An introduction to the generalized additive model

R. Harald Baayen and Maja Linke

Abstract

In this chapter we introduce the Generalized Additive Model (GAM). GAMs enable the analyst
to investigate non-linear functional relations between a response variable and one or more pre-
dictors. Furthermore, GAMs provide a principled framework for studying interactions involving
two or more numeric predictors. GAMs are an extension of the generalized linear model, and can
therefore be used not only for Gaussian response variables, but also for binomial and Poisson
response variables (and many others). Corpus linguists will find GAMs useful for coming to
a detailed understanding of nonlinear patterns in their data, which can range from historical
change (see, e.g., Ellegard, 1953) to the effects of corpus-based measures on acceptability ratings
(e.g., Baayen and Divjak, 2017).
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1 Introduction

The generalized additive model (GAM) offers the analyst an outstanding regression tool for under-
standing the quantitative structure of language data. An early monograph on generalized additive
models is Hastie and Tibshirani (1990). The book by Wood (2006), a revised and expanded version
of which appeared in 2017, provides the reader with both a thorough mathematical treatment, and
a large number of detailed examples. Many of these come from biology, where the analyst faces
challenges very similar to those faced by the corpus linguist. If one is interested in the density of
mackerel eggs in the Atlantic east of France and the British Isles, one is faced with data that are
unevenly spread out over a large area, where the ocean varies in depth, the gulf stream is of variable
strength, and average temperature changes as one moves from Brittany to Scotland. A linguist
interested in language use as it evolved in North America, as attested in the Corpus of Historical
American English Davies (2010), similarly faces naturalistic data with a bewildering variety of prop-
erties. How the language changes over time varies with register, the education level of the writer,
with the gender of the writer, with time, with social changes that come with immigration, and with
technological developments. Crucially, one can hardly expect that effects of numerical predictors
(henceforth covariates) will be strictly linear. Furthermore, covariates may interact nonlinearly with
factorial predictors and with other covariates in ways that are difficult or even impossible to predict
before initiation of data analysis.

Whereas a decade ago, bringing random effect factors into generalized additive models was not
straightforward, recent versions of the mgcv package for R offer the analyst an excellent toolkit
for dealing with multiple sources of noise relating to speakers and linguistic units (Wood, 2017).
Working with the mgcv package is also substantially facilitated thanks to the itsadug package
(van Rij et al., 2017).

Within linguistics, GAMs have been found useful in dialectometry and sociolinguistics (Wieling
et al., 2011, 2014), phonetics (Wieling et al., 2016; Tomaschek et al., 2018), psycholinguistics (Linke
et al., 2017; Milin et al., 2017), cognitive linguistics (Divjak et al., 2017; Baayen and Divjak, 2017)
and historical linguistics (Baayen et al., 2017a). The goal of this chapter is to provide the reader
with sufficient background to be able to understand the GAMSs presented in these studies, and to
start working with GAMs oneself. To this end, this chapter has three main parts, first a general
introduction into common use cases that benefit from the application of generalized additive mod-
els, followed by a practical introduction to working with GAMs and a non-technical introduction
to how GAMs work.

2 Fundamentals

In an ordinary least squares regression model, a response y; is modeled as a weighted sum of p
predictors and an error term that follows a normal distribution with zero mean.

yi = Bo + Bixin + Paxia + ... + Bpzip + €, € ~ N(0,0).
Although the linear predictor 7;,
ni = Bo + frzin + Bamiz + ... + BpTip,

may provide an adequate model for the functional relation between a response and its predictors,
there are many cases in which the assumption of linearity is inadequate. Reaction times in lexical
decision task, for instance, tend to decrease in a non-linear way as a function of words’ frequency of
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Fig. 1: Smooths for acceptability ratings as a function of frequency (left), construction verb reliance
(center), and rater generosity (right) using the default smoother of ggplot2, geom smooth.

occurrence in corpora. Modeling a non-linear response function as if it were linear not only results
in inaccurate predictions, but also in structured errors that depart from the modeling assumptions
about the relation between mean and variance. For Gaussian models, for instance, the errors may
show heteroskedasticity, and when this happens, the validity of significances reported by the linear
model is no longer assured and p-values listed in model summaries will be unreliable.

Consider, by way of example, Figure 1, which graphs acceptability ratings on a 5-point Likert
scale for Polish sentences against three predictors: the frequency of the verb, construction-verb
reliance (the frequency of a verb x construction combination given the frequency of the verb), and
rater generosity, which gauges the extent to which participants tend to prefer the higher end of
the rating scale. The first two predictors were transformed in order to avoid adverse effects of
outliers. Figure 1 was obtained with ggplot, using its default method for visualizing nonlinear
trends (geom_smooth).

ggplot(polish, aes(LogFrequencyVerb, AcceptabilityRating)) +
geom_smooth ()

For each of the three panels, we observe departures from linearity. The left and center panels shows
quite wiggly curves, and although the right panel reveals a nearly linear pattern, there is some
leveling off for the highest values of the predictor. For two out of three predictors, a linear model
appears to be inappropriate.

Figure 1 illustrates a property of GAMs which requires special attention: For the diagnostic
plots shown, we used the ggplot2 library default smoother geom_smooth, which defaulted to a
smoothing method gam. The left and center panels of Figure 1 are overly wiggly, suggesting that
ggplot2’s default settings for smoothing are overfitting and might actually not be appropriate for
the Polish dataset. Although geom_smooth does provide a set of parameters to address this problem,
adequate modification of the parameters is only feasible to an analyst equipped with a high level of
understanding of the model and the data.

Consequently, the goal of this chapter is to provide the reader with sufficient background to be
able to understand the GAMs presented in these studies, to start exploring working with GAMs
oneself, and to evaluate whether GAMs have been used appropriately. Interpretation of models
presented in this chapter requires a detailed understanding of the model, its implementation and a
careful assesment of how both interact with the data set at hand. In what follows, we begin with
recapitulating the basic concepts of the generalized linear model. Next, we introduce key concepts



underlying the generalized additive model. We then present a worked example of how GAMs can
be used to obtain a thorough understanding of the quantitative structure of linguistic data.

2.1 The generalized linear model

Central to the generalized linear model is the idea that a response variable Y; for a datapoint ¢ that is
described by p predictors 1, x2,..., 7, is a random variable. For real-valued response variables, we
assume that the probability Pr(Y; = y;|xi1, zi2, . . ., xip) follows a normal distribution with variance
o? and mean 7;:

Pr(Y; = yilzi1, Tiz, - - -, Tip) ~ N (i, 02),

where the linear predictor n; is given by an intercept Sy and a weighted sum of the p predictor
values:

ni = Bo + Brxi + Powio + ... + Brwip.

The means p; = n; are linear functions of x (see the left panel of Figure 2). For each value of x,
20 randomly drawn values are shown. Note that the Gaussian model provides, for each value of x,
the probability of the response. The most probable value is the mean. The scatter of the observed
values around the mean is constant across the full range of the predictor.

For count data, a Poisson model is often used, with the same linear predictor 7;:

Pr(Y; = m|xi1, x4, ..., xip) ~ Poisson(e™).

Thus, the logarithm of the observed count is linear in the predictors. In this way, we ensure
that predicted counts can never be negative. As can be seen in the center panel of Figure 2, the
expected counts themselves are a nonlinear function of z. The variance of the counts, which for
Poisson random variables is equal to the mean, increases with .

When the response variable is binary (as for successes versus failures, or correct versus incorrect
responses), we are interested in the probability of a success, which we model as a binomial random
variable with a single trial and a probability of success €™ /(1 + €"), i.e.,

. 6771
Pr(Y; = 1|z, 22, . . ., Tip) ~ binom <1+e77i’ 1) ,

where the linear predictor n; again is defined exactly as above. In this case, the log odds (i.e, the
logarithm of the ratio of successes to failures) is linear in the predictors. As can be seen in the
right panel of Figure 2, for binomial random variables, the variance is greatest for p = 0.5, which in
this example is the case when x = —0.1/0.3 = —0.33. Here, we observe the greatest overlap (with
respect to x) for (jittered) failures and (jittered) successes.

The linear predictor is not restricted to expressing a “linear” functional relation between 1 and
the predictors. For instance, the linear predictor

ni = Bo + Prri + Poxd

specifies a parabola rather than a straight line. In fact, very wiggly curves can be obtained by
adding multiple powers of x as predictors. This is illustrated in Figure 3. Instead of writing

mi = Box’® + Bz} + Boxd + ... + Bzt

we can state the model more succintly as
d .
mo= Bl = flx).
j=1
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Fig. 3: Three polynomial functions. By adding powers of x as predictors, increasingly wiggly curves
are obtained.

Unfortunately, when f(z) is set up as a polynomial of x, as we have done here, with the aim of using
this polynomial as a predictor of the response, it turns out that doing so comes with substantial
disadvantages. Polynomial functions require far too many parameters (the s weights /3), and they
can perform very poorly when predicting the response for unseen data. In other words, polynomial
functions overfit one’s data, and cannot be used for prediction and generalization. This is where
the generalized additive model comes in.

2.2 The Generalized additive model

The generalized additive model takes the linear predictor 7; of the generalized linear model and
enriches it with functions of one or more predictors, as, for instance:

ni = Po+ Pixa + fi(xie) + fa(ws, ia) - (1)

parametric part non-parametric part

The parametric part is familiar from the generalized linear model. The non-parametric part specifies
two functions, one of which takes xo as argument, and one of which takes two predictors, x3 and
x4, as arguments. Instead of using polynomial functions, GAMs use smoothing splines for functions
such as f; and fo. A smoothing spline with one predictor as argument is used for fitting wiggly
curves. A smoothing spline with two predictors can be used for fitting a wiggly surface. Splines
can take more than two arguments, in which case wiggly hypersurfaces are modeled. Given a linear
predictor with appropriate smooths, this linear predictor can be used to model Gaussian response
variables, or Poisson or binomial responses. GAMs can also accomodate ordinal responses as well
as multinomial responses.

In order to use GAMs appropriately, it is useful to have a general understanding of how smooth-
ing splines work. Here, we illustrate one particular spline that is the default of the mgcv package
(Wood, 2017), the so-called thin plate regression spline. The lower right panel of Figure 4 presents
a thin plate regression spline smooth f(x) estimated for the effect of a predictor x on the response.
This effect is known as the partial effect of z, as in models such as (1) there typically are many
other predictors that also contribute to the predicted value of the response. The partial effect shown
in the lower right panel is a weighted sum of the curves in the other 9 panels of Figure 4. Such
elementary curves are known as basis functions.

The first two basis functions (in the upper left) are straight lines that are completely smooth.
For predictors that have a strictly linear effect, these two basis functions suffice. Each basis function



is associated with a weight (shown in square brackets on the vertical axes). For straight lines, the
weight for the first basis function is the intercept, and the weight for the second basis function is
the slope.
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Fig. 4: A smooth using thin plate regression spline basis functions for the partial effect of a predictor
x on the response. The first 9 panels represent the basis functions, multiplied by their weights (given
in square brackets on the vertical axes). The sum of these weighted basis functions results in the
spline smooth in the lower right panel.

In this example, the predictor has a nonlinear effect, so we need more basis functions than just
the first two. Figure 4 illustrates 7 additional basis functions, which become increasingly wiggly as
we proceed from panel 3 to panel 9. The curve in panel 10 is the sum of all nine (weighted) basis
functions. Thus, the vertical position of the black dot on the red curve in panel 10 is the sum of
the vertical positions of the other black dots in panels 1-9 (the scaling on the vertical axes already
incorporates the weighting).

The exact mathematical form of the wiggly basis functions is determined by the total number of
basis functions requested by the user. Below, we return to the practical question of how to choose
the number of basis functions. Here, we proceed on the assumption that a sufficiently large number
of basis functions has been requested by the user.

The question that arises at this point is how to avoid the situation in which we have so many
basis functions that we edge too close to the datapoints and start fitting the model to noise rather
than signal. In other words, we need to find a good balance between undersmoothing (resulting in
too much wiggliness) and oversmoothing (resulting in missing out on significant wiggliness). The
solution offered by GAMs is to balance two constraints, one constraint demanding that we want
to stay faithful to the data (by minimising the summed of squared errors), and one constraint that
demands we keep our model as simple as possible. This second constraint can be rephrased as
a prior belief that the truth is likely to be less wiggly rather than very wiggly. This belief is a
restatement of Occam’s razor, in that we don’t want to make our theory more complex (by adding
basis functions and associated weights) than is absolutely necessary. The two opposing constraints
lead to a model cost C'y for a smooth f,

n

Cr= S (i — Fx)* +A / £(x)%da,

=1

faithfulness to the data Occam’s razor

7



that we want to keep as small as possible. This cost consists of two parts. To the left of the +
we have the sum of squared deviations between the observed values y; and the values f(x;) that
are predicted by the smooth. This is what an ordinary least squares regression model fitted with
1m minimizes. To the right of the +, we have the integral of the squared second derivative of the
smooth, weighted by a smoothing parameter A\. The integral over the squared second derivative is
a measure of the wiggliness of the smooth which we also want to keep as small as possible. The
parameter A regulates the balance between the desire to remain faithful to the data and the desire
to keep wiggliness down.

The introduction of the smoothing parameter A raises a new question, namely, how to estimate
A. A first step towards a solution is to assume that the weights of the basis functions follow a
normal distribution with mean zero and some unknown standard deviation os. It turns out that
the choice of A co-determines os. This leads to the second step, namely, to choose some A, sample
from the (normal) distribution of weights for the smooth implied by A, and keep tuning A until an
optimal fit is obtained. This typically results in weights for a smooth that are smaller than if A
were zero, i.e., when there is no penalization for wiggliness and all that counts is faithfulness to the
data. This method has been shown to also yield good estimates for confidence intervals (Nychka,
1988; Marra and Wood, 2012).

Importantly, penalization for wiggliness can reduce the weights of basis functions to zero, in
which case the pertinent basis functions are apparently unnecessary. For instance, when a smooth
is fitted to data for which the functional relation between the response and a predictor is truly
linear, all the weights for the wiggly basis functions in Figure 4, i.e., the basis functions in panels
3-9, are driven to zero, leaving untouched only the completely smooth (i.e., completely non-wiggly)
first two basis functions. These two basis functions jointly determine a straight line. The horizontal
basis function is merged into the intercept specified in the parametric part of the model, to ensure
that the model remains identifiable.! Thus, the only weight of the smooth that remains is that for
the slanted line. This weight is simply the slope of the regression line.

When the functional relation between response and a predictor is in fact non-linear, penalization
will retain at least some wiggly basis functions, but with weights that are reduced compared to an
unpenalized smooth with A = 0. The proportion of the original weight of a basis function that
is retained after penalization is referred to as the effective degree of freedom (edf) of that basis
function. The sum of the effective degrees of freedom of all basis functions used to construct a
smooth constitutes the effective degrees of freedom of that smooth. Summary tables for the smooth
terms in a GAM list these effective degrees of freedom, which enter into a special F-test that is
used to evaluate the significance of a smooth.

The edf of a smooth cannot be larger than k, the number of basis functions that is set by the
user. If the edf for a smooth is close to k, hardly any penalization has occurred, and it is likely
that a larger value of k should be chosen (see the documentation of choose.k of mgcv) for detailed
discussion). When penalization leaves a predictor with 1 edf, its effect is likely to be linear: All
wiggly basis functions will have been taken out of commission by setting their weights to zero, and
only the weight for the second basis function is retained (i.e, the slope of the regression line).

GAMs also accomodate random effect factors as predictors. The way in which this is done is
different from the method used by the linear mixed model as implemented in the Ime4 package. The
GAM implementation that we discuss here makes use of the mechanism of penalization to estimate
the parameters of random-effect factors, using a so-called ridge penalty. This ridge penalty takes the
sum of the absolute values of the random-effect coefficients, and seeks to keep this sum as small as

L If there are two specifications for the intercept in the model, an arbitrary amount § can be taken from the one
and added to the other without changing model predictions; in this case there are infinitely many models too choose
from, with no principled reason for selection.



possible. In this way, parameters are shrunk towards zero, just as in the linear mixed effect model.
However, computation times for mixed GAMs (henceforth GAMMs) are typically longer than for
the corresponding models fitted with lmed4, which is due to GAMMs not making any simplifying
assumptions about the structure of the random effects.
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Fig. 5: Thin plate regression spline smooths for log verb frequency as predictor of acceptability
ratings. Left panel: a model without by-verb random intercepts, right panel: a model that does
include by-verb random intercepts.

Proper inclusion of random effects in the model specification protects against overly wiggly
curves. Recall that Figure 1, obtained with ggplot2’s default smoother, produced highly wiggly
and undulating curves for two out of three predictors. However, once Verb is included as random-
effect factor, the partial effects of the predictors become much less wiggly (compare the left and
right panels of Figure 5). A highly wiggly curve with narrow confidence bands is replaced by a
shallow curve with wide confidence bands. The fact that the horizontal axis is included in the
95% confidence band for nearly all values of verb frequency indicates that a main effect of verb
frequency is highly unlikely to be significant. Indeed, the p-value for this smooth provided by the
model summary (not shown) is 0.22.

The reason that the smooth in the model without a random effect for Verb produces such a
wiggly curve is that for each verb frequency we have as many repetitions as there are subjects. As a
consequence, each distinct frequency value comes with substantial evidence that stands in the way
of proper penalization. By including random intercepts for Verb, the idiosyncracies of individual
verbs can be taken into account, and for the present example, the evidence for an undulating effect
due to frequency evaporates.



Representative study: Baayen, R. H. and Divjak, D. (2017). Ordinal GAMMSs: a new
window on human ratings.

Research Questions:

Divjak(2016) investigated the extent to which speaker’s experience contributes to the acceptability
ratings for infinitival and finite that-complements in Polish. Baayen and Divjak (2017) reanalyzed
these data using ordinal GAMs. Key questions are whether the frequency of occurrence of the verb
(in the Polish National Corpus), and the conditional probability of the construction given the verb
(reliance) are predictive for acceptability ratings. Rater generosity (i.e., the extent to which a rater
is prone to give high ratings) was included as a control variable.

Data: The data set contains off-line acceptability ratings for verbs that occur with low frequency
in that-constructions. A total of 95 verbs in that-constructions was presented to 285 undergraduate
students of English/German in Poland. Participants were asked to rate “how Polish a sentence
sounds” on a 5-point Likert scale. Each verb was responded to by 15 participants. The data set is
available as polish.rda at https://opendata.uit.no/dataverse/trolling.

Method: Ratings elicited on a Likert scale yield ordinal data. Baayen and Divjak (2017) therefore
used an ordinal GAM, which models the probability that a rating is » (r = 1,2,...,5) through the
probability that a latent variable w falls into the r-th interval defined on the real axis. Three models
were compared: a model with (nonlinear) main effects only, a model with all pairwise interactions,
and a model with a three-way interaction.

polish.gam = gam(AcceptabilityRating  te(RankConstructionVerbReliance, LogFrequencyVerb,
RaterGenerosity) + s(Verb, bs = "re") , data = polish, family = ocat(R = 5))

Results: Of the three models, the model with the three-way interaction, fitted with a tensor
product smooth, provided the best fit to the ratings. Subjects with lower rater generosity showed
stronger effects of frequency and reliance. Furthermore, ratings decreased for increasing frequency
when reliance was low, and ratings increased only with reliance for high-frequency verbs (see the
inset contour plot below). The GAM analysis succeeded in bringing together within one model a
series of findings that Divjak (2016) could account for only in part with an ordinal linear model.
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3 Practical guide with R

The dataset that we use to illustrate how to work with GAMs is taken from the Buckeye corpus of
conversational American English as spoken in Columbus, Ohio (Pitt et al., 2005). In what follows,
we restrict ourselves to the data of one speaker (S40). For this speaker, we compared the words
as realized by this speaker with the corresponding dictionary pronunciations. For the first word
uttered, allright, the dictionary form (in ARPAbet notation) is aa 1 r ay t. The speaker actually
pronounced ao r eh t. For each word, we extracted its successive diphones for the dictionary
form as well as those of the form actually produced (ObsDiphone), and checked for each dictionary
diphone (DictDiphone) whether it was absent in the actual realization, irrespective of its position
in the word. For a particular utterance of allright, results look as follows.

DictDiphone DictDiphonePosition ObsDiphone DictDiphoneAbsent

1 #aa 1 #ao TRUE
2 aal 2 aor TRUE
3 1r 3 reh TRUE
4 ray 4 eht TRUE
5 ayt 5 t# TRUE
6 t# 6 = FALSE

This information was collected for all words, in the order in which they appear in the corpus,
resulting in a table with 27062 observations, one for each diphone. For each of these 27062 diphones,
we considered the following variables: DictDiphoneAbsent, with values TRUE or FALSE, depending
on whether the dictionary diphone was realized by the speaker; this is the response variable for
our analyses; DictDiphonePosition, an integer indicating the position of the dictionary diphone
in the word; DictDiphoneCount, an integer with the number of dictionary diphones in the word;
PhraseInitial, with values TRUE or FALSE, indicating whether the word carrying the diphone is
phrase-initial; PhraseFinal, with values TRUE or FALSE, indicating whether the word carrying the
diphone is phrase-final; PhraseLength, an integer indicating the length in words of the phrase;
PhraseRate, the speech rate (number of syllables per second); LogDuration, the logarithm of the
duration of the word (in seconds); DictDiphoneActDiversity, a measure, based on discriminative
learning, gauging the lexical uncertainty caused by the diphone; WordActDiversity, a measure
gauging the lexical uncertainty of the carrier word in a semantic vector space model derived with
discriminative learning; SemanticTypicality, the extent to which the semantic vector of the carrier
word is similar to the average semantic vector; and CorpusTime, the position of the diphone in the
corpus (ranging from 1 to 27062) but scaled and centered to make this variable commensurable
with the other numeric predictors. A detailed description of these predictors is available in Tucker
et al. (2018).

load("data/buckeye.rda")
head (buckeye, 6)

PhraseInitial PhraseFinal Phraselength WordActDiversity SemanticTypicality

1 TRUE TRUE 1 0.05973968 0.0401964

2 TRUE TRUE 1 0.05973968 0.0401964

3 TRUE TRUE 1 0.05973968 0.0401964

4 TRUE TRUE 1 0.05973968 0.0401964

5 TRUE TRUE 1 0.05973968 0.0401964

6 TRUE TRUE 1 0.05973968 0.0401964
DictDiphoneCount PhraseRate LogDuration DictDiphonePosition

1 6 5.12885 -0.9417342 1

2 6 5.12885 -0.9417342 2

11



3 6 5.12885 -0.9417342 3
4 6 5.12885 -0.9417342 4
5 6 5.12885 -0.9417342 5
6 6 5.12885 -0.9417342 6
DictDiphoneActDiversity CorpusTime DictDiphoneAbsent Word
1 2.5053406 -1.540405 TRUE alright
2 2.4392060 -1.540301 TRUE alright
3 0.3853351 -1.540198 TRUE alright
4 1.9609812 -1.540095 TRUE alright
5 2.1347266 -1.539991 TRUE alright
6 2.1825928 -1.539888 FALSE alright

Note that many variables are ‘piece-wise’ constant by word. For allright, the only variables (out
of 12) that are not repeated 6 times (once for each diphone in the dictionary pronunciation)
are DictDiphonePosition, DictDiphoneActDiversity, CorpusTime, and the response variable,
DictPhoneAbsent.

3.1 A main-effects model

We begin with fitting a standard logistic model in which the log odds is assumed to vary linearly
with the numeric predictor variables. We use the bam function from the mgcv package (Wood,
2017) (version 1.8.24), but exactly the same results are obtained with the glm function of base R.

ml = bam(DictDiphoneAbsent ~ PhraseInitial + PhraseFinal + PhraselLength +
PhraseRate + LogDuration + DictDiphoneCount +
DictDiphonePosition + WordActDiversity +
SemanticTypicality + DictDiphoneActDiversity +
CorpusTime,
data = buckeye, family = "binomial")

With the exception of PhraseRate (p = 0.0704), all predictors receive good support (the model
summary is available in the supplementary materials). The AIC for this baseline model is:

AIC(m1)

[1] 29939.64

The assumption that a covariate has a strictly linear effect may be true, but it may also be
unjustified. Often, exploratory data analysis will be required to establish whether, and for which
variables, the linearity assumption is inappropriate. The following model relaxes the linearity
assumption for all covariates using the s smoothing function from mgcv. The amount of wiggliness
that a smooth allows for is controlled by the number of basis functions k, which has 10 as default
value. This default is not motivated theoretically, and hence is a heuristic starting point. What is
important is that k& has to be set to an integer value (the ‘dimension’ of the smooth) that is large
enough. How large an initial value of k£ should be depends on the number of different values of the
predictor for which a spline is required. If there is only a handful of different values, one may want
to set k to 3 or 4. If there are thousands of different values, a possible value would be 200.

For the numeric predictors in the present data, we proceed as follows. We have two counts
with a limited range, DictDiphoneCount (7 distinct values) and DictDiphonePosition (8 dis-
tinct values). The dimension of a smooth should be lower than the number of distinct values,
so we choose k = 5. For PhraseRate (1171 distinct values), LogDuration (5842 distinct values),
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PhraseLength (29 distinct values, we take the logarithm of this variable to reduce its rightward
skew), DictDiphoneActDiversity (604 distinct values), WordActDiversity (825 distinct values),
and SemanticTypicality (825 distinct values) we go with the default. CorpusTime, however, has
no less than 27062 distinct values, and the default value of k therefore comes with the risk of
oversmoothing. We therefore set k& to 100.

buckeye$LogPhraseLength = log(buckeye$PhraseLength)

m2 = bam(DictDiphoneAbsent ~ PhraseInitial + PhraseFinal +
s (DictDiphoneCount, k = 5) +
s(DictDiphonePosition, k = 5) +
s (LogPhraseLength) +
s (PhraseRate) +
s(LogDuration) +
s (DictDiphoneActDiversity) +
s (WordActDiversity) +
s(SemanticTypicality) +
s(CorpusTime, k = 100),

data = buckeye, family = "binomial")

It is noteworthy that by allowing predictors to have nonlinear effects, we have obtained a substan-
tially improved fit:

AIC(m2)

[1] 27722.93

with a decrease in AIC of no less than 2216.7.

Figure 6 presents the partial effects of the covariates. These partial effects are centered around
zero, and represent deviations from the group means defined by the factorial predictors (here
PhraseInitial and PhraseFinal) when other covariates are held constant at their most typical
value. In other words, the partial effect of a term in the model specification is the contribution of
that term to the model predictions. The command

plot(m2, pages=1)

presents all smooths in the model in a one-page multipanel figure. Figure 6 also presents the partial
effects, but uses customized code (available in the supplementary materials) that adds histograms or
density plots and that also highlights, by means of vertical red lines, the 5, 25, 75, and 95 percentiles
of the predictors.

Panels 1 and 2 of Figure 6 indicate that there is no effect of PhraseLength and PhraseRate: the
X-axis (the horizontal red line) is within the 95% confidence interval for the full range of predictor
values. The effects of all other predictors are non-linear.

The log odds of deviation from the dictionary norm increases with the number of diphones, but
levels off for words with more than 5 diphones (panel 3). Panel 4 clarifies that the later the position
of the diphone in the word is, the greater the log odds of deviation. Apparently this effect reverses
for positions 7 and 8 (upper center panel). Here, however, data are sparse.

Unsurprisingly, the log odds of diphone deviation decreases with word duration (panel 5). As
documented in detail by Johnson (2004), segment and even syllable deletion is common in this
corpus, and as words that do not have deletions typically will be longer, a negative trend for the
bulk of the data is expected. However, the distribution of durations has a few large-valued outliers,
which give rise to the upward swing in the right-hand side of the plot. Due to the sparsity of data,
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the confidence intervals are wide. The reason that these outliers nevertheless are taken seriously
by the GAM is that the same (log) duration is repeated as many times for the six words with log
duration exceeding zero as these words have diphones. As a consequence, this handful of words has
stronger support than just the small number of words would suggest.

We see here an important advantage of GAMs over models that force the effect of duration to
be linear. In such models, outliers may exert high leverage on the regression, and typically have
to be removed from the data set. By contrast, the GAM clarifies that outliers behave differently,
highlights the associated uncertainty with wide confidence intervals, and at the same time does not
let the outliers influence conclusions about the effect of a predictor for the bulk of the data. In other
words, GAMs provide the full picture, and protects the analyst against models based on flattened
and simplified data.

The distribution of DictDiphoneActDiversity (panel 6) has a long tails. Here, we find an
S-shaped curve. For the interquartile range (the center 50% of the data highlighted by the center
vertical red lines), we observe an increase in the log odds with increasing activation diversity. The
effect goes back to zero, however, for the first and third quartiles. Strongly undulating patterns are
likewise visible for WordActDiversity (panel 7) and SemanticTypicality (panel 8).

The wiggliness of these curves is difficult to interpret theoretically. For cases such as these,
the analyst has two options. The first option is to accept that these undulations are real, and
that our theoretical understanding is too limited, or that our predictor is theoretically flawed. The
second option is to reduce the dimension of the smooth. For the present data, such a reduction
has some justification because of the abovementioned problem that lexical and phrasal variables are
constant within words, a kind of problem that often arises when working with observational data
from corpora. Since data points are not independent in the way one would like them to be, some
conservatism with respect to nonlinearity is justified. When the model is refit with &k set to 5, the
functional form of these effects becomes much simpler and easier to understand, as we shall see
below (Figure 7). Simpler curves come at the cost of a reduction in the quality of the fit (difference
in AIC: 454), but the model remains far superior to the model imposing linearity on the relation
between the response and the predictors (difference in AIC: 1762.73).

The effect of Corpus Time in the lower right panel is quite wiggly, but as we are dealing with
a predictor with 27062 distinct values, and as we have no a-priori hypothesis about how deviation
probabilities might change in the course of the interview, we accept the smooth as providing a
description of real changes over time in diphone deviation behavior.

3.2 A model with interactions

Thus far, we have considered models with main effects only. In this section, we consider interactions
involving numerical covariates. There are two basic types of interaction: an interaction of a covariate
with a factor, and an interaction of two covariates. First consider the interaction of a numerical
predictor with a factorial predictor such as PhraseFinal. PhraseFinal has two levels (TRUE/FALSE),
and an interaction of PhraseFinal with a covariate, say SemanticTypicality, requests two smooths
for this covariate, one for phrase-final words and one for words that are not phrase-final. We request
the two curves from the bam function with the by directive in the call to s:

s(SemanticTypicality, k = 5, by = PhraseFinal)
An update of model m2 that includes several interactions,
m4 = bam(DictDiphoneAbsent ~ PhraseInitial + PhraseFinal +

s(DictDiphoneCount, k = 5) +
s(DictDiphonePosition, k = 5) +
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Fig. 6: Partial effects of predictors in a GAM (m2) for the log odds of diphone deviation for speaker
40 in the Buckeye corpus.

s(LogPhraseLength) +
s(LogDuration) +
te(WordActDiversity, PhraseRate, k = 5, by = PhraseFinal) +
s(SemanticTypicality, k = 5, by = PhraseFinal) +
s(DictDiphoneActDiversity, k = 5, by = PhraseFinal) +
s(CorpusTime, k = 100),
data = buckeye, family="binomial")
AIC(m4)

[1] 28103.35

and which offers an improved fit (AIC: 28103.35) compared to model m3 (AIC: 28176.91). The partial
effects of m4 are presented in Figure 7. Panels 1 and 2 indicate that the effect of SemanticTypicality
is stronger in phrase-final position. The effect of this variable appears to be present primarily across
its fourth quartile. Panels 3 and 4 reveal an effect of DictDiphoneActDiversity that is U-shaped
for the bulk of the data points. The largest effect is again present for diphones in words that are in
phrase-final position. The downward swing for low activation diversity in the left of panel 4 appears

due to a small number of outliers.
The bottom panels of Figure 7 illustrate the three-way interaction of this model, which involves

15



two covariates, WordActDiversity and PhraseRate, and one factor, PhraseFinal. This interaction
was specified with the model term

te(WordActDiversity, PhraseRate, by = PhraseFinal, k = 5)

Here, te requests a tensor product smooth,? which estimates a wiggly regression surface (or hy-
persurface). Such surfaces are visualized with contour plots. In these contour plots, just as in
geographical maps indicating terrain height, contour lines connect points with the same partial
effect. There are two ways in which the contour map can be shown: one in which 1 SE confidence
regions are added (panels 5 and 7), and one in which color coding is used to represent the magnitude
of the partial effect (panels 6 and 8). In panels 5 and 7, dotted green lines are 1 SE up from their
contour lines, and dashed red lines are 1 SE down. In panels 6 and 8, darker shades of blue indicate
lower values, and darker shades of yellow, higher values. With the directive by=PhraseFinal, we
requested two wiggly surfaces, one for diphones in words that are not phrase-final (panels 5 and 6),
and one for diphones in phrase-final words (panels 7 and 8). In panels 6 and 8, contour lines are 0.2
units apart. Comparing the color shadings, it is clear that effects are much stronger in phrase-final
position. Comparing panels 5 and 7, it is also clear that 1 SE confidence regions are considerably
tighter in phrase-final position. Unlike panels 6 and 8, panels 5 and 7 are informative about where
there is a significant gradient. In panel 5, for instance, confidence regions of adjacent contour lines
begin to overlap for high phrase rates, indicating the absence of a significant effect.

For understanding contour plots, it can be useful to trace changes in the value of the response
with imaginary lines that are parallel to the axes. For instance, for PhraseRate to have an effect,
contour lines should be crossed when moving in parallel to the y-axis. For words that are not phrase
final, this does not happen for low values of WordActDiversity. It is only for higher values of this
activation measure that an effect becomes visible, with larger phrase rates indexing reduced log
odds of diphone deviation. When we consider imaginary horizontal lines, we cross more contour
lines for low phrase rates than for high phrase rates, indicating that there is a stronger gradient up
for WordActDiversity when PhraseRate is relatively low. It is noteworthy that for phrase-final
words, the effect of PhraseRate reverses, such that higher phrase rates predict increased instead of
decreasing log odds of diphone deviation.

Table 1 provides a summary of model m4, obtained by applying R’s general summary function
to the model object (summary(m4)). The upper part of the table provides the statistics familiar
from the generalized linear model for the parametric part of the model. The lower part of the
table provides an evaluation of the significance of the smooth terms, using tests that are described
in Wood (2013a,b). In Table 1, LogPhraseLength is associated with 1 effective degree of freedom
(edf), suggesting a linear effect of this predictor. However, from the high p-value (0.79) it is clear
that the slope of this regression line is effectively zero. Significant linear effects will show up with
1 edf and a low p-value. To obtain an estimate of the actual slope of a regression line, the model
can be refitted without the smooth, in which case the slope will be listed in the parametric part
of the model. An important property of GAMs is that if a predictor has a truly linear effect, the
algorithm will discover this, and remove all wiggliness, leaving a straight line. GAMs only admit
wiggliness where wiggliness is truly justified.

Table 1 lists summary statistics for six smooths, two smooths for each of the three interactions

with PhraseFinal. The p-values for these smooths inform us about whether these individual
smooths are likely to be just a flat horizontal line, or a flat surface. Importantly, the table does

2 For isometric predictors, i.e., predictors with values on the same scale, nonlinear interactions can be modeled
with somewhat greater precision with a thin plate regression spline smoother, which is requested with the s(). It is
important to note that when the s() function is applied to non-isometric predictors, completely misleading results
are typically obtained.
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A. parametric coeflicients Estimate Std. Error t-value p-value

(Intercept) -0.8919 0.0184  -48.4523 < 0.0001
Phraselnitial TRUE -0.2342 0.0767 -3.0548 0.0023
PhraseFinal TRUE 0.5695 0.0795 7.1608 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(DictDiphoneCount) 3.9681 3.9992  807.0226 < 0.0001
s(DictDiphonePosition) 3.9465 3.9980  767.0939 < 0.0001
s(LogPhraseLength) 1.0001 1.0002 0.0456 0.8310
s(LogDuration) 7.3465 8.3297 1491.4194 < 0.0001
te(WordActDiversity,PhraseRate):PhraseFinal FALSE 3.4963 3.8133 75.7274 < 0.0001
te(WordActDiversity,PhraseRate):PhraseFinal TRUE 5.1997 6.0181  101.2842 < 0.0001
s(SemanticTypicality ):PhraseFinal FALSE 3.6784 3.9381  485.0058 < 0.0001
s(SemanticTypicality):PhraseFinal TRUE 3.3121 3.7477  160.0054 < 0.0001
s(DictDiphoneActDiversity ):PhraseFinal FALSE 3.9554 3.9985  297.9521 < 0.0001
s(DictDiphoneActDiversity):PhraseFinal TRUE 3.8722 3.9880 56.4501 < 0.0001
s(CorpusTime) 34.2773 42.5874  714.6882 < 0.0001

Table 1: Summary table of model m4 fitted to the log odds of diphone deviation for speaker 40 in
the Buckeye corpus of American English as spoken in Columbus, Ohio.

not inform us about whether the interaction itself is significant. In other words, the situation is the
exact parallel of a linear model with a two-level factor and a covariate that is specified in R as

formula(Response ~ Factor + Factor:Covariate)

The summary of this model informs us about whether the two regression lines for the two levels of
the factor have slopes that differ significantly from zero, but it does not tell us whether there are
significant differences between the slopes. To assess whether there truly is an interaction in a GAM,
a possible first step is to plot the difference curve with the plot_diff function from the itsadug
package (van Rij et al., 2017), as shown in Figure 8.

library (itsadug)
plot_diff (m4,
view="SemanticTypicality",
comp=list (PhraseFinal = c("TRUE", "FALSE")))

When this difference curve is added to the effect of SemanticTypicality for diphones in words that
are not phrase-final (the reference level), the curve is obtained for its effect in phrase-final position.
Consistent with the significant main effect for SemanticTypicality in Table 1, the 95% confid-
ence interval of the difference curve does not include the horizontal axis: the log odds of diphone
deviation is consistently higher for phrase-final words. Given the large effect for greater values of
SemanticTypicality and the relatively constrained confidence interval, it is clear that the interac-
tion is unlikely to be reducable to just a main effect. We check this by taking model m4, replacing
the term s(SemanticTypicality, k=5, by=PhraseFinal) by the term s(SemanticTypicality,
k=5), and comparing the goodness of fit of this new, simpler model (m5, model not shown) with
that of m4, the more complex model, using the compareML function from the itsadug package.

compareML (m4, mb5)
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Model Score Edf Difference Df p.value
1 m5 38537.64 29
2 m4 38507.85 31 29.798 2.000 1.145e-13

Although m4 requires 2 more effective degrees of freedom, these additional degrees of freedom enable
it to bring the fREML score down by 29.8. The small p-value indicates that the increase in goodness
of fit outweights the increased complexity of the model.

3.3 Random effects in GAMs

It is straightforward to include random effects in generalized additive models fitted with mgcv. By-
subject random intercepts are requested with s (subject, bs="re") (notation in lme4: (1|subject)).
By-subject random slopes for a covariate are specified as s (covariate, subject, bs="re") (lme4:
(O+covariate|subject)). For factors, s(factor, subject, bs="re") directs the model to es-
timate, for each subject, random sum contrasts (Ime4: (1|factor:subject). Hence, no separate
term for by-subject random intercepts should be requested. The variance components of a GAMM
and associated confidence intervals are obtained with gam.vcomp. Unlike Ime4, mgcv does not
offer tools for modeling correlation parameters for random effects.

For corpus data, a random effect factor such as Word can cause serious problems for the analyst.
Recall that in the present dataset predictors at the word level are repeated in the dataset for each
of a word’s diphones. One might think that adding by-word random intercepts would alleviate
this problem. Technically, we can add the model term s(Word, bs="re") to m4, resulting in a
new model, m6 (not shown) that appears to provide an improved fit (for instance, AIC is down
by 3470.3). However, of the 829 word types, 383 occur once only (46.2%). As a consequence,
nearly half of the words have only one occurrence but are predicted by no less than three factorial
variables: PhraseInitial, PhraseFinal, and a random intercept. In addition, there are several
covariates that will further be specific to a given word, such as LogDuration and WordActDiversity.
Thus, we have far too many predictors to one observation. As a consequence, model m6 is severely
overspecified.

The adverse effects of this overspecification become apparent when we consider the concurvity
of the model. Concurvity is a generalization of co-linearity, and causes similar problems of inter-
pretation, in the sense that when concurvity is high, it is difficult to say which variables are driving
the model’s predictions. As when co-linearity is present, concurvity can also make estimates some-
what unstable. The concurvity function of mgev provides several measures of concurvity, each of
which is bounded between zero and one. Values close to or equal to 1 indicate there is a total lack
of identifiability. The index we consider here, which Wood describes as in some cases potentially
too optimistic, is based on the idea that a smooth can be decomposed into a part g shared with
other predictors, and a part £ that is entirely its own unique contribution. The greater part g is
compared to part f, the greater the concurvity. The observed index of concurvity is based on the
square of the ratio of the Euclidian lengths of vectors g and f evaluated at the observed values of
the predictors.

When we extract this measure from the output of concurvity(mé), we obtain the concurvity
values shown in Figure 9 in blue. The same figure shows, in red, the concurvity values of the
corresponding terms of model m4, the model that is otherwise identical, except that m4 lacks by-word
random intercepts. Concurvity values for model m6 are higher across the board, and are extremely
and unacceptably high for DictDiphoneCount and for the interactions of WordActDiversity and

SemanticTypicality by PhraseFinal.
It is clear that m6 is an overspecified model that must be simplified. We therefore completely
remove PhraseFinal and PhraseInitial from the model specification, as this will attenuate the
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adverse consequences of hapax legomena occurring with only one value for these predictors. After
further simplification, model m7, with good support for all predictors, is obtained,

m7 = bam(DictDiphoneAbsent ~ WordActDiversity +
s(DictDiphonePosition, k = 5) +
s(LogDuration) +
s(DictDiphoneActDiversity, k = 5) +
s(CorpusTime, k = 100) +
s(Word, bs="re"),
data = buckeye, family="binomial", discrete=T)

the concurvity values of which are presented in Figure 9 in green. Concurvity is now much reduced.

Given that linguistic covariates tend to be tightly correlated, and especially so for observational
data from corpora that have not been hand-curated to minimize variation in specific dimensions,
model m7 appears to keep concurvity within bounds that are perhaps reasonable. Unfortunately, m7
confronts us with another problem: the random intercepts it has estimated for Word should follow
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a Gaussian distribution, but as shown by Figure 10, they fail to do so. The tails of the observed
distribution are too short for it to be Gaussian. That a Gaussian random effect is not really appro-
priate for the present data is also apparent from the fact that the by-word random intercepts can be
predicted from SemanticTypicality, DictDiphoneCount, and WordActDiversity (all coefficients
positive, all p < 0.0001, adjusted R-squared 0.263). In other words, what should be random noise
is in fact structured variation. Part of the problem is the Zipfian distribution of words’ frequencies:
Random-effect factors with a Zipfian frequency distribution are not well suited for modeling with
Gaussian random effects (Douglas Bates, p.c.).

As George Box famously said, “all models are wrong, but some are useful” (Box, 1976). Model
m7, although far from perfect, is perhaps useful in two ways. First, it clarifies that there is substantial
variation tied to individual words. Second, it is useful as a strong adversarial attach on the predictors
of model m4 that are tied to the word. The survival of WordActDiversity in m7, albeit only as
a linear effect, is, from this perspective, an index of its robustness. At the same time, model m4,
although also not perfect, provides much more insight into how words’ properties (rather than
sublexical properties) may co-determine the log odds of diphone deviation. Because m4 is a logistic
model, there is no assumption that the errors of this model should be Gaussian and that they should
be independently and identically distributed. Nevertheless, model m4 is overly optimistic because
the observations from which it is constructed are not independent but, as shown by the analysis of

concurvity, cluster by word in linguistically meaningful ways.

One important new kind of random effect that mgecv makes available is the factor smooth. In a
model with covariates with linear effects, it is possible that regression lines for individual subjects
differ both with respect to their slopes and with respect to their intercepts. The nonlinear coun-
terpart of this situation is that subjects have their own wiggly curves. Factor smooths implement
such wiggly random effects. For example,
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Fig. 11: By-speaker factor smooths for CorpusTime in a mixed GAM fitted to the log odds of
diphone deviation in the Buckeye corpus, including all speakers. Smooths for selected speakers are
highlighted.

s(CorpusTime, Speaker, bs = "fs", m = 1)

requests wiggly curves for log odds as a function of CorpusTime for all speakers in the corpus.
Figure 11 illustrates by-speaker factor smooths in the Buckeye corpus. Each line represents a
speaker. Some speakers show considerable wiggliness, whereas other speakers show only small local
ups and downs. As the curves have their own intercepts, in a model with factor smooths, no separate
term for by-speaker random intercepts should be included.

As is the case for random effects in the linear mixed model, the factor smooths are subject
to shrinkage. Importantly, factor smooths are set up in such a way that if there is no wiggli-
ness, horizontal straight lines are returned. In this case, the model has become a model with just

straightforward random intercepts.

In the linear mixed model, a model with by-subject random intercepts as well as by-subject
random slopes will provide population estimates for intercept and slope. In the case of factor
smooths, it is possible to request both a general, speaker-independent smooth, together with by-
speaker factor smooths.

s(CorpusTime) + s(CorpusTime, Speaker, bs = "fs", m = 1)

In this case, mgcv issues a warning, as in general multiple smooths for the same covariate should be
avoided. For this special case, however, this warning can be ignored (Simon Wood, p.c.). For large
datasets, it should be kept in mind that estimating factor smooths for large numbers of speakers or
words can be computationally very expensive.

It is both an empirical and a theoretical issue whether a separate smooth that is supposed to
be common to all speakers, such as s(CorpusTime) in the above specification, is really necessary
and makes sense. Is it theoretically justified to expect that when speakers go through a one-hour
interview, there truly should be a common way in which the diphones they realize in their speech
deviate from the standard language? If not, perhaps the main effect for CorpusTime should be
removed.

It is noteworthy that the interpretation of the individual curves estimated by a factor smooth
is different from that of random intercepts and slopes in the linear mixed model. The individual
curves provide an estimate of how a given speaker went through her/his interview, but how the
same speaker would behave in a replication interview is unlikely to be a variation of the same curve
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with greater or smaller amplitude. Instead, the expectation is that the speaker will show a similar
amount of wiggliness, but with ups and downs at different moments in time.

Thus, GAMs not only offer the analyst new possibilities for understanding complex relations in
large volumes of data, they also confront us with new challenges. For instance, in Figure 11, speaker
S40 shows substantial fluctuations in the log odds of diphone deviation. Such large deviations are
unlikely to be due to just chance, and require further explanation and further reflection on the
temporal dynamics of language use.

3.4 Extensions of GAMs

The toolkit of smoothing splines (see the documentation for smooth.terms for an overview of the
many different splines that mgev implements) is available for Gaussian models, as well as for
Poisson and Binomial responses, using the family directive familiar from the generalized linear
model (glm). GAMs allow for a more complex linear predictor 7, but otherwise the linear predictor
is used exactly as in the generalized linear model, as summarized in section 2.1. When the residuals
of a Gaussian model follow a t-distribution rather than a normal distribution, the family directive
can be set to scat, which requests a scaled t model for the residuals. For multinomial logit models,
the family directive is set to multinom, and for the modeling of ordinal response variables, family
is set to ocat. The documentation for scat, multinom, and ocat provides further detail on these
extensions of the generalized additive model and their use.

3.5 Reporting GAMM models

The reportage of a generalized additive (mixed) model will generally include a summary table such
as Table 1. The summary tables generated by the mgcv package report both thin plate regression
spline smooths as well as random effects with the s() notation. As this can cause confusion for the
reader, it is advisable to edit the names of the smooth terms in the model, for instance by renaming
a random effect term s(Word) as by-word random intercepts, and a factor smooth s(Subject,
Trial) as by-subject factor smooth for Trial. Furthermore, it is important to present graphs
for the non-linear effects in the model, as the functional form of these effects cannot be deduced
from the effective degrees of freedom.

4 Key Readings

Finally, as model interpretation and model criticism with GAMMSs require a high level of under-
standing of both the method and the theoretical concepts it builds on, it is advisable to engage in
a deeper exploration of the issues at hand prior to applying the models in a productive research
environment. Here, we provide an overview of key readings, that the analyst may find useful for
exploring various types of data and uncovering and adressing effects commonly found in human
response data.

First, Wood (2017), a standard reference on GAMs, provides a necessary background in linear
models linear mixed models and generalized linear models and introduction to the theory and
applications of GAMs, complemented by a wide range of exercises.

In addition to that, we suggest the following articles, which go in depth into the possibilities
offered by GAMMSs for dealing with various types of language data and uncovering and handling
autocorrelation arising from experiment structure. Baayen et al. (2017b) show techniques offered by
GAMMs on the analysis of response times in a word naming task, investigation of a pitch contour
task in a word naming experiment and a model fitted to the EEG response amplitude to visually
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presented compound words. Baayen et al. (2017¢) illustrate on three data sets how human factors
like learning or fatigue may interact with predictors of interest, both factorial and metric, and
demonstrate why fitting maximally complex models is not an advisable strategy, especially within
the framework of the generalized additive mixed effects model. Wieling (2018) offers a hands-
on tutorial, including the original data and all R commands, for analysing dynamic time series
data on the example of articulator trajectories observed using electromagnetic articulography. The
paper leads the reader through the steps of data exploration, visualization, modeling of complex
interactions and model criticism, introducing a wide variety of techniques and strategies with a
detailed and comprehensive rationale for the modeling decisions, offering the reader an opportunity
to replicate the analyses and gain more understanding about the material. van Rij et al. (2019) is a
tutorial introduction to GAMMSs for pupilometry data, illustrating several methods from the itsadug
package. Additionally, the extended online documentation of the itsadug package provides prac-
tical examples to guide visual inspection of GAMM models (https://cran.r-project.org/web/
packages/itsadug/vignettes/inspect.html), checking for autocorrelation and dealing with it
(https://cran.r-project.org/web/packages/itsadug/vignettes/acf.html) and significance
testing (https://cran.r-project.org/web/packages/itsadug/vignettes/test.html).
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