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Abstract

This study addresses the comprehension of reduced words, taking as point
of departure two lexical decision experiments reported in Ernestus (2009).
Ernestus discusses the consequences of segment reduction in auditory com-
prehension in terms of exemplars for reduced forms and generalization pro-
cesses reconstructing the unreduced form. A different approach is explored
in the present study, using a computational model based on discriminative
learning to explain the pattern of results in the experimental data. This new
modeling approach, which provides the researcher with detailed information
into what distributional properties of the language input may drive the ob-
served effects, suggests that the unusual biphones in reduced words are the
key to understanding why reduced words can be learned and understood.

In a recent study, Ernestus (2009) investigated the processing of Dutch past partici-
ples (e.g., ge-vraag-d, ‘asked’), which are formed by simultaneously prefixing ge- ([xo]) and
suffixing -d or -t. In Dutch, the schwa in unstressed prefixes such as ge- is often omitted.
Ernestus presented speakers of Dutch with the past participles of phonotactically legal new
monomorphemic verbs. In a familiarization phase, these past participles were combined
with pictures in order to ensure that the nonce verbs received an interpretation. A week
later, participants were asked to complete an auditory lexical decision experiment in which
these past participles were presented. One question addressed in this study was whether
reduced forms acquire their own exemplar representations (c.f., e.g., Johnson, 2004) fa-
cilitating subsequent processing. A second question was whether the priviliged status of
unreduced forms (Ernestus, Baayen, & Schreuder, 2002; Gaskell, 2003) would affect the
speed of comprehension.

In Experiment 1, participants were exposed either to the reduced or to the full form
of the new participles during familiarization, and later performed a lexical decision on the
reduced forms. These two conditions will henceforth be referred to as R+R (reduced for
training and reduced for testing) and as U+R (unreduced for training, reduced for testing).

I am indebted to Mirjam Ernestus for making the words she used in her experiments available to me, and
to both Mirjam Ernestus and Vito Pirelli for their insightful comments on an earlier version of this paper.
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Response latencies were significantly shorter for the R+R condition (1271 ms) compared
to the U+R condition (1319 ms). In theories framed in terms of form representations, the
results of Experiment 1 can be interpreted as evidence for the coming into existence of form
representations for reduced words after familiarization. When subsequently encountered
in the lexical decision task presenting reduced forms as targets, the newly-formed repre-
sentations of reduced forms would then provide a better match to the acoustic input, and
therefore would give rise to shorter latencies compared to the unreduced words, which would
have form representations that do not fully match the input.

Experiment 2 used the same familiarization procedure, but presented unreduced forms
(instead of reduced forms) as targets in the lexical decision experiment. The mean latencies
for these R+U (reduced training, unreduced testing) and U+U (unreduced training, unre-
duced testing) conditions were very similar (1328 ms and 1330 ms respectively). Ernestus
argued that when listeners encounter a new reduced form, the unreduced form is also re-
constructed from the reduced form. Hence, when the unreduced form is presented in lexical
decision, it matches a representation irrespective of whether an unreduced or a reduced
form was presented during familiarization. As a result, average response latencies for the
U+R and U+U conditions are indistinguishable.

This interpretation raises several questions. First, if two representations come into
existence upon encountering a novel reduced form, some theories predict competition be-
tween these representations (e.g., Luce & Pisoni, 1998). In the R+R and R+U conditions,
in which representations for both the reduced and unreduced forms are supposedly available
after familiarization, a processing delay would be expected. No such delay is present in the
experimental data, however. In fact, the R+R condition leads to shorter instead of longer
response latencies than the U+R condition.

Second, the reconstruction of the unreduced form from the reduced form is suppos-
edly driven by a generalization giving canonical status to the unreduced form. In hy-
brid models combining rules and exemplars (see, e.g., Atallah, Frank, & O’Reilly, 2004;
Goldinger, 2007), large-scale generalizations are supposed to be early processes, whereas
episodic, exemplar-driven generalization is supposed to be a late process, manifesting itself
primarily in elongated processing times. However, when the two experiments of Ernestus
(2009) are considered jointly, it is the R+R condition, the condition in which slow exemplar-
driven processing should be most prominently involved, for which we observe the shortest
latencies, instead of the longest latencies.

Third, positing representations for both unreduced and reduced forms comes with the
risk of a proliferation of representations, given the high degrees of variability characterizing
speech.

Finally, whereas modeling the processing of acoustic information as an early process
and the processing of speaker-specific episodic information as a late process (Goldinger,
2007) may have its advantages. Information about, for instance, a speaker’s voice plays
no role in phonological or phonetic generalizations about the characteristics discriminating
one word from the other words in the lexicon. Yet episodic information about a speaker’s
voice may co-determine lexical processing at, if Goldinger is correct, later stages in the
comprehension process. The present experimental data, however, concern specific and gen-
eral information that is qualitatively quite similar. Instead of episodic information about a
speaker’s voice in conjunction with segmental information, the data compare the presence
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versus absence of a segment in a lexical representation. Qualitatively similar differences
permeate the lexicon, for any pair of words that differ in the presence versus the absence
of a segment (e.g., hand, hands and hand, had. Although it is possible that the exemplar-
driven and generalization-based processes posited to explain the present experimental data
are taking place at different sites and at different points in time, this possibility becomes
less attractive when both processes concern the same kind of segmental information.

In this study, therefore, a very different approach to understanding these experimental
data is pursued, using a computational model first proposed in Baayen, Milin, Filipovic Dur-
djevic, Hendrix, and Marelli (2010). This model makes use of naive discriminative learning
based on the Rescorla-Wagner equations (Wagner & Rescorla, 1972; Danks, 2003), which
are well-established in psychology as a mathematical description of learning. In what fol-
lows, a brief introduction to this computational model is presented first. Next, the model
is illustrated by pitting its predictions for Dutch inflected verb forms against the by-item
mean latencies available in the Dutch Lexicon Project, henceforth pLp (Keuleers, 2010).
We then zoom in on the Dutch past participle, and the relative importance of prefix and
verb stem for lexical access as measured by the lexical decision task. Finally, simulations
are presented clarifying that the pattern of results observed by (Ernestus, 2009) follows
straightforwardly from discriminative learning.

Naive discriminative learning

The model developed by Baayen et al. (2010) is a two-layer network with symbolic
representations for a word’s form and a word’s semantics. A word’s form is coded by means
of its unigrams and bigrams (or uniphones and biphones). Its meaning is represented in
terms of the semantic units associated with its constituents. Thus, the word bookcases is
linked with the meanings BOOK, CASE, PLURAL. Each input unit is linked to each meaning
unit, and a weight is associated with each link.

When a word is read (or heard), the activations of its unigrams and bigrams are set to
1, and those of all other unigrams and bigrams to 0. Activation is then propagated through
the connections. The activation a; of a meaning ¢ is defined as the sum of the weights on
its active incoming links:

a; =) wj, (1)
J

where j ranges over all unigrams and bigrams with nonzero activation. The simplest way
to estimate the response latency to word 7 is to assume it is inversely proportional to the
activation a; of that word’s meaning:

RTZ = log(l/ai), (2)

where we take the logarithm to remove the rightward skew from the distribution of acti-

vations. Slightly improved results are often obtained by first calculating the probability of

identification P; of the word’s meaning in the set of its k highest-activated competitors:
a;

—F (3)
a; + 2?21 a;

5 =

Reaction times are then estimated using

RT, = log(1/P). (4)



SEGMENT REDUCTION AND NAIVE DISCRIMINATIVE LEARNING 4

The weights in (1) are estimated by solving the equilibrium equations of the Rescorla-
Wagner model developed by Danks (2003). The resulting estimates of the activation of
a word’s meaning and its probability of identification are a kind of maximum likelihood
estimates. They provide an indication of how likely a word’s meaning is given the unigrams
and bigrams in its input and, importantly, given the conditional co-occurrence probabilities
of the unigrams and bigrams as well as the conditional probabilities of a meaning given a
specific unigram or bigram.

The model is grounded in discriminative learning in the sense that the weights on
the links from a given cue to the meanings are optimized for discriminating between these
meanings on the basis of this cue.

The model uses naive discriminative learning, naive in the sense of naive Bayes classi-
fiers, in that the incoming weights for a given meaning are estimated independently from all
other meanings. For further details on the Rescorla-Wagner model and its applications in
psychology, the reader is referred to Miller, Barnet, and Grahame (1995); Siegel and Allan
(1996); Chater, Tenenbaum, and Yuille (2006); Hsu, Chater, and Vitanyi (2010); Ramscar,
Yarlett, Dye, Denny, and Thorpe (2010).

Baayen et al. (2010) show that for English simple words, the model generates simu-
lated processing latencies that correlate significantly at the item level with observed latencies
as available in the English Lexicon Project (Balota et al., 2007), with correlations up to 0.5.
The model also correctly reproduces the priming results of Rastle, Davis, and New (2004),
who observed significant priming for corner-corn and dealer-deal, but not for brothel-broth.
In addition, the model simulates well the data of Bergen (2004) on phonaesthemes (signifi-
cant priming for glimmer-gleam compared to semantic and orthographic control conditions).
Furthermore, the model correctly predicts shorter processing latencies for words with greater
morphological families, irrespective of whether these words occur by themselves, or are em-
bedded in derived words or compounds.

The model is also highly sensitive to co-occurrence patterns of words. When applied to
Serbian case paradigms, the model correctly predicts inhibition from relative entropy (Milin,
Filipovi¢ Durdevié, & Moscoso del Prado Martin, 2009). The model similarly correctly
predicts an inhibitory effect of relative entropy for English prepositional ‘paradigms’. The
more the relative frequencies with which a given noun co-occurs with spatial prepositions
differ from the relative frequencies with which these prepositions are used (aggregating
across all nouns), the longer response latencies to that noun are. Both the Serbian case
paradigms and the English prepositional paradigms illustrate an exemplar-prototype effect,
such that the more an exemplar differs from the prototype, the greater its processing costs
are.

The discriminative learning model indicates that current behavioral data can be un-
derstood without special morpho-orthographic parsing operations, without positing repre-
sentations for (transparent) complex words and multi-word phrases, and without positing
that complex words are organized into paradigms. The next section shows that the model
is also succesful when applied to Dutch inflected verb forms.

Naive discriminative learning of Dutch verb forms

From the CELEX lexical database (Baayen, Piepenbrock, & Gulikers, 1995), all in-
flected verb forms with non-zero frequency were extracted, subject to the conditions that
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the base verb was either monomorphemic, or preceded by a derivational prefix. This re-
sulted in an input lexicon for the model comprising 11608 different word forms, representing
5783141 tokens of monomorphemic verbs (8975 inflectional types) as well as verbs with the
prefixes be-, de-, des-, ex-, ge-, her-, ont-, over-, pre-, re-, and ver- (2633 inflectional types).
The total number of different verb stems, and hence the different number of lexical meanings
in the model, was 2063.

In order to compare the predictions of the model with actual processing times, we
consulted the Dutch Lexicon Project (http://crr.ugent.be/dlp), which offers lexical de-
cision latencies for large numbers of Dutch words. For 3368 verb forms in the training
lexicon, reaction times are available. Derivational prefixes in the resulting smaller data set
turned out to be restricted to be, her, ont, ver (276 word forms). The new data set also
included 194 different past participles.

The correlation between the observed RTs and the parameter-free simulated RT's
was r = 0.31 (£(3364) = 18.6, p = 0). The corresponding correlation for the probability
of identification-based simulated RTs (with one free parameter, the number of neighbors
taken into consideration, fixed at 20 as in Baayen et al. 2010), was slightly higher at r =
0.32 (t(3364) = 19.57, p = 0).

Although the model is a full-decomposition model taking an input such as gewandeld
and mapping it onto the meanings WANDEL (‘to walk’) and PAST, PERFECT, it is highly
sensitive to the frequencies of the exemplars in its input space. Hence, frequency effects
are expected to arise not only for the verb’s lemma (collapsing the frequencies of all its
inflectional variants), but also for the frequency of the specific word form that is presented
to the model.

As word form frequency and lemma frequency are strongly correlated, we orthogonal-
ized form frequency on lemma frequency by taking the residuals of a model regressing form
frequency on lemma frequency. The correlation of the residualized form frequency measure
(which represents word form frequency in as far as it cannot be predicted from lemma fre-
quency) with the original form frequency count was 0.63, indicating that the orthogonalized
measure is still well-interpretable as a form frequency measure.

RTs Predictor Estimate Std. Error t-value p-value
simulated without competitors Intercept 6.7740 0.0575  117.8723  0.0000
simulated without competitors Lemma Freq. -0.6268 0.0077 -81.8879 0.0000
simulated without competitors Form Freq. -0.0468 0.0132 -3.5518 0.0004
simulated with competitors Intercept 7.8599 0.0543 144.6957  0.0000
simulated with competitors Lemma Freq. -0.6825 0.0072 -94.3324 0.0000
simulated with competitors Form Freq. -0.0803 0.0124 -6.4481  0.0000
observed Intercept -1.4145 0.0086 -164.9991 0.0000
observed Lemma Freq. -0.0219 0.0011 -19.1744  0.0000
observed Form Freq. -0.0168 0.0020 -8.5493 0.0000

Table 1: Lemma and Form Frequency effects for fitted and observed reaction times. Observd RTs
were inverse transformed by -1000/RT.

Table 1 reports linear regression models fitted to the observed RTs (inverse trans-
formed by -1000/RT to remove the skew from the latency distribution) and to the two



SEGMENT REDUCTION AND NAIVE DISCRIMINATIVE LEARNING 6

sets of simulated RTs. For all three models, we observe significant effects of both lemma
frequency and of wordform frequency. This illustrates that in a model that is fully decom-
positional at the semantic level, but that takes into account in a principled way the different
extents to which the unigrams and bigrams discriminate between meanings, effects of the
frequency with which a specific form supports a given meaning can emerge. It is worth
noting that, first, form frequency arise in the model without there being any form repre-
sentations for complex words in the model. Second, form frequency effects arise without a
word’s meaning having to be non-compositional. However, as can be seen by comparing the
magnitude of the coefficients of the two frequencies listed in Table 1 for the observed and
simulated RT's, the model underestimates the form frequency effect. This underestimation
is due to the simplifying assumption that all complex words are completely transparent
semantically.

Reduction and lexical access to past participles

Given that naive discriminative learning provides a reasonable approximation to the
processing costs of Dutch inflected words, correctly predicting a form (exemplar) frequency
effect side by side with a lemma frequency effect, we now use the model to study the effects
of reduction on lexical access.

Figure 1 summarizes the effect of deleting a segment at positions 1 through 7 of the
input word. The top left panel shows that deletion of the first and second segment (the
segments of the prefix ge) hardly affects the activation of the lexical meaning of the verb.
By contrast, as can be seen in the second panel, deletion of the first segment substantially
decreases the activation of the affixal meaning (PAST PERFECT). Deletion of the second
segment (the schwa) also has a detrimental effect, although smaller.

For segment deletions in the base (at positions 3-5), the pattern reverses. These
deletions decrease the activation of the verbal meaning, but hardly affect the activation of
the inflectional meaning. Deletion of later segments does not affect the activation of the
verbal meaning as much as deletions at positions 3-5. This is because deletions at later
positions tend to involve the deletion of the final dental of the Dutch past participle (ge-
wandel-d, ‘walked’; ge-pak-t, ‘grasped’), thereby making the stem better identifiable. As
the position of deletion increases, the likelihood that the final inflectional suffix is removed
rather than a segment that is part of the verbal stem increases as well, leading to attenuation
of the negative consequences of segment deletion.

The lower panel of Figure 1 graphs the consequences of segment deletion at different
positions in the written form for the correlations of simulated RTs (calculated for input
with the missing segment) and the observed visual lexical decisions in the Dutch Lexicon
Project. In this way, we can gauge the importance of different segments for learning a
word’s meaning. If a segment is removed from the model’s input, whereas that segment
plays a crucial role in reading, the correlation of the model’s predicted RTs with the actually
observed RT's should decrease. Such a decrease is visible in the lower panel of Figure 1 for
segments of the base. The resulting pattern mirrors that in the upper left, indicating that
the observed lexical decisions are driven primarily by accessing the meaning of the verb,
and not by accessing the meaning of the inflectional circumfix (PAST PERFECT).

In summary, naive discriminative learning provides good predictions for lexical deci-
sion latencies to inflected Dutch verbs, with only a single free parameter, the number of



SEGMENT REDUCTION AND NAIVE DISCRIMINATIVE LEARNING 7

2 e e ———— o
= —°\° 3} o -~~~ """~~~ - -\-----
(¢}
% o © -~ / o —o
Q ~ 8 . o — o
E S o - /
au.)) — % ~ o
S 4
g s 8
S ° -
©
5 < - g
= o o = -
=1 ] _
g - e z 9
g ’ ©
c Y / § o
§ S °— g 2
IS — o £ A o
T T T T T T T T T T T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7
position of deleted segment position of deleted segment
n
'_
xr 9
g 2 o
o
E [T - -~~~ ======+= %_
0 ~N °
o) o o
S 8
c o
]
©
g w bt
S N~
£ o
B
B o
o
s 8 - \
g ° °
o T T T T T T T
3 1 2 3 4 5 6 7

position of deleted segment

Figure 1. Effect of deletion of a segment at varying positions in the input. Top left: effect on mean
activation of the meaning of the verb. Top right: effect on the mean activation of the meaning of
the inflectional suffix. Bottom: Effect of segment deletion on the correlation of the simulated RTs
with the observed RTs. Dashed horizontal lines represent the case with no segment deletion.

neighbors taken into consideration for calculating the probability of identification of a verb’s
meaning. The model indicates that participants may have based their decisions mainly on
the activation of the lexical meaning of the verb, ignoring the grammatical meaning of the
inflectional circumfix. For a proper evaluation of the role of the inflected form, including
its inflectional ending, processing measures gauging sentential reading will be essential.

Accessing participial neologisms

The experiments of Ernestus (2009) examined the effect of acoustic reduction on the
learning and subsequent processing of novel verbs. Simulated lexical decision latencies for
these experiments were obtained as follows. Starting from the input lexicon derived from
CELEX, two new lexica were constructed. The first lexicon combined the input lexicon with
the reduced experimental words. The second lexicon combined the input lexicon with the
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unreduced experimental words. Each novel experimental word was assigned unit frequency,
and was linked with a unique lexical meaning as well as with the grammatical meanings
for PAST and PERFECT. From these lexicons, two weight matrices were derived, one for
familiarization with the reduced neologisms, and one for familiarization with the unreduced
neologisms. These two weight matrices represent the state of the participants after the
familiarization phase, but before the lexical decision experiment was administered.

Model RT's Experiment  Predictor Estimate Std. Error  t-value p-value
without competitors  II U+U (Intercept) 6.2087 0.2101  29.5470  0.0000
without competitors II R+U -0.0000 0.2972  -0.0000  1.0000
without competitors I U+R 0.1327 0.2972  0.4467  0.6558
without competitors I R+R -2.7713 0.4159 -6.6641  0.0000
with competitors II U+U (Intercept) 7.9820 0.3891 20.5128  0.0000
with competitors I R+U -0.0000 0.5503  -0.0000  1.0000
with competitors I U+R 1.4142 0.5464 2.5885  0.0107
with competitors I R+R -5.2587 0.7700 -6.8294  0.0000

Table 2: Effects of training and testing for simulated latencies. Coefficients represent intercept and
treatment contrasts. The reference level for the factors Training and Testing was Unreduced

Next, each weight matrix was applied twice to calculate the activation of the lexical
meanings, once for targets presented to the model in unreduced form, and once for tar-
gets presented in reduced form. Figure 2 plots the observed group means as reported by
(Ernestus, 2009) (left panel), the group means for the simulated latencies without consid-
ering neighbors (center panel), and the group means when the 20 strongest competitors are
taken into account (right panel). Table 2 summarizes the intercept and treatment contrasts
for a linear regression model fitted to the simulated latencies obtained with and without
the competitors included.

The best fit to the data is provided by the model that does not include neighbors
in the calculation of the simulated RTs, as can be seen by comparing the first two panels
of Figure 2. When neighbors are included, the group mean for the U+U condition is
overestimated compared to the observed group mean. This difference between the observed
and simulated latencies is open to two interpretations.

First, if a little noise, representing response execution, is added to the latencies sim-
ulated for Experiment 2, then the only significant effect in the model will be restricted to
the advantage of R+R forms. Under this interpretation, both types of simulated latencies
support the same interpretation.

Second, however, increasing the number of neighbors taken into account when esti-
mating response latencies increases the average latency in the U4+R condition. (It is in
this condition, in which a shorter form that is more similar to a monomorphemic word is
presented, that the summed activation of the highest-frequency neighbors is substantially
higher than for the other conditions.) Since for existing words latencies simulated by includ-
ing neighbors outperform latencies simulated without neighbors in terms of the correlation
with the observed by-item RTSs, it remains a possibility that participants in the actual ex-
periments with neologisms did not take neighbor competitors into account when making
their lexical decisions. Under this interpretation, the cumulative evidence for lexicality pro-
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Figure 2. Mean reaction times for the four conditions of Familiarization by Testing with Unreduced
(U) and Reduced (R) neologisms. Solid lines represent Experiment 1, dashed lines Experiment 2.

vided by lexical competitors is not a useful source of information for lexical decisions, as
such cumulative evidence is similar for both the neologisms and nonwords. In this scenario,
decisions would be based solely on the memory traces of a word’s meaning as presented
during the familiarization phase.

Irrespective of which of these two interpretations is correct, it is clear that naive
discriminative learning captures the pattern of results observed by Ernestus (2009). It is
remarkable that the best fit to the data is obtained with a completely parameter-free model
that is driven entirely by the frequential and distributional properties of the input.

Naive discriminative learning also makes it possible to trace the source of the process-
ing advantage of R+R neologisms by examining which unigrams and bigrams contribute
most to the activation of a neologism’s meaning. A boxplot summarizing the distribution
of the activations of these meanings for the four conditions of the two experiments is shown
in the upper left panel of Figure 3. The higher activations for the R+R condition corre-
spond to the faster simulated latencies for this condition. The remaining panels visualize
the contributions of different parts of the words to these activations.

The top second panel clarifies that the first segment, the velar fricative of the in-
flectional prefix, is not contributing at all to the activation of the lexical meaning of the
neologism. The panel to its right shows that when the schwa of the prefix is presented (in
conditions U4+U and R+U), it does not contribute to the lexical meaning either. (In the
U-+R and R+R conditions, there is no schwa, so the contribution of the non-existent second



SEGMENT REDUCTION AND NAIVE DISCRIMINATIVE LEARNING 10

segment of the prefix is zero.)

The bottom left panel indicates that the initial bigram (the transition from silence into
the initial segment of the prefix) makes a negative contribution to the meaning activations
in the case of familiarization with the reduced form of the participle.

The next panel considers the boundary bigram for the transition of the prefix into
the verb stem. For the unreduced participles presented at testing, this bigram begins with
the schwa of the prefix, for the reduced participles, it begins with the velar fricative. When
familiarized with the reduced form, presentation of the unreduced form makes the meaning
of the word somewhat less likely.
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Figure 3. Activation of the verbal meaning, and contributions to this activation, for the combina-
tions of Training and Testing with Unreduced (U) and Reduced (R) neologisms.

In the R+R condition, by contrast, we see that the boundary bigram contributes
positively to the activation of the meaning of the neologism. Since the stimuli used by
Ernestus (2009) were chosen such that removal of the schwa resulted in an initial bigram
that does not occur word-internally in Dutch words, the only experience the model has
with these bigrams is in the neologisms, allowing these bigrams to become excellent cues
for discriminating between the meanings of the neologisms.

The final panel shows that unigrams and bigrams that are not associated with the
prefix also contribute to the activation of the new meanings, but only when the neologisms
were presented in reduced form. The reason is that the weights are estimated not only from
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the probability of a meaning given a unigram or bigram, but also from the cooccurrence
probabilities of the unigrams and bigrams. The boundary bigram, which is a rare and
hence highly informative bigram for familiarization with the reduced form, therefore allows
stem unigrams and bigrams to also become more strongly associated with the new lexical
meanings. In summary, what this analysis indicates is that the boundary bigram of the
reduced forms is the crucial factor driving the pattern of results.

As mentioned above, the boundary bigrams were explicitly selected by Ernestus to
be phonotactically illegal in order to facilitate the reconstruction by the listener of the
underlying form of the prefix as containing a schwa. The idea here is that unlikely bound-
ary bigrams provide the segmentation process with an excellent cue about the location of
the morphological boundary (cf. Hay, 2003). However, within the context of naive dis-
criminative learning, exactly the low-probability bigrams create unique opportunities for
discriminating between the meanings of a word. High-frequency boundary bigrams are typ-
ically used word-internally in many different words, and therefore provide weak cues for the
meanings of these words. Low-frequency boundary bigrams, by contrast, are much more
distinctive and hence more informative about which meaning is at issue.

In the simulation studies discussed thus far, the CELEX-derived lexicon contained only
unreduced forms. To probe the consequences of the occurrence of reduced forms in natural
speech for the model’s estimates, new lexica were created in which, for each word form
type with any of the prefixes be-, ver-, ge-, half of its tokens were reduced. The overall
pattern of results is the same, with the R+R condition as the only condition emerging with
a processing advantage. Interestingly, the weights on the links to a word’s meaning for the
initial bigram, as well as for the non-prefixal orthographic cues, are now very much reduced.
The only contributor to the higher activation of word meanings for the R+R condition is the
boundary bigram . This boundary bigram has become a less reliable cue for the meaning of
a new participle, as it is now instantiated in many other words. The co-occurrence of this
bigram with other unigrams and bigrams is now no longer unique or nearly unique to the
neologisms. As a consequence, the indirect contribution of the boundary bigram through
the initial bigram and the non-prefixal unigrams and bigrams becomes very small, and only
the contribution of the boundary bigram itself remains to drive the group difference.

General Discussion

The experiments of Ernestus (2009) show that Dutch participles that are initially
learned in reduced form and subsequently encountered in reduced form, have a processing
advantage over participles that are either learned or encountered in unreduced form.

The explanation offered by Ernestus argues that during learning, reduced forms re-
ceive two representations, one exemplar representation for the reduced form, and one rep-
resentation for the unreduced form reconstructed from the reduced form on the basis of
the morphophonological regularities in the lexicon. Unreduced forms, by contrast, receive
only one representation, namely, one for the word’s full form. When a word is subsequently
encountered in reduced form, a fully matching representation is available only for words
learned earlier in reduced form. This matching exemplar would then afford faster process-
ing compared to words previously learned in unreduced form. When a word is encountered
in unreduced form, a matching representation is available, irrespective of whether the word
was learned as reduced or unreduced, thanks to morphophonological generalization giving
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rise to a full word representation also for words initially learned in reduced form. This
would explain the very similar mean reaction times in Experiment 2.

The explanation pursued in the present study argues that the pattern of results ob-
served by Ernestus can arise under discriminative learning. During learning, the reduced
participles come with boundary bigrams that are attested in language use only when words
with the prefix ge- are reduced. These boundary bigrams are not attested word-internally in
monomorphemic (unreduced) forms. As a consequence, these bigrams provide excellent cues
for discriminating the meaning of the new word during familiarization from the meanings
of other words. When subsequently during testing a reduced form is presented, the effects
of exemplar-like learning emerge straightforwardly. But unlike in the theory of Ernestus,
which assumes separate exemplars for reduced forms side by side with representations for
unreduced forms, the role of exemplar knowledge in the present discriminative learning ap-
proach is focused around the weights associated with the boundary bigram. No separate
exemplar representations are required for reduced forms. Furthermore, it is not necessary
to posit that speakers also reconstruct and store the unreduced representation when hearing
a reduced pronunciation.In short, naive discriminative learning offers a simpler explanation
of the data.

The present approach may help explain why some words display a wide array of
reduced variants. An example from Dutch is natuurlijk, which can mean both ‘naturally’
and ‘of course’. In the latter sense, it is pronounced as [natyrlok, natylok, ntylok, ntyk,
tyrlok, tylok, tylk], and [tuk]. In the light of the present modeling results, it is striking that
in many of these forms biphones and triphones appear that are either rare or phonotactically
illegal. For instance, [nt] in [ntylok, ntyk] does not occur word-initially, and [ylk] in [tylk] is
not attested word-finally in normal Dutch words. Although [yk] is attested word-finally in
other words, there are only three such words in the CELEX lexical database: stuc, truc, and
kaduuk. Word-initial [ty] occurs in only in tuberculose, tumor, tumult, tuniek, tureluurs, and
tutoyeren and a few derived words and compounds derived from these words. The highest
frequency word in this set is truc (13 per million), followed by tumult (5 per million). It
seems, therefore, that the reduction variants of natuurlijk make use of segment combinations
that are not frequent in the language. Precisely their low frequency (both in terms of
types and tokens) makes them excellent cues for discriminative learning. The connection
weights from these biphones and triphones to the meaning ‘of course’ will be relatively
high. As a consequence, as soon as the reduced form has been heard and interpreted
correctly, discriminative learning predicts it will be relatively easy to understand this form
at subsequent encounters.

Previous research has established that heavily reduced forms are often incomprehen-
sible out of context (Ernestus et al., 2002; Kemps, Ernestus, Schreuder, & Baayen, 2004).
It follows that the cue strength of the unusual diphones and triphones is not sufficient
to fully activate the appropriate meaning out of context. Clearly, contextual information
must be taken into account during learning. Interestingly, naive discriminative learning
has been shown to be feasible when training proceeds on short phrases instead of isolated
words. Moreover, exemplar-versus-prototype effects at the phrasal level (for prepositional
paradigms in English) have been modeled succesfully in this framework (see Baayen et al.,
2010). Crucially, these phrasal paradigmatic effects, as well as phrasal frequency effects
(cf., e.g. Tremblay & Baayen, 2010), arise in a model that has no explicit representations
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for phrases. The present model therefore promises to be able to learn to link phrases with
strongly reduced words to the correct meanings, without having to assume different repre-
sentations for the different segmental realizations in these phrases. If this promise is indeed
realized, the long-standing riddle of why reduced words are so context-dependent for their
interpretation will have been solved. At the core, the answer to the riddle will be the same
as for why arp is unintelligble without the context c_et.

This approach to the comprehension of reduced words raises the question of whether
reduced forms are driven by listener-related or speaker-related processing constraints. It
seems most likely that the primary constraint originates with the speaker minimizing articu-
latory effort. Consider, for instance, the reduced and unreduced forms of the past participle
of [platse], ‘to place’. The reduced form, [xplatst] will tend to have a shorter acoustic
duration than the unreduced form, [xoplatst] (‘placed’). The principle of least effort will
therefore favor the production of the reduced form above the unreduced form. Here, it is
assumed that in this case speed of articulatory production takes precedence over ease of
articulation of an unfamiliar bigram ([xp]).

However, the speaker cannot reduce at random. Dropping the [p] in [prat] (‘talk’)
will result in a different word (‘honey comb’) and confusion on the part of the listener.
Unsurprisingly, the reduction processes considered in the present study never lead to mergers
with existing words. Interestingly, although reduction processes probably originate with the
speaker, the hypothesis proposed here is that reduced forms will be more succesful to become
established alternative pronunciation variants if they are easy to learn and understand
for the listener. From this perspective, the emergence of reduced forms is the result of
synergetic processes involving both the speaker and the listener, with ease of articulation
on the part of the speaker being, over time, reinforced by the sharper acoustic distinctness
of the reduced output. The speaker, for ease of articulation, produces variants with low-
probability segment sequences. These low-probability segment sequences in turn are easy for
the listener to learn as pronunciation variants. In other words, established reduced forms,
such as [ntyk| for [natyrlok] are likely to be local optima satisfying both the minimization
of the speaker’s production effort and the minimization of the listener’s learning effort.
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