

standard deviations and correlations.

3. Advantages of mixed-effects models

Mixed-effect models offer many advantages compared to the classical linear model using

dummy coding for random-effect factors. First, a fitted mixed model provides straightforward

predictions for unseen levels of random-effect factors. For an unseen speaker and an unseen
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word, all b.. are set to zero, and predictions based on model (3) for a given position X1 and

frequency X2 reduce to

Y = β0 + β1X1 + β2X2. (5)

For a specific speaker i that contributed observations to the data and an unseen word, more

precise predictions can be obtained using the by-subject random-effect adjustments:

Yi = [β0 + b0i] + [β1 + b1i]X1 + [β2 + b2i]X2. (6)

Similarly, when the identity of the word is known, even more precise predictions are available

by adding in the by-word random intercepts and slopes. For comparison: The classical

linear model only provides predictions for the subjects and items sampled in the data, and

for models with many interactions involving subjects and items may not even be able to

estimate all relevant coefficients.

Second, the mixed-effect model allows for fine-grained hypotheses about the random-

effects structure of the data. For every data set, it is an empirical question whether all the

terms in matrices such as shown in (4) contribute to a significantly better fit of the model to

the data. The possibility to include or exclude correlation parameters is not available in the

classical linear model, but turns out to be an important tool for understanding, for instance,

individual differences between the subjects participating in experiments. In chronometric

studies, for instance, one may find that subjects with a large positive adjustment to the

intercept reveal a large negative adjustment to the slope of frequency of occurrence. Such a

negative correlation suggests that slow responders (with large intercepts) carry the frequency

effect (see, e.g., Baayen & Milin, 2010, for examples).
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Third, mixed-effect models are better able to directly model heteroskedasticity. A fun-

damental assumption of the linear model is that the residual errors have the same variance

across all conditions in the data. In many actual data sets, this assumption of homoskedas-

ticity is violated. For instance, the duration of a vowel might be more variable for a sample

of nonnative speakers than for a sample of native speakers. Given a fixed-effect factor distin-

guishing between native and nonnative speakers, each set of speakers can be assigned its own

standard deviation for the by-subject random intercepts, thereby modeling the heteroskedas-

ticity directly (instead of correcting p-values post-hoc for non-sphericity).

Fourth, mixed-effect models can handle autocorrelational structure in data elicited from

subjects over time, whether obtained from a stretch of speech or in an experimental context.

Human behavior is consistent over time, and this often gives rise to autocorrelations in lan-

guage data. For instance, although there are fluctuations in speech rate, the speech rate at

time t is likely to be very similar to the speech rate at the immediately preceding timesteps

t − 1, t − 2, . . . . If the sequence of responses elicited from a given subject constitutes an

autocorrelated time series, then it is essential to bring this autocorrelation into the model.

If ignored, the residual errors will enter into autocorrelations, violating the assumption of

independence of the residual errors, and giving rise to suboptimal conclusions about signifi-

cance. The simplest way in which autocorrelations can be brought into a mixed model is by

including as a separate predictor the response at the preceding point in time. For detailed

discussion, the reader is referred to Baayen & Milin (2010).

Fifth, the estimates provided by the mixed-effect model for the adjustments to the pop-
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ulation parameters (the blups) are shrinkage estimates. A danger inherent in fitting a

statistical model to the data is overfitting. By way of example, consider a sample of sub-

jects for which speech rate is recorded. Some subjects will have a faster speech rate than

others. The more extreme the speech rate of a given subject is, the less likely it is that in

a replication study the speech rate of that subject will be equally extreme (or even more

extreme). It is much more likely that in the replication study the speech rate of this subject

will have ‘regressed’ or ‘shrunk’ towards the mean. Mixed models anticipate this regression

towards the mean and implement estimates for the blups that shrink the adjustments in the

direction of the mean. As a consequence, predictions for replication studies with the same

subjects or items will be more precise.

Sixth, more than two random-effect factors can be included in the model. Returning to

the above example, one possible design is to embed the same vowel in different carrier words.

In such a design, vowels are repeated independently of the words, and hence the vowel should

be considered as a potential third random-effect factor.

Finally, mixed-effect models tend to be better able to detect effects as significant, without

giving rise to inflated Type I error rates (see, e.g., Baayen, Davidson & Bates, 2008).

4. Generalized linear mixed models

Thus far, we have considered a dependent variable, duration, that is real-valued, and

for which a model assuming homoskedastic Gaussian errors is reasonable. Two commonly
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encountered dependent variables require special attention. First, instead of being continuous,

the outcome of an experimental observation can be binary: true versus false, correct versus

incorrect, success versus failure, present versus absent, etc. For binary dependent variables,

the traditional approach is to aggregate over trials (by subjects, or by items) to obtain

proportions. Subsequently, analysis of variance or multiple regression is applied with these

proportions as dependent variable. Three problems arise with this kind of analysis. First,

instead of the variance being independent of the mean, the variance changes systematically

with the mean, reaching a maximum when the proportion equals 0.5. Second, proportions

are bounded between 0 and 1, but the linear model assumes the dependent variable can

assume any real value. The generalized linear model deals with these problems by taking as

dependent variable not the proportion P ,

P =
# successes

# successes + # failures
, (7)

but the log odds ratio (or logit)

L = log
# successes

# failures
. (8)

The log odds ratio ranges from minus infinity to plus infinity, and thus circumvents the

problem with the boundedness of proportions. (An alternative to the logit link function

that can be attractive for researchers familiar with signal detection theory is the probit

link function.) The generalized linear model also implements different options for how the

variance changes with the mean. For binary dependent variables, the appropriate variance

function is that of a binomial random variable. Given the log odds (or logit) as link function
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and binomial variance, it becomes possible to obtain for each individual observation a good

estimate of the probability of a success (or a failure).

When the dependent variable records counts observed for a fixed window in time, such

as the number of segment deletions in text chunks of a fixed length, the problem arises that

the variance increases with the mean, again violating homoskedasticity. The solution here is

to use the log as the link function, and to assume that the variance function is that of the

Poisson distribution.

The generalized linear model has been extended to incorporate random-effect factors in

addition to fixed-effect factors. Crucially, generalized linear mixed-effect models, or glmms,

do not require any prior aggregation into proportions, as the ambition is to provide estimates

of the likelihood of a success (or failure), or the rate at which a phenomenon occurs (in the

case of count data), for each individual observational unit.

5. Significance in mixed-effect models

The significance of covariates and fixed-effect factors can be evaluated in two ways. One

option is to test whether slopes or contrasts are significantly different from zero. For non-

Gaussian glmms, evaluation is based on Z-scores and associated p-values. For Gaussian

models, the relevant t-tests run into the problem that there is no good analytical solution

for the appropriate degrees of freedom. For large datasets, the upper bound for the degrees

of freedom, the number of observations minus the number of fixed-effect parameters, often
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provides a good approximation. Informally, an absolute t-value exceeding 2 is a robust

indicator of significance for α = 0.05.

As an alternative to the t-test, a Bayesian method estimating the posterior distribution

of the parameters can be used to obtain 95% credible intervals for the coefficients, as well as

estimates of the probability of values more extreme than those actually observed. For data

sets with at least several hundreds of observations, these probabilities are very similar to the

probabilities obtained with the t-test based on the upper bound for the degrees of freedom.

For smaller samples, the Bayesian probabilities are more precise.

A second option for evaluating significance of a predictor is to compare a model with and

a model without a given predictor in order to ascertain whether the parameters invested for

this predictor lead to a non-trivial increase in goodness of fit, using a likelihood ratio test.

Both models should have been fitted with maximum likelihood rather than with the default,

relativized maximum likelihood.

In order to gauge whether random intercepts, random contrasts, or random slopes are

justified by a significant increase in goodness of fit, a likelihood ratio test should be used,

but now the models involved in the comparison should be fitted with relativized maximum

likelihood, which ensures optimal estimation of the random effects in the model.

The test statistic used by the likelihood ratio test is two times the difference between the

log likelihood of the model with more parameters and the log likelihood of the model with

fewer parameters. This test statistic follows a chi-squared distribution with as degrees of

freedom the difference in the number of parameters. For this test to be precise, the models
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entering into the comparison should be nested, i.e., the full set of parameters of the model

with fewer parameters should be a subset of the set of parameters of the model with more

parameters.

6. Working with mixed models

When working with mixed models, several questions may arise. First, there are cases

where it is not immediately self-evident whether a factor is to be modeled as fixed or random.

Consider an experiment targeting the duration of English front high and mid vowels. Let

Vowel denote the pertinent factor with as its four levels the four targeted vowels. Is Vowel

fixed or random? English has 14 vowels, so we are dealing with a sample of vowels. On the

other hand, the population of vowels is quite small. In this example, Vowel is best modeled

as a fixed-effect factor. The front high and mid vowels do not constitute a random sample

from the population of vowels. The focus of the study is on specifically the four high and

mid front vowels, with no aims to generalize beyond these four vowels to, e.g., back vowels

or diphthongs.

Second, for a classical linear model fitted to a data set, an R-squared (or adjusted R-

squared) value is generally reported. This R-squared specifies the proportion of the variance

accounted for by the model. For mixed models, an R-squared is often not reported, because

it is no longer a good measure for understanding the contribution of the linguistic variables to

explaining the variance: Parts, often very substantial parts, of the variance are explained by
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the random-effect factors. In chronometric studies, for instance, linguistic predictors some-

times contribute less than 1% to the R-squared (Baayen, 2008). If required, the R-squared

can be calculated by squaring the correlation coefficient for the observed and expected val-

ues of the dependent variable in the case of Gaussian and Poisson models, and the index of

concordance (Harrell, 2001) for binomial models.

7. Selected studies using mixed models

Mixed-effect models are a relatively recent development in statistics, and do not have a

long history of use in language studies. In psycholinguistics, mixed-effect models are rapidly

becoming the new standard for data analysis with repeated measures. Quené and van den

Bergh (2008), Baayen et al. (2008), and Jaeger (2008), all in a special issue in the Journal of

Memory and Language, provide non-technical introductions, with Quené and van den Bergh

discussing an example from phonetics, Baayen et al. presenting simulations of data sets as en-

countered in psycholinguistics, and Jaeger focusing on generalized linear mixed-effect models

for binary data. Chapters 1 and 4 of Pinheiro and Bates (2000) are also highly recommended

for introductory reading. Examples of psycholinguistic studies of auditory comprehension

using mixed-models are Baayen, Wurm, and Aycock (2007), Ernestus and Baayen (2007),

and Balling and Baayen (2008). For application of mixed-models to corpus-based data, see

Ernestus, Lahey, Verhees, & Baayen (2006), Janda, Nesset & Baayen (2010), and Keune,

Ernestus, Van Hout, & Baayen (2005).
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8. Example code for mixed-effect modeling using R

Mixed models are implemented in a range of software packages (e.g., SPSS, SAS, MLwiN,

ASReml, S-Plus) and can be programmed within WinBUGS as well. Open-source software

for carrying out mixed-effect modeling is available in R (the de-facto standard in statistical

computing, freely available at www.r-project.org) using the lme4 package by Bates &

Maechler (2009).

Given a factor X1 and a centered covariate X2, and Speaker and Word as crossed random

effects, the following sequence of nested models with increasingly complex random-effects

structure is specified in R as follows:

Model0 = lmer(Duration ∼ X1 +X2 + (1|Speaker) + (1|Word)) (9)

Model1 = lmer(Duration ∼ X1 +X2 + (1|Speaker) + (0 +X2|Speaker) + (1|Word))(10)

Model2 = lmer(Duration ∼ X1 +X2 + (1 +X2|Speaker) + (1|Word)) (11)

Model3 = lmer(Duration ∼ X1 +X2 + (1 +X2|Speaker) + (1 +X1|Word)) (12)

Model0: random intercepts for speaker and word; Model1: random intercepts for speaker

and word, for speaker, independent random slopes for X2; Model2: random intercepts for

speaker and word, by-subject random slopes for X2, and a correlation parameter for the

by-subject slopes and intercepts; Model3: as Model2, but with heteroskedastic variance for

the levels of X1. A likelihood ratio test comparing these four models is carried out in R with
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anova(Model0, Model1, Model2, Model3)

A generalized mixed model for binomial data (e.g., the presence or absence of a segment

in the speech signal) with two predictors and random intercepts for speaker and word is

specified as follows,

Model4 = lmer(Present ∼ X1 +X2 + (1|Speaker) + (1|Word), family=“binomial”) (13)

and a generalized mixed model for count data (e.g., the count of segment deletions observed in

a 5 minute interview) with random intercepts for speaker and word with the same predictors

would be

Model5 = lmer(Count ∼ X1 +X2 + (1|Speaker) + (1|Word), family=“poisson”) (14)
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