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Psycholinguistic experiments on visual word recognition in Dutch and other lan-
guages show ubiquitous e¬ects of word frequency for regular complex words. The
present study presents a simulation experiment with a computational model for mor-
phological segmentation that is designed on psycholinguistic principles. Results sug-
gests that these principles, in combination with the presence of form and frequency
information for complex words in the lexicon, protect the system against spurious
segmentations and substantially enhance segmentation accuracy.
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1. Introduction

When encountering the Dutch word bestelauto, Dutch readers understand this ortho-
graphic string to denote `delivery van’. They hardly ever become aware of an alter-
native legitimate interpretation, `berry counting car’, corresponding to the segmen-
tation bes + tel+ auto instead of the correct segmentation be + stel + auto. Neither do
readers seem to have any di¯ culty in discounting uninterpretable sequences of Dutch
morphemes that likewise span the orthographic string, such as bes + t + el + auto.
The question addressed in this study is how readers might accomplish the selection
of the correct segmentation of a morphologically complex word.

The traditional approach in computational linguistics to morphological parsing
proceeds in two steps. First, the set of possible segmentations that span the input
string is calculated. Next, the combinatorial properties of morphemes are used to rule
out illegal segmentations such as bes + t + el + auto, in which the verbal in®ectional
su¯ x -t follows a noun instead of a verb. In some statistically enhanced methods,
co-occurrence frequencies are used to distinguish between probable parses (`delivery
van’) and improbable parses (`berry counting car’).

The algorithm for determining the most probable segmentation described in the
present paper is based on a rather di¬erent, psycholinguistically motivated concep-
tual framework, that of parallel lexical activation and lexical competition. The wet-
ware of the human brain makes use of massively parallel and interactive processing,
in contrast to the hardware of the present-day single-processor PC which operates
sequentially.

The lexicon on which this algorithm operates also di¬ers from the lexicons tradi-
tionally found in linguistics and computational linguistics. The traditional approach
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in linguistics to the problem of morphological parsing is to assume that irregular com-
plex words are stored in a lexicon along with the basic formative elements (stems
and ā xes), and that rules are used to segment regular complex words into their
component constituents. However, various psycholinguistic studies report that high-
frequency complex words are responded to more quickly and accurately in vari-
ous experimental tasks than low-frequency words. This word-frequency e¬ect has
been obtained for both regular derived and regular in®ected words in a range of
languages (English, see Taft (1979), Sereno & Jongman (1997), Allegre & Gordon
(1999); Dutch, see Baayen et al . (1997b, 2000a), Bertram et al . (2000), Schreuder et
al . (1999); Italian, see Baayen et al . (1997a); and Finnish, see Bertram et al . (1999)).
This word-frequency e¬ect shows that human morphological processing is sensitive to
the co-occurrence frequencies of constituents in regular complex words. The empir-
ically observed knowledge of co-occurrence frequencies of morphemes in the mental
lexicon is in line with statistically enhanced parsing models in computational lin-
guistics that make use of conditional probabilities (hidden Markov models, Charniak
(1993)) or databases with stored exemplars (data-oriented parsing, Bod (1998); lazy-
learning based induction, Van den Bosch et al . (1996) and Daelemans et al . (1999)).
The ­ rst aim of the present paper is to gauge the role that co-occurrence information
may play in Matcheck, a computational model for the identi­ cation of simplex and
complex words, which is articulated within the psycholinguistic framework of parallel
lexical activation and lexical competition (Baayen et al . 2000b; Baayen & Schreuder
1999). A second aim is to ascertain to what extent cognitive principles of human
perception might contribute to enhancing segmentation accuracy.

In what follows, we ­ rst outline the basic mechanisms of this model. We then
analyse the performance of the model by means of a simulation study using two
di¬erent lexicons, one lexicon with only stems and a¯ xes, and one lexicon with
stems, a¯ xes and, in addition, whole-word representations for regular complex words.
We will show that segmentation performance is substantially enhanced when the
latter lexicon is used in combination with an algorithm that implements the Gestalt
principle that the whole has a perceptual advantage over its parts. We brie®y review
the di¬erences between the kind of co-occurrence information that plays a role in our
model and the kind of information used in Markovian statistical models. Finally, we
discuss possible implications of our approach for natural language processing (NLP)
tools.

2. A psycholinguistic segmentation model

Matcheck distinguishes between a number of successive processing stages. The ­ rst
stage concerns perceptual identi­ cation, the mapping of sensory visual or auditory
information onto modality-speci­ c form representations stored in long-term memory.
We will refer to these form representations as access representations. Each access
representation provides pointers to semantic and syntactic information in long-term
memory.

During the second stage, the segmentation stage, access representations are acti-
vated over time by the sensory input. This segmentation stage is comparable with
the stage of lexical look-up by means of, for example, an L-tree (Sproat 1992). Once
an access representation reaches a given threshold activation level, it is copied to a
short-term memory bu¬er.
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Once the representations in the short-term memory bu¬er provide full, non-over-
lapping spannings of the input, these segmentations are passed on to the following
processing stages of licensing (the checking of subcategorization compatibilities),
composition (the compositional computation of the meaning of the whole from its
parts) and semantic activation (the co-activation of semantically related representa-
tions in long-term memory).

At present, the only processing stage that is computationally implemented is the
segmentation stage, and it is the performance of this segmentation stage and the
selection of the most appropriate segmentation of the input that is the topic of the
present paper.

The segmentation model implements the activation metaphor that is commonly
used in psycholinguistic modelling. This metaphor is meant to capture the experi-
mental observation that, in human processing, information comes in over time, and
that its availability is not an all-or-nothing question, but rather that of accumulat-
ing evidence. In the activation framework, access representations are assigned rest-
ing activation levels that are proportional to their frequency of occurrence. Thus,
high-frequency words will reach a preset activation threshold more quickly than low-
frequency words.

One way in which we can gauge the behaviour of the segmentation model is to
study the di¬erent time-steps in the model at which full spannings of the input
become available. It is hoped that the order in which such full spannings become
available over time re®ects their ranking in terms of correctness and semantic plau-
sibility. Thus far, this issue has not been a topic of systematic investigation. Before
addressing this issue by means of a simulation study in x 3, however, we ­ rst introduce
some more technical details.

In Matcheck, a¯ xes, stems and full forms have modality-speci­ c access represen-
tations with activation weights a(w; t). Lexical competition is modelled by imposing
a probability measure on the activation weights of the access representations for a
given time-step t. Once the probability of identi­ cation pw;t of an access representa-
tion w,

pw;t =
a(w; t)

PV
i = 1 a(wi; t)

; (2.1)

with V the number of access representations in the lexicon, exceeds a pre-set prob-
ability threshold , it is copied into the short-term memory bu¬er.

With immutable activation weights, we would have a completely static system.
Activation weights change, however, in two ways. Once an access representation
has reached threshold activation level, its activation weight will begin to decrease,
thereby e¬ectively freeing activation probability for other access representations.

The second way in which the system is made dynamic is by having access repre-
sentations enter activation decay at a moment in time that is proportional to their
similarity to the target word. The similarity of an access representation to the target
word in the input is de­ ned by means of a similarity metric based on an edit distance
measure. Words that are very similar to a given target word will have increasing acti-
vation weights for longer numbers of time-steps than words that are very dissimilar.
Consequently, the onset of activation decay is located earlier in time for dissimilar
words than for similar words. A detailed initial formal de­ nition of Matcheck is
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available in Baayen et al . (2000b). In what follows, we brie®y present the main con-
cepts and the way in which they have been re­ ned in the current version of the
model.

The similarity metric de­ nes a span of time-steps during which an access represen-
tation is `on hold’, i.e. during which its activation weight is allowed to increase. Let
the indicator function H(w; t) be 1 when the access representation w is `on hold’ at
time-step t, and 0 otherwise. We express the activation weight of w at t as a function
of its activation weight at the previous time-step. Starting with an initial activation
weight equal to its frequency fw in a given corpus, a(w; 0) = fw, we have

a(w; t) = I[H (w;t)= 1]

a(w; t 1)

wi

+ I[H (w;t)= 0][a(w; 0) + wi
fa(w; t 1) a(w; 0)g]:

(2.2)

The ­ rst term in (2.2) speci­ es that if an access representation is on hold, its new
activation weight is the product of its activation weight at the previous time-step and
the reciprocal of its decay rate, wi

. The second term in (2.2) implements asymptotic
decay to the original resting activation level at the initial time-step t = 0 for access
representations that are no longer on hold.

Each access representation wi is assigned its own decay rate wi
and activation

rate 1
wi

, which speci­ es how quickly words become activated and how quickly they
decay again. The value of the by-item decay rate, wi

, is determined by two opposing
principles. The ­ rst principle assigns higher decay rates to shorter and more-frequent
morphemes, enforcing rapid activation and rapid decay. This principle is implemented
by means of the function g( ; ). Let L(wi) denote the length of wi in letters, let fwi

denote the frequency of wi, and let be the baseline decay rate. We can now de­ ne
g( ; ) as follows:

g( ; ) =
L(wi)

L(wi) + ( =L(wi)) log(fwi
)
: (2.3)

Large values of the `Spike’ parameter , > 0, lead to lower decay rates and higher
activation rates, especially so for longer words, as exempli­ ed in the right-hand panel
of ­ gure 1, leading to spike-like activation patterns over time. By means of , we can
enhance the identi­ cation of short high-frequency in®ectional a¯ xes.

The second principle that co-determines the decay rate of access representations
implements the Gestalt principle that the whole takes precedence over the parts
in recognition: `forest before trees’ (Navon 1977). This principle is realized by the
`forest’ parameter , > 0, in the function f( ; ). Denoting the target word by T ,
we have:

f( ; ) =

8
><

>:
+ (1 )

jL(wi) L(T )j
max(L(wi); L(T ))

; i¬ > 0;

i; otherwise:

(2.4)

The left-hand panel of ­ gure 1 illustrates, ­ rstly, that words that are much shorter or
much longer than the target word receive smaller activation rates, and, secondly, that
decreasing the value of leads to an increased contrast in activation rate between
words similar and dissimilar in length to the target word. Smaller values of lead
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Figure 1. The e® ect on the activation rate (1= ) of the forest{trees parameter (left panel,
= 1:0; 1:5; 2:0; 2:5; 3:0, for a target word with length 7, = 0:3, and competitor access repre-

sentations with lengths ranging from 1 to 15) and the Spike parameter (for word lengths 2
and 8 with as baseline = 0:3).

to a bigger advantage of the whole over its parts. Finally, we now de­ ne the by-item
decay rate, wi

, by composition of the two functions for the two principles:

wi
= f(g( ; ); ): (2.5)

As shall become clear below, and are crucial in order to allow the model to make
optimal use of co-occurrence information simultaneously with e¯ cient segmentation.

The de­ nitions of a(w; t) and the decay rate wi
di¬er from those given in Baayen

et al . (2000b). In their initial de­ nition of Matcheck, there is only the general decay
rate for all words, irrespective of their frequency and length. The revised de­ nition of
how the activation weights change, equation (2.2), is a ­ rst step towards modelling
activation weight as a function of frequency of exposure. This necessitated modelling
lexical competition by means of raising the activation weights of compatible access
representations instead of decreasing the activation weights of incompatible access
representations, as in Baayen et al . (2000b).

An important psycholinguistic feature of the model is the prominence assigned to
the left and right edges of words (see Cutler et al . (1985) for a review of experimental
evidence). The activation weights of access representations are increased only for
constituents that are aligned with the left or right edge of the word, or that are aligned
with access representations that have reached threshold and that themselves are edge
aligned, either with the word edge itself or with another edge-aligned constituent in
the short-term memory bu¬er. In this way we avoid creating a system in which
rest in prestige becomes fully activated, because ige is not a legitimate constituent.
Conversely, bestel (`deliver’) in bestelauto (`delivery van’) quickly becomes available
for activation increase through a part{whole Gestalt principle once either auto or
bestel have reached activation threshold.

Figure 2 illustrates the time course of the probabilities of identi­ cation for selected
access representations when bestelauto, `delivery van’, is presented to the model in
the visual modality. The ­ rst access representation to reach threshold is the high-
frequency pre­ x be-, followed by auto, `car’, the verb bestel, `deliver’, the full form
bestelauto, and various other embedded words such as best, `best’, and bes, `berry’.
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bestel + auto 25 (correct)

bestelauto 26 (correct)

be + stel + auto 41 (correct)

be + s + tel + auto 61 (incorrect)  

bes + tel + auto 61 (possible)

Figure 2. Probability of identi¯cation p(w; t) for selected access representations as a function of
time-step t, with activation threshold = 0:3, for bestelauto, d̀elivery van’ . The time-steps at
which full spannings become available are listed in the lower right-hand corner.

The ­ rst full spannings become available at time-step 25, bestel + auto, at time-
step 26, bestelauto, and be+stel+auto at time-step 41. These are all correct analyses.
Incorrect segmentations follow 20 or more time-steps later.

Note that, although full-form knowledge is available in the form of access repre-
sentations for bestelauto itself, the ­ rst analysis to become available is based on a
segmentation of the input into its immediate constituents and not the full form. How-
ever, depending on the complexity of subsequent lexical processing at the licensing
and composition stages, it may happen that it is nevertheless a full-form representa-
tion that is ultimately the ­ rst to activate the full semantics of the target word. In
this sense, our model is a dual route model in which an access route based on full-form
information runs in parallel with an access route based on decomposition. We are
currently implementing the post-segmentation processes of licensing and composition
in an explicit computational model.

3. Segmentation performance

How well does the segmentation module of Matcheck succeed in selecting probable
segmentations and in assigning a low priority to improbable and incorrect segmen-
tations? To gauge the performance of the model, we randomly selected two sets of
complex words from the Celex lexical database. The ­ rst set contained 200 words
with an orthographic length in the range of 5{12 letters. The second set contained
100 words with an orthographic length in the range 13{20. For both sets, we com-
pared the performance of the model using two lexicons: a full-form lexicon with
98 430 entries, and a parse-only lexicon with 15 015 entries. The parse-only lexicon
is a subset of the full-form lexicon that only contains simplex words and a¯ xes. The
full-form lexicon contains entries for forms such as bestel and bestelauto in addition
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Table 1. Statistics for the kinds of segmentations for the two test sets

(Mean, median and range of the number of correct, possible, and incorrect segmentations by
words. Count: the number of words with at least one correct/possible/incorrect segmentation.)

Enhanced race model

word lengths 5{12 word lengths 13{20
z }| { z }| {

correct possible incorrect correct possible incorrect

mean 3.1 0.3 3.3 3.2 0.7 8.7

median 3.0 0.0 2.0 3.0 0.0 5.5

rangeL 1 0 0 1 0 0

rangeU 8 3 24 10 6 69

count 200 44 151 100 30 85

Full parsing model

word lengths 5{12 word lengths 13{20
z }| { z }| {

correct possible incorrect correct possible incorrect

mean 1.2 0.2 2.4 1.4 0.3 7.9

median 1.0 0.0 1.0 1.0 0.0 4.0

rangeL 0 0 0 0 0 0

rangeU 4 2 19 6 4 51

count 197 35 146 96 16 82

to the basic morphemes be-, stel, and auto. The full-form lexicon contains full-form
representations up to and including a word length of 12 letters, in order to gauge the
performance of Matcheck for novel forms for which it cannot rely on stored infor-
mation in its lexicon. Both lexicons were derived from the Celex lexical database
(Baayen et al . 1995), which is based on a corpus of 42 million words of written
Dutch. The initial activation weights of the entries in the lexicons are identical to
the frequencies of the corresponding words in this corpus. A¯ xes were assigned ini-
tial activation weights equal to the summed frequencies of complex words in which
they appear as constituents in Celex. Allomorphy is handled by separate listing
of allomorphic variants. Thus, using an English example, a form such as easier is
assigned two representations in the full-form lexicon, the full-form representation
(easier ), and, as a representation of the base, the orthographic allomorph easi.

For the set of shorter words, the average number of words and morphemes in
the full-form lexicon embedded in these words was 12.8 (range 4{33). For the set
of longer words, the average number of embedded morphemes and words was 21.9
(range 10{33).

Table 1 summarizes the main performance characteristics for the two test sets, for
two di¬erent simulation experiments. The ­ rst simulation experiment uses the full-
form lexicon and the revised model de­ nition outlined in the previous section with

= 0:3, = 1:2, = 1:5 and = 0:3. We will refer to this simulation as the `enhanced
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Table 2. Segmentations available at ¯rst time-step

(The ¯rst segmentations to become available for the two test sets of words (lengths 5{12 and
lengths 13{20) using a full-form lexicon and a parsing lexicon.)

enhanced race full parsing
z }| { z }| {

word length 5{12 13{20 5{12 13{20

correct segmentation(s) only 194 82 133 55

possible segmentation(s) only 5 3 5 1

incorrect segmentation(s) only 1 4 30 12

combinations of segmentation 0 11 32 32

total number of segmentations 200 100 200 100

race model’. The second simulation experiment uses the full parsing lexicon, the
smaller lexicon that only contains simplex words and a¯ xes. Here, we disabled the
spike and forest options by setting and to zero, in order to ascertain the behaviour
of the model in its simplest form. We will refer to this experiment as the `full parsing
model’. The rows labelled `mean’ and `median’ present the mean and median number
of correct, possible and incorrect segmentations. For our working example, bestelauto,
examples of correct analyses are bestelauto and bestel+auto, an example of a possible
but implausible segmentation is bes + tel + auto, and an example of an incorrect
segmentation is bes+t+el+auto. Table 1 also lists the corresponding lower (`rangeL’)
and upper (`rangeU’) ranges. Finally, the rows labelled `count’ present the counts
of words for which at least one correct segmentation was generated, the counts for
which at least one possible segmentation was generated, and the counts for which at
least one incorrect segmentation was produced. The `count’ row for the full parsing
model shows that the model failed to produce a correct parse for 200 197 = 3 words
of length 5{12.

Note that, unsurprisingly, the longer words generally have larger numbers of seg-
mentations, especially so in the case of Incorrect segmentations. Also note that the
numbers for the enhanced race model are slightly larger than those for the full parsing
model, not only for the correct and possible segmentations, but also for the incor-
rect segmentations. Apparently, the larger number of words in the full-form lexicon,
among which we ­ nd morphologically correct substrings such as bestel (`deliver’) in
bestelauto (`delivery van’), does not, by itself, lead to an a priori numerical advan-
tage for correct segmentations. Finally, note that the summed numbers of possible
and incorrect segmentations are larger than the numbers of correct segmentations
in the mean and, except for word length 5{12 in the enhanced race model, also
in the median. Generalizing over the two lexicons in the two experiments, we may
conclude that the probability of selecting a correct segmentation at random is less
than 0.5.

How well does Matcheck succeed in selecting correct parses? The way in which
Matcheck assigns a ranking to di¬erent segmentations is in the order in which
it makes the segmentations available over time. Ideally, the ­ rst segmentation to
become available should be the correct one. The later a segmentation arrives, the
less likely it is to be useful for further (human) processing.
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Table 2 classi­ es the kinds of segmentations that are the ­ rst to become available.
First, consider the full parsing model. For this simulation, 133 of the 200 words
of length 5{12 are assigned one or more correct segmentations, without any other
kinds of segmentations becoming available at the same time-step. The corresponding
numbers for possible (but implausible) and incorrect segmentations are 5 and 30,
respectively. Finally, 32 of the 200 words show combinations of correct and incorrect
segmentations. For the 100 words of length 13{20, performance drops, with, for
example, an increase from 16% to 32% of `ambiguous’ time-steps with multiple kinds
of segmentations, and with only 55% instead of 67% of the words being assigned
correct segmentation(s) exclusively.

Turning to the enhanced race model, we observe a much higher success rate. For
words of length 5{12, 194 out of 200 emerge with exclusively correct segmentations.
Of the remaining ­ ve words, moreover, four are assigned implausible but linguistically
legal segmentations. Ambiguities due to the simultaneous presence of di¬erent kinds
of segmentations, both correct and incorrect, do not arise. Interestingly, less than
half of the correct segmentations (92 out of 200) can be attributed to full forms
being the ­ rst to become available. This shows that our high success rate is not due
to the `trivial’ full-form segmentation being always the ­ rst to arrive.

The performance of Matcheck for the 100 longer words is less accurate. This
is probably due to two factors: the larger numbers of possible segmentations for
longer words (see table 3); and the absence of full forms in Matcheck’s lexicon.
Even though these words are well-established words according to Celex, we have
given them the status of neologisms in the simulation in order to gauge how well
Matcheck performs on unseen words. For 82 out of 100 words, a correct segmenta-
tion is the ­ rst to arrive, a considerable improvement over the 55 out of 100 for the
full parsing model. In the 11 cases in which combinations of segmentations arrive,
a correct segmentation is always present. And if we allow ourselves to exclude as
a priori incorrect those segmentations in which exclusively word ­ nal morphemes
appear in word initial position in a segmentation, the number of correct segmen-
tations increases to 94 out of 100. This suggests that further enhancements of the
segmentation module are worth developing, especially as the segmentation stage of
Matcheck does not make use of any linguistic information at all, either semantic
information to rule out possible but improbable segmentations, nor subcategorization
information to rule out incorrect segmentations.

4. Comparison with statistical language models

How does the present psycholinguistically motivated segmentation algorithm com-
pare with standard statistical approaches using Markov models, for which only
weak psycholinguistic claims are made? The two approaches share the belief that
co-occurrence probabilities are part and parcel of morphological parsing. The two
approaches di¬er in two respects. First, the accuracy of Matcheck crucially depends
on cognitive insights such as the `forest-before-trees’ Gestalt principle. Second, the
two techniques di¬er with respect to what kind of co-occurrence probabilities are
used. As Matcheck assigns segmentations a ranking in terms of the time-step at
which a full spanning becomes available without speci­ cation of the internal hierar-
chical structure of the segmentation, we compare its temporal probability ranking
with the probabilities assigned to strings of morphemes by a simple hidden Markov
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Table 3. Morphological n-gram frequencies and probabilities

(Frequencies and probabilities of the morphological unigrams, bigrams, and trigrams in onwerk-
baar, ùnworkable’ .)

frequencies probabilities

unigram

on- 125 564 Pr(on-) = 125 564=N

werk 21 018 Pr(werk) = 21 018=N

-baar 37 721 Pr(-baar) = 37 721=N

bigram

onwerk 256 Pr(werk j on-) = 256=125 564 = 0:0020

werkbaar 34 Pr(baar j werk) = 34=21 018 = 0:0016

trigram

onwerkbaar 9 Pr(baar j on-; werk) = 9=256 = 0:0352

model using trigrams and smoothing with unigrams and bigrams (Charniak 1993,
p. 40),

Pr(wn j wn 2;n 1) = 1 Pr(wn) + 2 Pr(w j wn 1) + 3 Pr(w j n 2; n 1); (4.1)

with
P

i i = 1. Using as an example the complex word onwerkbaar, `unworkable’,
we calculate the morpheme unigram, bigram and trigram probabilities from the
corresponding frequencies in a given corpus of size N , as shown in table 4.

The bigram frequency for on+werk is obtained by summation of the frequencies of
onwerkbaar itself, onwerkelijk, `unreal’, and onwerkzaam, `ine¬ective’. (The sequence
on + werk does not appear independently in Dutch.) Similarly, the bigram frequency
for werkbaar is obtained by summation of the frequencies of werkbaar, onwerkbaar
and verwerkbaar, `processable’. The likelihood of the sequence on + werk + baar in a
hidden Markov model equals the product of 1 Pr(on-), 1 Pr(werk) + 2 Pr(werk j
on-) and 1 Pr(-baar) + 2 Pr(-baar j werk) + 3 Pr(-baar j on-; werk), using the
probabilities in table 3 and assuming that estimates for the smoothing parameters,

i, are available.
These probabilities di¬er from those that are allowed to play a role in Matcheck

as initial probabilities of identi­ cation.
Thus, ­ rst, the sequence on+werk, which has a non-zero bigram probability in the

hidden Markov model, is not represented by an independent access representation in
our psycholinguistic model, because onwerk is not an existing word in Dutch.

Second, even though the probability Pr(-baar j werk) is paralleled by an access
representation for werkbaar, the access representation of werkbaar receives, as its
initial activation weight, the frequency of werkbaar, and not the summed frequen-
cies of werkbaar, onwerkbaar, and verwerkbaar. The reason for not cumulating the
frequencies of onwerkbaar and verwerkbaar with the frequency of werkbaar is that
recent experimental studies of cumulative token frequency e¬ects have revealed that
a type count, but not a token count, of morphological descendants co-determines
response latencies, as shown by Schreuder & Baayen (1997) for simplex words and
De Jong et al . (2000) for complex words.
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Third, the probability that on- is followed by werkbaar, Pr(werk, baar j on-),
does not play a role in the hidden Markov model, while in Matcheck the access
representations of on- and werkbaar are free to combine to deliver a full spanning
for onwerkbaar.

Thus, our present approach is more similar to statistical methods that make use
of lazy learning (Van den Bosch et al . 1996; Daelemans et al . 1999) or data-oriented
parsing (Bod 1998) than to techniques based on hidden Markov models, in that
co-occurrence sequences are only taken into account when they represent attested
constituents.

5. Discussion

When coupled with a full-form lexicon, Matcheck reveals good performance (97%
correct initial segmentations, of which slightly less than half are due to full-form
segmentations) for known words and reasonable performance (82{94% correct initial
segmentations) for neologisms. Focusing on the words with length 5{8, for which full
forms are available in the lexicon, we observe a reliable correlation of the time-step at
which a correct segmentation becomes available and (log) word frequency (r = 0:51,
t(196) = 8:37, p < 0:0000), mirroring the correlations between response latencies
and word frequency in various psycholinguistic experimental tasks (see, for example,
Bertram et al . 2000b). Although the segmentation performance of Matcheck is
surprisingly good, it will probably prove impossible to enhance the performance to
a full 100% for any kind of complex words. The model needs to be enriched with
additional modules that exploit subcategorization and semantic knowledge in order
to handle adequately those possible and incorrect segmentations that happen to
arrive before, or simultaneously with, correct segmentations.

To what extent might Matcheck be useful for general NLP purposes, as opposed
to psycholinguistic modelling? Given the high degree of accuracy with which Mat-
check assigns priority to the correct segmentations, we expect that our algorithm
might be useful in NLP involving morphological processing, as, for instance, in text-
to-speech systems. Possibly, the implementation of well-motivated psychological cog-
nitive principles in language engineering may lead to improved tools, just as the
incorporation of standard statistical techniques leads to enhanced performance.

However, running Matcheck on large full-form lexicons is very time consuming.
On a Sun Sparc Ultra-10 elite 30 workstation, the segmentation of a single complex
word requires roughly 1.5 min. Interestingly, we have found segmentation perfor-
mance to be nearly equally accurate when the algorithm is applied not to all 98 430
words in our full-form lexicon, which we did for psycholinguistic reasons, but just
to the set of embedded strings (including the full form, if present) in the lexicon for
a given test word. In this case the program takes only a few seconds to complete.
This suggests that it might be feasible to incorporate the Matcheck algorithm in
morphological parsers used in practical NLP tools.

Whether the Matcheck algorithm will also be useful outside the domain of mor-
phological segmentation in, for instance, sentential parsing, is unclear. The psy-
cholinguistic principles that we have built into Matcheck and that have consid-
erably improved its performance are speci­ c to the domain of lexical processing, the
domain in which, at least in human language processing, the role of storage of form
and meaning for complex linguistic structures is most prominent. What we have
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learned from the present study is that, paradoxically, it is precisely this storage of
full-form information in the lexicon that enhances morphological segmentation.

This research was supported by a Pionier grant of the Dutch National Research Council (NWO)
to the ¯rst author.
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Discussion

N. Ostler (Linguacubun Ltd, Bath, UK ). You discussed English and Dutch mor-
phology, but will your approach also apply to highly in®ected agglutinative lan-
guages?

R. H. Baayen. We are collaborating with colleagues in Finland to explore this
question. Some results have been obtained on shorter words. My Finnish colleagues
think that, for such shorter words, the only thing that takes place in visual processing
is the storage of derived forms and compounds, but not in®ections.

F. Pereira (AT & T Laboratories, Florham Park, NJ, USA). Is your contrast of the
Bloom­ eldian view with your own tabulating one not somewhat excessive?

R. H. Baayen. Well, perhaps, but proponents of the Bloom­ eldian view ­ nd our
data very problematic in the sense that they contradict everything that they believe
to be true about how the human cognitive system works, namely that there are
symbolic rules that do the actual processing with no storage mechanism.

R. Rosenfeld (Carnegie Mellon University, Pittsburgh, PA, USA). I wonder to
what extent your inspiration from the architecture of the human brain had any e¬ect
on the success of the experiments that you described. Are there other competing
statistical methods that are not inspired by the connectionist way of thinking? Are
you aware of any model in the domain of psycholinguistics that has really addressed
the issue of computational tractability?

R. H. Baayen. Connectionist models, which are excellent pattern matchers, do not
work with current technology when large lexicons (greater than 5000 words or so)
are used. However, the purpose of such experiments in psycholinguistics is not to
test if a model will work in the real world, but to see if it explains what one sees in
the lab. What we are trying to do is to see if one can build a model that can do a
reasonable job in actual segmentation work, and at the same time use an algorithm
that is psycholinguistically motivated.

K. I. B. Sp�arck Jones (University of Cambridge, UK ). Could you say something
about where the frequency data is obtained from and how much data one needs?

R. H. Baayen. We used around 40 million words as source data. Since the source
comes from the written language, one might get better evidence if spoken language
data were used instead.

M. Huckvale (University College London, UK ). Could you comment on the role
of full forms and why performance is improved in their presence?

R. H. Baayen. Full forms are merely present; hence, the amount of probability in
the system for the right kind of form is increased. The full forms protect the system
against many possible, but incorrect, parses containing high-frequency morphs. But
the system retains the capability to analyse neologisms, not just full forms.
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