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Abstract: The initial stage of language comprehension is a multi-label classi-
fication problem. Listeners or readers, presented with an utterance, need to dis-
criminate between the intended words and the tens of thousands of other words
they know. We propose to address this problem by pairing a network trained with
the learning rule of Rescorla and Wagner (1972) with a second network trained
independently with the learning rule of Widrow and Hoff (1960). The first net-
work has to recover from sublexical input features the meanings encoded in the
language signal, resulting in a vector of activations over all meanings. The second
network takes this vector as input and further reduces uncertainty about the in-
tended meanings. Classification performance for a lexicon with 52,000 entries is
good. The model also correctly predicts several aspects of human language com-
prehension. By rejecting the traditional linguistic assumption that language is a
(de)compositional system, and by instead espousing a discriminative approach
(Ramscar, 2013), a more parsimonious yet highly effective functional characteri-
zation of the initial stage of language comprehension is obtained.

Keywords: multi-label classification, language comprehension, error-driven learn-
ing, Rescorla-Wagner, Widrow-Hoff

Table 1 presents 10 simple sentences. When reading these sentences, the
letters and their combinations succeed in bringing to the fore a small num-
ber meanings while dismissing thousands of others as irrelevant. Sentences
present the reader with a multi-label classification problem.

We address this problem as follows. First, we represent the orthographic
input by means of letter trigrams. For the first sentence, these are #Ma Mar
ary ry# y#p #pa pas ass sse sed ed# d#a #aw awa way ay# (the #
symbol represents the space character). Letter trigrams provide a much
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2 Language as multi-label classification

richer representation of the visual input than do orthographic words. For
the data in Table 1, there are n = 104 distinct letter trigrams, to which we
refer as cues.

The second column lists the lexical meanings (lexomes) that are the targets
of classification. Lexomes are pointers to locations in a high-dimensional
semantic vector space (defined below). Note that past-tense word forms
such as passed (regular) and ate (irregular) are coupled with the lexomes
PASS and EAT as well as with past tense (PAST). Likewise, the two word
forms apple and pie are coupled with one lexome APPLEPIE, and the three
expressions with the word forms kicked the bucket, passed away, and died,
are all linked with the same lexome DIE.

TABLE 1. Sentences, lexomes in the message, and frequency of occurrence (F).
The total number of learning events is k = 771.

Sentence Lexomes in the message F
1 Mary passed away MARY DIE PAST 40
2 Bill kicked the ball BILL KICK PAST DEF BALL 100
3 John kicked the ball away JOHN KICK PAST DEF BALL AWAY 120
4 Mary died MARY DIE PAST 300
5 Mary bought clothes MARY BUY PAST CLOTHES

for the ball FOR DANCEPARTY 20
6 Ann bought a ball ANN BUY PAST INDEF BALL 45
7 John filled the bucket JOHN FILL PAST DEF BUCKET 100
8 John kicked the bucket JOHN DIE PAST 10
9 Bill ate the apple pie BILL EAT DEF APPLEPIE 3
10  Ann tasted an apple ANN TASTE PAST INDEF APPLE 33

Is it possible to discriminate between the targeted lexomes given the letter
trigrams in the sentences? We will show that considerable headway can be
made by an error-driven incremental multi-label classifier that comprises
two simple networks, each with only an input layer and an output layer.
In what follows, we first provide a formal definition of the algorithm, and
illustrate it for the sentences in Table 1. We then turn to a more realistic
example in which lexomes targeted in around a million of utterances have
to be discriminated from some 52,000 other lexomes.

1 An algorithm for multiple label classification

The problem of incremental learning of multi-label classification is defined
by a sequence of events at which a set of features (henceforth cues) are
present and generate predictions about classes (henceforth outcomes), only
some of which are actually present in the learning event. The mismatch
between predicted outcomes and the outcomes actually present in a learning
event provides the error driving learning.
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From a total of n distinct cues and m possible outcomes, only small subsets
will be present in a given learning event. Let k& denote the number of unique
learning events (learning events may repeat, cf. good morning and tickets
please). We index a specific learning event in the sequence t (of length
K > k) of learning events by ¢. The classification problem is defined by t,
a sparse n X k cue matrix C which is 1 whenever a given cue is present in
a specific event and zero otherwise, and a sparse m X k target matrix T
that is 1 whenever an outcome is present and zero otherwise.
Classification proceeds in two steps, using two networks. The first network
has cues as inputs and outcomes as outputs. It is defined by an m x n
matrix W of connection weights from cues (columns) to outcomes (rows).
Given W, the predicted support (henceforth activation) for a specific out-
come given the cues in the learning event is obtained by summation of the
weights on the connections from these cues to that outcome. The m x k
activation matrix A specifies these activations for all outcomes across all
unique learning events:
A =WC.

The classification performance of this first network is assessed by checking
whether the outcomes with the highest activations are those of the targeted
lexomes.

As shown by Danks (2003), if over a sequence of learning events no further
changes in the weight matrix take place other than the tiny increments and
decrements that come with individual updates, i.e., when the weight matrix
has entered a state of equilibrium, then, given the incremental learning rule
of Rescorla and Wagner (1972) (see below), W can be estimated straight
from conditional probabilities characterizing the input. Let E specify pair-
wise conditional probabilities of cues given cues,

Pr(coleco) Prler]|eo) ... Pr(enleo)
E— Pr(coler) Pr(eiler) ... Pr(enler)
Pr(colen) Pr(eilen) ... Prcnlen)

and let F denote a matrix specifying conditional probabilities of outcomes
given cues,

Pr(oglco) Pr(oi|co) ... Pr(on|co)
F— Pr(oglc1) Pr(oiler) ... Pr(opler)
Pr(ooplcn) Pr(oilen) ... Pr(on|cn)

Danks’ equilibrium equations state that
F=EWT,

which can be solved using the generalized inverse.
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When a weight matrix is calculated in this way, the effect of the exact order
of learning events is lost. Furthermore, a Danks weight matrix dampens the
consequences of the frequencies of occurrence of cues and outcomes in the
input space, while highlighting the contrasts that allow cues to discriminate
between outcomes. Thus, the Danks weight matrix is useful when there is
no information on the sequence of learning events (e.g., when only the
frequency of learning events is available but not their order) and when
interest is directed specifically to an idealised endstate of learning.
Preferably, the weight matrix W is estimated by repeated application of
the learning rule of Rescorla & Wagner (1972) to the learning events t. The
update at learning event ¢,

Wt — Wtfl 4 Arw

depends on the learning rate 7 (typically set at 0.001) regulating the mag-
nitude of the changes to the weight matrix, on the predictions for the
outcomes as gauged by the activations of these outcomes given the cues,
and on whether the outcomes are actually present in the learning event.
Specifically, let ¢ denote the transpose of that column vector of C specifying
which cues are present at the current learning event ¢, and let o denote the
transpose of that column vector of T detailing which outcomes are present
at t, and let J denote an m x n all-ones matrix. Let the (row) vector a; to
specify the activations of those outcomes that are present in the learning
event while setting to zero the activations for all other outcomes:

a;=(((J-0)7-¢c)T - W)

Here, i is a row unit vector of length n. Note that ((J-0)? -¢)T is 1 for all
cue-outcome combinations that are present in the learning event, and zero
elsewhere. Next, let the (row) vector ag represent the activations of those
outcomes not present in the learning event, again given the cues in that
learning event, and let it be zero for all other outcomes:

a = ((J-[1-0)" ¢ - W)i.

(J-[1—=0])T -c)T is 1 for all cue-outcome pairs where the cue is present
but the outcome not, and zero elsewhere. The update to the weight matrix,
A, can now be defined as follows:

Apy = 77{((‘] ’ O)T : C)T ’ (1 - al) - ((J : [1 - O])T : C)T . ao}.

For cue-outcome pairs that are both in the learning event, the update of
their weight is given by the difference from the maximal activation, 1 by
definition. As the summed activations a; tend to be less than 1, weights
will be strengthened. For cue-outcome pairs where the cue is present but
the outcome is not, the corresponding connection weight is decreased by
the summed activations ag. Estimation of W using incremental updating
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over the sequence of learning events is fast, first because only parts of the
weight matrix require updating (efferent weights from cues not present in
the learning event are left untouched), and also because the updates to
individual outcomes are independent and hence allow for parallelization.
The activation matrix A = WC specifies, for each unique learning event
and for each outcome, the joint support provided by the cues in that learn-
ing event for that outcome.

Although class predictions based on A can do well for small constructed
data sets, they lack precision for large real data sets. Prediction accuracy
can be further improved by a second network that is given the task to
predict the target T from the activation matrix A:

T = DA.

The prediction matrix
P =DA

is the resulting approximation of T. Although D can be calculated using
the generalized inverse of A, computation costs can be prohibitive for large
numbers of learning events. It is therefore preferable to estimate D as
follows:

T = DA
TAT = DAAT
Y = DX

)

which leads to D = YX !, Since X is m x m, and since generally m < k,
computational costs are much lower when calculating X* as compared to
calculating A ™.
The prediction matrix can also be estimated iteratively by means of the
update rule of Widrow and Hoff (1960). This update rule, which specifies
the update A, to the mxm second weight matrix D, is important, first, as
it allows us to assess the consequences of how the order of learning events
affects classification, and second, because for large numbers of training
events (in the order of hundreds of millions), it is not feasible to actually
calculate A (and P).
Let Z denote an m x m matrix initialized with zeroes, let a denote the
column vector of the activation matrix A giving the predicted activations
for the current learning event, and let o denote the transpose of the corre-
sponding column vector of the target matrix T. The Widrow-Hoff update
to Z is:

A, =n{alo—alZ)}.

We take the transpose to obtain D = Z7T.
The weights for the two networks (m x n for the Rescorla-Wagner network,
and m x m for the Widrow-Hoff network) can be estimated in two ways.



6 Language as multi-label classification

One possibility is to first estimate W and then estimate D. Alternatively,
one can update both networks in tandem for each successive learning event.
In this case, it is not necessary to calculate A. Note that when estimating

P = (WC)*TWC

we ‘inject’ error twice: once during the estimation of W and again during
the estimation of P.

The equilibrium equations are implemented in the ndl package for R on
CRAN. An efficient Python implementation for incremental learning of W
is available at github.com/quantling/pyndl. An implementation of incre-
mental learning for R is available (for 1inux only) upon request from the
authors. Software for efficient updating of D by Widrow-Hoff is currently
under development.

Returning to the example of Table 1, first consider classification perfor-
mance when W and D are estimated independently, using incremental
updating for the former, and the generalized inverse for the latter. In this
case, for each of the 10 sentences, the lexomes in that sentence have the
highest prediction values in P.

When the two networks are updated in tandem, with at each learning event
first an update of W and then an update of D, accuracy varies with the
(random) order in which the 771 learning events are made available to
the model. For one such random order, the proper lexomes had the highest
ranks in A for 9 out of 10 sentences. The one sentence with an error is John
kicked the bucket, where DEF (the lexome for the definite article) intrudes
with a higher activation before DIE, which is found at the next rank (4).

A P P

KICK — KICK — KICK

. BUCKET . ~—————————— BUCKET . ~———————— BUCKET
<7 DIE ° DIE <7 DIE

APPLE | | emeee--e- APPLE | | mmmee--of APPLE
APPLEPIE o] mmmeeeee- APPLEPIE o] e APPLEPIE

prediction
prediction
prediction

FIGURE 1. Prediction strengths for selected lexomes in the learning events of
sentences 8 and 9 in Table 1, using incremented coupled Rescorla-Wagner and
Widrow-Hoff. Left and center panels: frequencies as in the table; right panel:
frequencies increased tenfold.

Figure 1 illustrates this incremental training regime. The left and center
panels show the predictions based on A and P when training proceeds on
a random order of 771 learning events, and the right panel when training
proceeds on 7710 learning events. Solid lines represent key lexomes from
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sentence 8 in Table 1: KICK and BUCKET for the unintended literal reading
and DIE for the intended idiomatic reading. Dashed lines represent the
competitors APPLE and APPLEPIE in sentence 9. The spiky behavior in
the left and center panels reflects the learning and unlearning that unfolds
as outcomes competing for the same cues are encountered. Comparison of
the left and center panels shows that the Rescorla-Wagner network learns
much faster than the Widrow-Hoff network. By the end of the learning
sequence, the former, but not the latter network succeeds in giving the
intended lexomes higher prediction scores. The rightmost panel shows that
with sufficient experience, the model learns that kick the bucket means DIE,
and that an apple pie is not an apple but a particular kind of pie.

An important property of this approach to language comprehension is
that the correct lexomes are selected without any worries about regular
or irregular verbs, literal versus idiomatic expressions, finding boundaries
between words, decomposing words into parts, or disambiguating homo-
graphs. Given the assumption that understanding drives the recalibration
of weights, the rich information available in the combinatorics of sublexical
cues and lexomes is sufficient for multiple label classification to be effective.

2 Multiple label classification with 52,000 classes

To clarify whether this approach scales up, we applied our algorithm to
the TASA corpus (Zeno, 1995), a collection of texts comprising a total of
10,807,146 words representing 109,338 string types. Lemmatization was car-
ried out with TreeTagger (www.cis.uni-muenchen.de/~schmid/tools/
TreeTagger/), which distinguished 90,339 lemmata, of which 37,938 oc-
curred once. To keep computations tractable, the model was trained on all
words occurring at least twice and 351 hapax legomena that occurred in
a precompiled list of words. Hapax legomena that were not included were
replaced by the dummy word HAPAX, resulting in a total of 52,401 lexomes.
Learning events were sentences in the TASA corpus. Sequences of more than
8 words were split at the next available occurrence of and or or. This re-
sulted in a total of 992,752 learning events. The multi-label classification
challenge is to predict the appropriate lexomes (out of 52,401) given the
letter trigrams of the (possibly inflected) words in the learning events.
Using the nd12 package for R, W (52,401 lexomes x 11,724 letter trigrams)
was estimated using all learning events. To keep computations tractable
for the second network, two learning events were selected randomly from
a precompiled list of 8866 targeted lexomes, resulting in a total of 17,455
learning events (in 276 cases there was overlap with two or more lexomes in
the same event, and for one word, there was only 1 learning event available).
The total number of outcomes in this subset of learning events was 19,020.
With these restrictions, the matrices A (19,020 lexomes x 17,455 learning
events), D (19,020 x 19,020 lexomes) and P (19,020 lexomes x 17,455
events) could be estimated straightforwardly.
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FIGURE 2. Left: Quantiles of the ratio of intruders (false positives) to targets
(correct identifications), full utterances. Right: Rank and corresponding cumula-
tive proportion based on A (red) and P (blue), isolated words.

The left panel of Figure 2 presents the ratio of intruders (lexomes with
an activation exceeding that of the least activated target lexome) to the
number of targeted lexomes. The median number of intruders is zero, at
the 8th decile the ratio is 0.17, and at the 9th, it is 0.33. At the 10th
decile, we find cases with vast numbers of intruders, leading to a maximal
ratio of 1208.9. Examples of intruders are down for the sentence The aleuts
were housed in abandoned rundown gold mines or fish canneries, and field
and success for the sentence He is an ecologist who studied succession in
abandoned cornfields.

We also tested identification performance when target lexomes were pre-
sented in isolation. The right panel of Figure 2 plots in blue cumulative
proportion (out of a total of 7179) against rank based on P: 34% of lexomes
had the highest prediction value, 88% of the targeted lexomes had at most
a rank of 16 (indicating 15 intruders with higher activations). As show by
the red curve, performance based on A instead of P is substantially worse.
Human lexical decision performance, as gauged using the British Lexicon
Project (BLP, Keuleers et al. 2012) was for the present data at 90% correct.
As the lexical decision task does not require actual identification, but only
sufficient evidence for lexicality, it appears that human subjects tolerate
around 16 intruders.

As shown in Figure 3, the model also predicts power-transformed lexical
decision response times (¥ = —1000¢~!). For all but the first decile, log
activation a; = We; (with ¢ the vector specifying the present and absent
cues in the input, and ¢ indexing a specific lexome) shows a nearly linear
effect with negative slope. Log rank prediction (the log rank of p; = DWc;)
has a smaller effect that is again negative and nearly linear, but now for
the first nine deciles. The 90% decile of the rank is at 18, which is close to
the cut-off at rank 17 for lexicality decisions in the right panel of Figure 2.
Apparently, the same range of ranks influences both decisions and reaction
times.
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FIGURE 3. Partial effects in a GAM fitted to power-transformed (—1000¢{—1) re-
action times. Left: log activation; Right: log prediction rank. Vertical lines denote
deciles. The 90% decile of log prediction rank is at rank 18 (red lines indicate
deciles). Regression analyses were carried out with cams (Wood, 2006).

P7 defines a semantic vector space (cf. Landauer & Dumais, 1997), and
lexomes are indices or pointers for locations in this space. By way of illus-
tration of the semantic nature of P7, the left panel of Figure 4 presents
partial effects for human semantic similarity ratings for word pairs (Bruni
et al., 2014) as predicted from correlations of the corresponding column
vectors of P (left). For 90% of the data points, a nearly linear relation is
observed. Clearly, extreme values are unreliable as predictors. Similarity in
P7-space, i.e., similar prediction values across events and thus greater sim-
ilarity of experiences communicated, correctly predicts greater perceived
semantic similarity.

edf=8.0, p <0.0001 edf=5.9, p < 0.0001
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FIGURE 4. Partial effects of the correlations of row vectors of P (left) and column
vectors of D as predictors of human similarity ratings for 2,369 word pairs. Red
vertical lines indicate 5% and 95% percentiles. Regression analyses were carried
out with GaMs (Wood, 2006).

The column vectors of D also define a lexomic space, but similarities in this
space turn out to be positively correlated with the Levenshtein distance
between the orthographic forms of the two words. As shown in the right
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panel of Figure 4, the more different two word forms are, the lower their
perceived semantic similarity.

3 Concluding remarks

Multi-label classification is a hard problem, not only for statistics, but
also for humans. For instance, in auditory word recognition, isolated words
taken from conversational speech have recognition rates between 20% and
40% (Arnold et al., 2017). In the visual lexical decision task, undergraduate
students perform near chance on the lower-frequency words (Baayen et al.,
2017). From this perspective, the model’s performance, with training on a
mere 10 million words, is too good to be true. This is, of course, due to
the model being given perfect feedback, whereas human learning tends to
proceed under uncertainty and lack of full understanding.

Given that the model presents a simplified perspective on the first stage
of comprehension — understanding the words — several of its features
are remarkable. First, the traditional linguistic assumption that language
is a (de)compositional system is replaced by a perspective in which the
language signal is a code that discriminates between possible messages
(Ramscar 2013, Shannon, 1956).

Second, the model is parsimonious with only one free parameter, the learn-
ing rate 1. And although W and D can be very large, most of the weights
are close to zero. E.g., for W, only 5,885 weights exceed 0.1 (0.00058%
of the total number of weights), and only 195 weights are greater than
0.5. Arnold et al. (2017) show for auditory comprehension that W can be
pruned down to a fraction of the original weights without noticeable loss
of accuracy.

Third, the classifier implements a three-layer network that differs from
backpropagation networks in that there is direct error injection twice, once
for W using the Rescorla-Wagner equations, and once for D, using Widrow-
Hoff (or the generalized inverse). Importantly, the power of the first net-
work should not be underestimated. Although ever since the criticism of
the perceptron by Minsky & Papert (1972), two-layer networks have been
regarded as far too restricted for any classification tasks requiring more
than the simplest linear separation, it turns out that actually, with an ap-
propriate choice of cues, Rescorla-Wagner networks can solve much more
interesting problems. Figure 5 illustrates this for a simple example with two
classes (represented by gray and red points) that in R x R are not linearly
separable (left panel). When the data are re-represented by identifiers for
rows and columns (right panel), a Rescorla-Wagner network correctly pre-
dicts the highest activations for around 210 of the 260 elements of the red
class (see Baayen and Hendrix, 2017, for detailed comparison with other
machine learning classifiers, and also Ghirlanda, 2005).

Fourth, more sophisticated features than letter trigrams can be used as
cues, such as the frequency band summary features used by Arnold et
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FIGURE 5. A non-linearly separable classification problem with a majority class
in gray (2240) and a minority class in red (260). Left: data points in a Cartesian
grid (z = 1,2,...,50;y = 1,2,...,50). Right: rerepresentation with row and
column identifiers as cues for a Rescorla-Wagner network: hits in blue, misses
and false alarms in red.

al. (2017) for modeling auditory word recognition, and for reading the
histogram of oriented gradients feature descriptor proposed by Dalal and
Triggs (2005).

Finally, the model is transparent to interpretation. W specifies the support
provided by sublexical features for lexomes. D transforms activation vectors
that are still strongly influenced by form similarity into vectors closer to
the targeted lexomes, which in turn results in a semantic vector space, PT.
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