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Abstract

Arnon and Snider (2010) documented frequency effects
for compositional 4-grams independently of the frequen-
cies of lower-order n-grams. They argue that compre-
henders apparently store frequency information about
multi-word units. We show that n-gram frequency
effects can emerge in a parameter-free computational
model driven by naive discriminative learning, trained
on a sample of 300,000 4-word phrases from the British
National Corpus. The discriminative learning model
is a full decomposition model, associating orthographic
input features straightforwardly with meanings. The
model does not make use of separate representations
for derived or inflected words, nor for compounds, nor
for phrases. Nevertheless, frequency effects are correctly
predicted for all these linguistic units. Naive discrimina-
tive learning provides the simplest and most economical
explanation for frequency effects in language processing,
obviating the need to posit counters in the head for, and
the existence of, hundreds of millions of n-gram repre-
sentations. Keywords: naive discriminative learning;
Rescorla-Wagner equations; n-gram frequency effects;
computational modeling

Introduction

In a recent study, Arnon and Snider (2010) reported
frequency effects for four-word n-grams (see also, e.g.,
Tremblay & Baayen, 2010). They take this finding as
evidence that multi-word phrases are units of representa-
tion, just as frequency effects for regular morphologically
complex words have been taken to imply the presence
of representations for such words in the mental lexicon
(Baayen, Dijkstra, & Schreuder, 1997).

A recent computational model proposed by Baayen,
Milin, Filipović Durdević, Hendrix, and Marelli (2010)
generates simulated processing latencies for complex
words that correlate well with the whole-word frequen-
cies of those words. Crucially, this model does not make
use of any representations at all for complex words.
The model’s architecture comprises only two represen-
tational layers, a layer of orthographic units (letters
and letter bigrams) and a layer of elementary meanings.
Each orthographic unit is connected with each mean-
ing. The weights on these connections are estimated
from corpus-derived conditional co-occurrence matrices
using the equilibrium equations (Danks, 2003) of the
Rescorla-Wagner equations (Wagner & Rescorla, 1972)
for discriminative learning. Baayen et al. refer to their
model as instantiating naive discriminative reading as
the weights on the connections to a given meaning are
estimated independently of all other meanings, as in

naive Bayes classifiers. The simulated latencies predicted
by the naive discriminative reader (henceforth ndr) re-
flect not only whole word frequency effects, but also
morphological family size effects, inflectional entropy ef-
fects, constituent frequency effects, and paradigmatic en-
tropy effects (Milin, Filipović Durd̄ević, & Prado Mart́ın,
2009).

The weights of the ndr were calculated on the basis
of the co-occurrence frequencies extracted from 1,496,103
different three-word sequences extracted from the British
National Corpus. This made it possible for the ndr
too also correctly model syntactic relative entropy ef-
fects present in single-word lexical decision latencies.
Phrasal frequency effects were also predicted, but not
tested. This is the primary goal of the present paper,
which takes the materials of Experiment 1 of Arnon and
Snider (2010) as its point of departure. The first question
to be addressed is whether naive discriminative learning
correctly predicts the observed phrasal frequency effect,
without making use of representations for n-grams. The
second question addresses the complexity of naive dis-
criminative learning compared to models assuming inde-
pendent representations for n-grams.

Simulation
For each of the 47 different final words of the 56 four-
word phrases of Experiment 1 of Arnon and Snider
(2010), all occurrences were retrieved from the British
National Corpus, together with the three preceding
words in the sentence, when available. From the result-
ing data set, those four-grams were selected that con-
sisted only of letters, including the apostrophe. Next, all
words in these phrases were lemmatized using the celex
lexical database, as follows. First, inflected words were
traced back to their uninflected base form. Second, if
this uninflected base form was morphologically complex,
the celex parse was used to retrieve its component for-
matives. In this way, the phrase a British provincial city
was associated with the set of meanings {a, Britain,
ish, province, ial, city}, and the n-gram abnormali-
ties take on many with the set of meanings {ab, norm,
al, ity, take, on, many}. Phrases with one or more
words for which a celex parse was not available were
discarded. This left us with 337,069 different phrase
types, representing 562,905 phrase tokens. It is note-
worthy that just 47 words — the 47 different phrase-final
words of Experiment 1 of Arnon and Snider (2010) —



generate no less than 337,069 different phrases covering
7494 distinct meanings.

The ‘lexicon’ of 337,069 phrases was used to calcu-
late the weights from letters and letter bigrams to the
meanings associated with the constituents of the phrases.
Given a phrase as input, the weights on the connections
of the active letters and letter bigrams to a meaning
were summed to obtain that meaning’s activation. The
activation of a phrase was modeled as the sum of the ac-
tivations of its associated meanings. A phrasal decision
latency was taken to be proportional to the log of the
reciprocal of this summed activation.

In the analysis of the simulated latencies, we consid-
ered phrase pair (henceforth Pair) to be a fixed-effect
factor, rather than a random-effect factor, as the phrase
pairs do not constitute a random sample from a larger
population of such pairs. To the contrary, the pairwise
matching procedure used by Arnon and Snider (2010) re-
sulted in a very specific, non-random set of phrase pairs.
For their set of phrase-final words, repeating their match-
ing procedure would result in a very similar, if not iden-
tical, set of phrases. In other words, the factor levels of
Pair are repeatable. Therefore, Pair was entered into the
model specification as a fixed-effect factor.

Following Arnon and Snider (2010), we fitted a regres-
sion model to the simulated latencies with as predictors
the frequency of the four-word phrase, the frequency of
the last word, and the frequency of the last two words.
All frequencies were calculated from the lexicon used to
estimate the model’s connection weight matrix, and log-
transformed. Stepwise backward model selection using
AIC resulted in a model with only the n-gram frequency
and Pair as predictors. The slope for n-gram frequency
was estimated at -0.018 (t(27) =-2.189, p =0.0374). The
presence of a significant effect for n-gram frequency and
the absence of significant effects for the frequency of the
fourth word and for the frequency of the final bigram,
exactly mirrors the pattern of result reported by Arnon
and Snider (2010) for the empirical phrase decision la-
tencies. Importantly, the model generating the simulated
latencies is parameter-free, and driven completely by its
corpus input.

Table 1: Model comparison for a simple main effects
model (model 1), a model with a multiplicative inter-
action of n-gram frequency by fourth word frequency
(model 2), and a model using a tensor product to model
this interaction (model 3).

res. df res. dev df dev F p
model 1 25.00 0.06
model 2 24.00 0.06 1.00 0.00 1.08 0.31
model 3 21.92 0.03 2.08 0.03 11.47 0.00

Thus far, each meaning associated with the phrase was
given equal weight. Equal weights may not be optimal,

however. For instance, Baayen et al. (2010) observed
for compounds that the weight of the head meaning was
best modeled as half that of the weight of the modi-
fier meaning. For phrases in a phrasal decision task,
equal weights may likewise not properly reflect the task
demands. As more words become available to the par-
ticipant, the next word becomes more predictable, and
hence should have a decreased weight for a yes-response.
We implemented this conceptualization of the phrasal
decision task by proportionally decreasing the weight for
each successive meaning. For an n-gram such as you like
to try, the weight for the first word was set to 1, for the
second word it was set to 0.75, for the third word to 0.50,
and for the fourth word, to 0.25.

A stepwise regression model fitted to the resulting sim-
ulated latencies suggested the same pattern of results,
with a significant facilitatory effect only for n-gram fre-
quency (p = 0.044). However, a generalized additive
model (Wood, 2006) indicated the presence of a com-
plex interaction of n-gram frequency by fourth word fre-
quency, that we modeled with the help of a tensor prod-
uct. The result is visualized in Figure 1, and Table 1
lists the statistics supporting the degrees of freedom in-
vested in the tensor product. Across the full range of
fourth word frequencies, we see a facilitatory effect of n-
gram frequency. The effect of fourth word frequency, for
a fixed n-gram frequency, is non-linear, and inverse U-
shaped. The greatest simulated latencies are predicted
for intermediate fourth word frequencies. If the weights
of successive meanings indeed decrease with each addi-
tional word, then the prediction is that this interaction
should also be present in the data of Arnon and Snider
(2010). As they do not provide mean phrase decision la-
tencies, we were not able to follow up on this prediction.

Model complexity

In order to evaluate the complexity of the ndr, we
compare it to an (unimplemented) interactive activation
model that includes representations for n-grams. There
are two important aspects of model complexity, first, the
complexity of the calculations involved, and second, the
number of representations and connections required.

We first consider the complexity of the calculations. In
the naive discriminative learning framework, the model’s
predictions are based on one forward pass of activation.
Activations of meanings are obtained by summation over
incoming active connections. An implicit assumption,
shared with other computational models, is that there
is a checking procedure that allows only those meanings
to remain active that are supported by the input. Fi-
nally, a phrasal decision is based on the sum of activated
meanings.

By contrast, an interactive activation model requires
multiple cycles in which activation flows across inhibitory
and excitatory connections at several layers. At each
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Figure 1: Regression surface estimated for the simu-
lated latencies using a task-specific proportional weight-
ing scheme of meanings. Lighter shades of gray indicate
greater response latencies. Frequencies are shown on the
log scale.

timestep, for each unit, the information coming in over
its connections has to be evaluated. As for the ndr,
a unit reaching a threshold activation level needs to be
subjected to a checking procedure verifying that this unit
is indeed compatible with the input. We maintain that
the multiple cycles of interactive activation imply more
complex computations than the single, and more local,
forward pass of activation required for the ndr.

Next, consider the requirements of the models in terms
of representations and connections. The present imple-
mentation of the naive discriminative reader requires 620
orthographic input units ( letters and letter bigrams),
7494 meaning units, and 620×7494 =4,646,280 connec-
tions from orthographic units to meaning units. The
total number of units and connections is 4,654,394.

For an interactive activation model with n-gram rep-
resentations, we derive the following estimates.

Given our lexicon, it turns out that there are 1,628,458
distinct n-grams (1 ≤ n ≤ 4). We assume that each of
these n-grams does not spell out its component words,
but provides pointers to its component words. For the
present data set, 4,750,180 such pointers are required.
Here, we ignore the possibility that each n-gram is also
linked to its subordinate and superordinate n-grams.
Finally, each distinct n-gram is associated with a fre-
quency counter (or resting activation level), adding an-
other 1,628,458 numeric representations.

Table 2: Model complexity evaluated in terms of counts
of representations and connections, for an interactive ac-
tivation model (ia) and the naive discriminative reader
(ndr).

ia ndr
n-gram representations 1628458 0
n-gram-to-word links 4750180 0
n-gram frequency counters 1628458 0
letters 26 27
letter bigrams 0 593
meanings 7494 7494
word-to-meaning links 21146 0
word-to-letter links 168686 0
orthography-to-meaning links 0 4646280
total 8204448 4654394

We assume that words can be represented simply in
terms of letters (26), without requiring letter bigrams.
We also assume that, like the ndr, the interactive activa-
tion model is decompositional, and that hence the same
7494 meanings can be used to represent the meanings
associated with an n-gram. In an approach in which syn-
tactic n-grams receive separate representations, morpho-
logically complex words should also have their own rep-
resentations. Of the 1,628,458 distinct n-grams, 21,146
are distinct words (unigrams). We assume that each
unigram provides links to its constituent letter represen-
tations. For the present set of 21,146 words, it turns out
that 168,686 such connections from words to letters are
required.

Table 2 summarizes the counts of model units (repre-
sentations, links) in an interactive activation model and
in the ndr. The total count for the interactive activation
model is almost twice that for the ndr. We note here
that the count for the interactive activation model is a
lower bound if larger n-grams are also linked to lower-
order n-grams with 1 < n < 4.

An important difference that does not emerge from
these counts is that the ndr is linear in the number of
meanings: For every additional meaning, exactly 620 ad-
ditional links from letter unigrams and bigrams to that
meaning are required, in all, 621 model units. For the
interactive activation model, each additional n-gram re-
quires an additional representation, as well as additional
links to its constituent words. Since there are hundreds
of millions of n-grams, an interactive activation approach
will require hundreds of millions of model units at the
least, whereas 10 million such units is probably a gen-
erous upper bound for the ndr. We therefore conclude
that naive discriminative learning provides a simpler and
hence superior explanation of frequency effects above the
(simplex) word level.



Discussion

We have shown that phrasal frequency effects in the lexi-
cal or phrasal decision task can arise as a straightforward
consequence of naive discriminative learning. We note
here that the explanatory potential of discriminative
learning goes beyond lexical decision: for language ac-
quisition, see Ramscar, Yarlett, Dye, Denny, and Thorpe
(2010), and for the modeling of word naming latencies,
see Hendrix and Baayen (2010).

Importantly, frequency effects in the ndr are inher-
ently contextual in nature (Baayen, 2011b). In other
words, frequency as pure repetition, such as might be
modeled by a ‘counter in the head’ (such as a resting ac-
tivation level for an n-gram representation) has no pre-
dictivity whatsover for the processing costs estimated by
discriminative learning.

From the perspective of the ndr, interactive activation
models ignore (or avoid) the problem of learning but
pay the price of having to calculate the probabilities of a
combinatory explosion of n-gram representations on-line,
re-enacting for each n-gram token the learning process
the adult state of which is represented in the associative
weights of a naive discriminative learning network.

Naive discriminative learning should also be distin-
guished from subsymbolic connectionist modeling. In
our model, the input and output layers contain symbolic,
not subsymbolic units. Furthermore, instead of having
to decide on network architecture (number of (sets of)
hidden units, decay parameters, thresholds, etc.), the
model has a fixed network layout, and in its simplest
form (used here) there are no free parameters. The con-
nection weights are obtained straightforwardly (and de-
terministically) from a corpus, by solving a system of
equations.

The ndr can be viewed as a statistical classifier that is
optimal in the least-squares sense, and that is grounded
in well-established principles of animal and human learn-
ing. Baayen (2011a) shows that naive discriminative
learning, used as a classifier for data on the dative alter-
nation, actually outperforms a generalized linear mixed
model, and performs as well as a support vector machine.

Given the present results, the existence of frequency
effects for n-grams does not provide compelling evidence
for the existence of separate representations for n-grams.
Such representations may be required on independent
grounds, as in the theory of Bod (2006). However, given
the hundreds of millions of different n-grams even for
small n (n <= 7), the huge costs of storage, retrieval
of, and competition between putative millions of n-gram
representations cannot be underestimated.

Instead of investing in n-gram representations, it may
be fruitful to explore whether a hierarchy of naive dis-
criminative learning networks can give rise to structured
semantic representations, replacing the unstructured sets
of meanings that our current implementation works with.
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