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ABSTRACT

A well-known problem in the domain of lexical statistics concerns the dependence of measures of lexical
richness on the text size. To avoid this dependence, Large Number of Rare Event (LNRE) models have been
developed, the parameters of which are, in theory, sample-size invariant. In practice, however, the parameters of
LNRE models may nevertheless reveal considerable dependence on the text size. We show that for LNRE
models this dependence is a direct consequence of two factors: the non-random use of words in texts on the one
hand, and a theoretical lack of goodness-of-fit on the other hand. We describe how we can use this dependence
to our advantage to enhance the interpolation and extrapolation accuracy of LNRE models. In addition, we
outline methods for carrying out cross-text comparisons using the empirical developmental profiles of LNRE

parameters.

INTRODUCTION

The number of different word types V(N) ob-
served for N word tokens is an increasing func-
tion of N. This dependence of the vocabulary
size V(N) on the sample size N makes it impos-
sible to use type counts as sample-size invariant
characteristics of texts or corpora. Not surpris-
ingly, various alternative measures have been
put forward as sample-size invariant point sta-
tistics of lexical richness. Unfortunately, in prac-
tice all of these measures vary systematically
with N (see Tweedie & Baayen, 1998, for a re-
view).

It is well-known that the free parameter of
Zipf’s law in its original form (Zipf, 1935, 1949)
is similarly subject to this dependence on the
sample size, as shown by Orlov (1983a, 1983b).
However, Orlov and Chitashvili (1982a, 1982b,
1983a, 1983b) developed an extension of Zipf’s
law in which this dependence is accounted for in
a principled way by means of an additional pa-
rameter Z, the unique sample size for which
Zipf’s law in its simple form holds. The extend-

ed Zipf’s law belongs to the class of LNRE mod-
els, models for distributions with Large Num-
bers of Rare Events. Other LNRE models are
Carroll’s lognormal model (Carroll, 1967) and
Sichel’s inverse Gauss-Poisson model (Sichel,
1986; see Chitashvili & Baayen, 1993, for a re-
view).

The parameters of LNRE models are in theo-
ry invariant with respect to the sample size. The
problem addressed in this paper is that in prac-
tice the parameters of LNRE models may never-
theless reveal substantial dependence on N. In
the following section we focus on the sources of
this systematic variation in the values of LNRE
parameters, and we will outline how we can put
this dependency to advantage to enhance the ac-
curacy of the interpolation and extrapolation
predictions of LNRE models.

We can also put the empirical dependence of
LNRE parameters on the sample size to advan-
tage for the comparison of texts of different
lengths. Instead of comparing texts on the basis
of a single value for a given parameter, we can
now compare them on the basis of their devel-
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opmental profiles, which provide a much richer
source of information. One method for doing so
is outlined in the third section.

LNRE PARAMETERS AND SAMPLE SIZE

The upper panels of Figure 1 show that the pa-
rameter Z of the extended Zipf’s law (Orlov,
1983a) and the parameter b of the inverse GauB3-
Poisson law (Sichel, 1986) are no exception to
the observation that most measures advanced as
independent of the text length N tend to vary
systematically with N. The horizontal axes of
Figure 1, which is based on Carroll’s Alice’s
Adventures in Wonderland, display the sample
size N. The vertical axes of the upper panels
display the values of Z (left) and b (right) as a
function of N. The dots show the observed, em-
pirical values of these parameters as estimated
for the sequence of 20 equally-spaced text
lengths N = 1326, 2652, ..., 25180, 26505 on the
basis of the frequency spectra at these points in
‘sample time’. For the extended Zipf’s law, we
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find that the estimated value of Z increases with
N. For the inverse Gauss-Poisson model, b also
reveals considerable variation, especially for
small N. The estimates of b, however, tend to
converge relatively quickly to its final value as
estimated for the complete text.

The solid lines in the upper panels of Figure 1
show the expected values of Z and b as calculat-
ed on the basis of a series of 5000 randomisa-
tions of the words in Alice’s Adventures in Won-
derland. Again, we observe a clear pattern of
dependence on the sample size N. In the case of
Z, we see an initial steep decline, after which Z
stabilises, albeit with some very small concave
curvature. In the case of b, we find a convex
function that levels off by the end of the text.

Why do the empirical and theoretical devel-
opmental profiles of Z and b show this depend-
ence on N? First consider the theoretical depend-
ence as revealed by the Monte Carlo
simulations. Does this dependence imply that
LNRE models fail to eliminate the ubiquitous
dependence on N which they were designed to
overcome, not only in practice, but also in theo-

Inverse Gauss-Poisson
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Fig. 1. Observed (dots) and Monte-Carlo-based expectations (solid lines) for Z (upper left) and b (upper right), and
the error for the vocabulary size for the extended Zipf’s law (bottom left) and the inverse GauB-Poisson law
(bottom right) as calculated for Alice’s Adventures in Wonderland, measured at 20 equally-spaced intervals.
E1: expectation based on the model for the full text (E;yp [V(M)]); E2: Monte Carlo expectation
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ry? Fortunately, this is not the case. The chang-
ing values of Z and b are a direct consequence of
imperfections in the fit of the LNRE models to
the empirical frequency spectrum of Alice’s Ad-
ventures in Wonderland. To see this, consider
the bottom panels of Figure 1, which plot the
difference between two theoretical growth
curves, B, v [V(M)] and E, [V(N)]. The ex-
pected vocabulary growth curve E, . [V(N)] is
obtained by estimating the parameters of the
models for the complete text (N = 26505), fol-
lowed by interpolation of the expected vocabu-
lary size for 20 equally-spaced smaller sample
sizes using

ELNRE [V(M] = IOg(N/Z) (1)

log(p*Z) N-Z

for the extended Zipf’s law (with p* the maxi-
mum relative frequency in the text), and using

2

ELNRE [vim] = ‘b'—c

[l_eb(l—\J 1+NC)] (2)

for the inverse Gauss-Poisson law (with ¢ the
second parameter of the model, and fixing its
third parameter, v, at -0.5 a priori). The second
expected vocabulary growth curve, E, [V(NV)],
is obtained by calculating the average vocabu-
lary size in a series of 5000 permutation runs, i.e.
Monte Carlo expectations, for the same 20 meas-
urement points in sample time. Since both expec-
tations are based on the urn model, their values
should be identical. Hence, their difference
E; vrel VNI = E, [V(W)] is a diagnostic for how
well an LNRE model fits the basic urn model.

For the extended Zipf’s law, we observe a
convex curvature. For small N, the model un-
derestimates V(N), for medium N, it reveals a
slight overestimation bias compared to the Mon-
te Carlo expectations. Since increasing Z leads
to an increase in E; yp[V(N)] by (1), the under-
estimation bias of E,y.[V(N)] observed for
small N is compensated for by increasing Z when
estimating this parameter for small sample sizes
in the randomisations. For larger sample sizes,
the mismatch between E;,,-[V(N)] and
E,;c[V(N)] is so small that the value of Z is hard-
ly affected, and approaches constancy.

Turning to the inverse Gauss-Poisson law, we
find an overestimation bias for E ,, [V(N)] that
decreases with increasing N. This model accom-
modates its overestimation bias by increasing
¢ and by decreasing b as N becomes smaller.
Compared to Z, the value of b becomes reasona-
bly stable at a rather late moment in sampling
time N. This is due to the larger bias of
E, yrel V()] for the inverse Gauss-Poisson mod-
el. Consequently, greater changes in the param-
eters are required to accommodate the model to
the structure of the frequency spectra of the
smaller sample sizes in the Monte Carlo simula-
tions.

Since the observed dependence of LNRE pa-
rameters on the sample size directly reflects the
accuracy of LNRE models, we can make use of
this dependence to evaluate the goodness-of-fit
of these models. Traditionally, the goodness-of-
fit of LNRE models is evaluated by means of
chi-square tests. Unfortunately, the appropriate
chi-square test (using the covariance matrix of
the spectrum elements) often leads to the rejec-
tion of theoretical models with p-values that may
be as small as 108 (see also Grotjahn & Alt-
mann, 1993), even when fits are obtained that
are perfectly reasonable to the eye. Instead of
using the chi-square test, the extent to which
LNRE parameters change as a function of N can
be used as a measure of goodness-of-fit: the less
accommodation required, the better the fit of the
model. As a practical measure, we propose to
use the percentage of measurement points for
which the absolute error
IE, vzl VIN)] = By [V
falls below a given tolerance threshold &:

1

D(K, d) = %

K
z LB yre [VNDI- (3)

— By [VINDII< 8],

with K the number of measurement points (20 in
our examples) and V(N,) the vocabulary size at
the k' measurement point, and with I[-] the in-
dicator operator. We choose the model error &
as small as possible, but such that the propor-
tions D(K, 3) for the two models differ signifi-
cantly. For the extended Zipf’s law and the in-
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verse Gauss-Poisson law, the smallest signifi-
cant difference is found for & = 5: D(20,5) =
0.85 for Z, and D(20,5) = 0.5 for b (p < 0.05).
These calculations formalise the visual impres-
sion of Figure 1 that the extended Zipf’s law
provides the better fit to Alice’s Adventures in
Wonderland, even though it has only one pa-
rameter to vary instead of two.

The above test for goodness-of-fit pits the
predictions of LNRE models against the predic-
tions of the urn model (without replacement).
However, words do not occur randomly in texts.
As illustrated in the upper panels of Figure 1,
the observed values of the LNRE parameters di-
verge from their Monte Carlo expectations for a
wide range of measurement points. This is due
to the non-random, underdispersed use of words
in discourse, which, in the case of Alice’s Ad-
ventures in Wonderland, causes the empirical
vocabulary size to be substantially smaller than
its theoretical expectation for all 20 measure-
ment points (see Baayen, 1996, for detailed dis-
cussion). In the case of the extended Zipf’s law,
the overestimation bias of the theoretical esti-
mates is compensated for when we estimate Z
for smaller text lengths using (1). In order to
match the expected and the observed vocabu-
lary size, we have to lower E; . -[V(N)] com-
pared to what we would expect given the com-
plete text, and hence Z has to be lowered too. In
the case of the inverse Gauss-Poisson law, the
parameters b and c are likewise adjusted to meet
the requirement that for each measurement point
the expected vocabulary size should be equal to
its expectation given the frequency spectrum at
that measurement point. Note that, in fact, the
empirical developmental profile of, for instance,
Z, locally optimises the model not only with re-
spect the effects of non-randomness in word use,
but also with respect to the slight misfit com-
pared to the urn model itself.

Interestingly, the developmental profiles of Z
and b themselves reveal a fairly regular depend-
ence on the sample size N. In the case of Z, the
functional dependence of Z on N might be cap-
tured by a power function

Z(Ny=a,N2. @)

For our text, least squares estimation suggests
a,=617.69 and a, = 0.290 (with R? =981 ). We
can now replace Z in (1) by the link function

Z(N).

E[V(N)] = sl log(N/Z(N))
log(p*Z(N)) N-Z(N) )
a,NaZH 1 Nl—a2
= log
log(p*a,N®2) 1-a,Ne2! a,

In this way we change a one-parameter model
into a model with two free parameters. Another
link function that we have found to be useful for
some texts is the linear function Z(N) = a; +
a,N.

Figure 2 shows the gain in interpolation and
extrapolation accuracy obtained by adjusting
Orlov and Chitashvili’s Zipfian LNRE model
with the link function Z(N). The dots represent
the observed values of the vocabulary size V()
and the first five spectrum elements V(m, N)
(V(1, N) represents the number of hapax legom-
ena; V(2, N) the number of dis legomena, etc.).
The dotted lines were obtained using (1) with Z
estimated at exactly half the length of the com-
plete text. Note that interpolation leads to a
slight overestimation of the vocabulary size,
whereas extrapolation leads to substantial un-
derestimation. The solid lines in the left panel
represent adjusted interpolation and extrapola-
tion from the middle of the text using a power
function for the link Z(N). For Alice’s Adven-
tures in Wonderland, the adjusted LNRE clearly
is considerably more accurate, although it re-
veals a slight overestimation bias for extrapola-
tion that can be traced to a slight flaw in the
goodness of fit of the power model to the devel-
opmental profile of Z. For Wells’ The War of the
Worlds, however, a linear link function for Z(N)
yields quite satisfactory precision for both inter-
polation and extrapolation (the solid lines in the
right panel of Figure 2). We conclude that the
adjustment of LNRE models by means of link
functions seems promising as a means to obtain
models that not only provide good fits to fre-
quency spectra, but that are also accurate with
respect to interpolation and extrapolation.
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COMPARING DEVELOPMENTAL PRO-
FILES OF LNRE PARAMETERS

We have seen that the parameters of LNRE mod-
els are not textual constants but that they vary
systematically with the text length. We have
used this variability to our advantage to enhance
the accuracy of LNRE models. In this section,
we will show how we can also employ this vari-
ability to enhance comparisons of texts based on
LNRE parameters.

Consider Figure 3, which illustrates how var-
iable the parameters Z (left panel) and b (right
panel) are across a range of texts. The texts that
we have investigated for this study are listed in
the Appendix, they include children’s books by
Carroll (al, a2) and Baum (b1, b2 ), novels by
Wells (w1, w2 ), London (11, [2), James (j1, j2 ),

Alice in Wonderland
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and Conan Doyle (c1, c2 ), as well as two books
from the King James version of the Bible, the
gospel according to St. Luke and the Acts of the
Apostles, also held to be written by St. Luke
(L1, L2). Note that there is some authorial struc-
ture in the plots. For instance, the texts by Car-
roll (al, a2) have very similar developmental
profiles for Z(N), and the same holds to some
extent for those by James (j1, j2).

At the same time, it will be clear that the
within-author variation is by no means smaller
than the between-author variation. For instance,
the texts by Baum (b1, b2) are separated by the
texts by Carroll, Luke, and James. There is also
some evidence for genre differences: the chil-
dren’s books tend to have lower values for Z(N)
(they are less rich in vocabulary), and they show
up with higher values for b(N).
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Fig. 2. Interpolation and extrapolation accuracy for Carroll’s Alice’s Adventures in Wonderland (left) and Wells’ The
War of the Worlds (right). The observed development of the vocabulary size V(N) and that of the first 5
spectrum elements V(m, N) are represented by dots. The dotted lines show unadjusted interpolation and
extrapolation from the middle of the text, the solid lines show the corresponding adjusted curves using the link

function Z(N).
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Fig. 3. Empirical values of Z and b as functions of N in selected texts. al, a2: Carroll; b1, b2: Baum; cl, ¢2: Conan
Doyle; j1, j2: James; /1, [2: London; L1, L2: Luke, Acts (KJV); wl, w2: Wells. See the Appendix for biblio-

graphical details.

The question that arises when looking at these
plots is which differences are statistically sig-
nificant. For example, the texts by James (j1, j2)
have similar final values for Z(N) as the texts by
Luke (L1, L2 ). Judged in terms of these final
values, the texts by Luke and James cannot be
distinguished. Their developmental profiles,
however, are quite different, which suggests
they might differ significantly in the way in
which this final value is reached. In what fol-
lows, we will use analysis of variance techniques
to investigate such similarities and differences
between texts and authors, focusing on Z(N).!
The same methodology can be applied to other
lexical measures as well, Yule’s K (Yule, 1944)
among others.

We first consider the question how to ascer-
tain whether texts have significantly different

1 In the right panel of Figure 3, there are a fair number

of cases with zero values for b. These result form the
absence of a fit of the inverse Gauss-Poisson model
to the text at the given length, in which case b is set to
zero. Hence, we have not carried out any further anal-
yses using these data.

developmental profiles. To do so, we use a mod-
el of the form

(6)

Zik=u+oc1+'yk+eik,

where Z,, represents the observed values of Z in
text i, i = al, a2, ..., w2 at measurement point &,
k=1, .., K, here K = 20. The value of p is
roughly the grand mean, the mean of all obser-
vations of all texts jointly. The o, terms can be
thought of as text effects, they present the devi-
ations from the grand mean for each individual
text. The v, terms describe the changes as re-
peated measures are taken through the texts.2
The €, terms are error terms, with the usual

2 Technically, o, and ¥, are constrained to equal zero,
their actual values being absorbed into [. Note that
this model presupposes that the repeated measures
develop in parallel for the various texts in our sam-
ple, as it does not include an interaction term. Hence,
the present model is inappropriate for 5(N) in Figure
3, where the texts by Carroll and Baum do not devel-
op in parallel with the texts by the other authors.
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normality, independence and zero mean assump-
tions. Note that we are comparing the texts at
each measurement point, i.e., the first recorded
value of Z, Z | is compared with other first
values of Zi,l’ Za2'1, s sz,l’ regardless of the
values of N, in each text.

Fitting model (6) to the values of Z;, resulted
in significant Text and Repeated Measures fac-
tors (p << .0001 for both, using the Most-Con-
servative Test; Geisser and Greenhouse, 1958).
The Multiple R? value is 97.14%, indicating that
a very good fit to the data has been achieved,
with only 2.86% of the variation not being ex-
plained by (6). To determine which of the texts
are significantly different from which other texts
we construct #-tests and Bonferroni-corrected
confidence intervals. Performing separate tests
and obtaining 95% confidence intervals for each
possible difference between texts would in-
crease the overall Type I error, the probability
that a significant difference is observed without
it being actually present. For example, if we are
interested in the differences between three texts,
then there are three possible comparisons; A-B,
A-C, and B-C. If we were to test these individu-
ally then, rather than having overall confidence
intervals of 95%, we only have a confidence
level of 0.95% = 0.857. The Bonferroni adjust-
ment takes the form of adjusting the probabili-
ties in the usual #-statistic, by dividing the de-
sired confidence level by the number of possible
comparisons (1/2 (3*2)). For the three texts A,
B and C, the desired probability level for two-
tailed tests would be:

1
= (1-0.95
5 )

1- I =0.99167.
5 (3*2)

Using the Bonferroni adjustment ensures that
the Type I error taken over all 14*13 textual
comparisons for our data does not exceed 5%.
The calculation of the confidence intervals is as
follows:

1
209 |k

Z,-Z'+ t|I-1)(K-1),1 —* MSpzs (7)

5 (U-1)

where I is the number of texts under considera-
tion, here 14, c¢ is the desired confidence level,
here 95%, and MS ¢ the residual mean squared
error, here 7630566. Hence,

Z,-7; + 1(247,0.9997) V2/20¥7630566
+ 3.47%873.53,
+3031.15.

We present the results by positioning the texts
in increasing order of their means, and by draw-
ing lines under texts which do not have signifi-
cantly different developmental profiles, as
shown in Table 1. It can be seen that texts b1, al
and a2 are not significantly different; neither
are texts L2 and L1, j1, j2, and b2, or w2 and cl.
These groups as well as the remaining texts are
all significantly different from each other.

It is clear that some level of authorial struc-
ture is present. At the same time, two texts by a
given author can be significantly different, e.g.,
wl and w2, bl and b2, or /1 and /2. Interesting-
ly, the texts by James (j1, j2) are distinguished
from those by Luke (L1, L2), even though the
values of Z for the complete texts are quite sim-
ilar. Apparently, the narrative organisation of
the Luke texts differs sufficiently from that of
the James texts to give rise to reliably different
developmental profiles of Z.

Thus far we have considered a model in
which each text is treated separately; the fact
that some texts have the same author is not tak-
en into account, and tracing authorial structure
is left to the analyst. We can investigate explic-
itly to what extent authors produce texts that

Table 1. Results from fitting the model Z;, = + o, + vy,
+ €y

bl al a2 L2 LI j1  j2 b2

10129 10242 10585 16644 17201 20918 21578 24263

c2 w2 cl 2 wl i

30433 37813 40625 45384 49506 55317

Note. Horizontal lines group texts that are not signifi-
cantly different.
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differ with respect to vocabulary richness as
measured by Z by introducing a new element to
our model, i)

Z,.j(i)k =U+oy +/3j(,.) Y+ € e ®)

Here Zij(l.)k represents the observed values of Z
in text j, j = 1,2 by each author i,i=aq, b, ..., wat
measurement point k, k = 1, ..., 20 . As before,
the value of L is a grand mean, and the 7, terms
describe the changes as repeated measures are
taken through the text. In this model the o, terms
can be thought of as author effects while the i)
represent text effects nested within authors.
When this model is fitted to the observed values
of Z ik the Text factor in (6) is partitioned into
an Author factor and a Text within Author fac-
tor (with 6 and 7 degrees of freedom respective-
ly). Both of these factors are extremely signifi-
cant (p << .0001). The Multiple R? value and the
MSy, remain the same as the nesting has not
altered the amount of variation explained by the
model, it has only partitioned it differently. The
nested structure alters the degrees of freedom
and the standard error in the Bonferroni-adjust-
ed confidence intervals. We now calculate the
confidence intervals as follows:

1 -
2 (1-c) 2
I(J—l),l—l—— — *MSp.4

JK
5 (-1

Z.-Z +

L. L.

+ 1(7,0.9988)V2/40%771313560
+ 4.63*%6210.13
+ 28752.90,

where I is now the number of authors, here 7,
and MS;, , is the Mean Square associated with
the Text within Author factor. Table 2 groups
together those authors whose texts are not sig-
nificantly different.

While for some authors’ texts the develop-
mental profiles of Z are quite similar, e.g., for
Carroll, Luke, and James, other authors have
texts with quite different developmental pro-
files. The substantial variation introduced by the
latter authors (e.g., Baum, Wells, and Conan

Table 2. Results from Fitting Model Zy=pn+o; +4 it
Ve + Epe

Carroll Luke Baum James Doyle Wells London

10413 16922 17196 21248 35529 43659 50351

Note. Horizontal lines group authors that are not signifi-
cantly different.

Doyle) leads to a large sum of squares in the
nested text factor. This results in a much wider
confidence interval, which in turn leads to the
observed weak discriminatory power of the
present model for distinguishing between au-
thors. Indeed, our seven authors fall into two
main (overlapping) groups; Carroll, St Luke,
Baum and James, and Conan Doyle, versus Co-
nan Doyle, Wells and London. This analysis
complements the previous one by making clear
that the within-author variation is so large that
its swamps most of the between-author varia-
tion. In order to tease authors apart on the basis
of their texts, many more discriminant variables
need to be included in the analysis, for instance,
function words (Burrows, 1992) and syntactic
patterns (Baayen, van Halteren, & Tweedie,
1996). Nevertheless, our by-text and by-author
analyses show that, compared to analyses based
on the final values of Z, the use of developmen-
tal profiles leads to improved inference.3

CONCLUSIONS

We have called attention to the dependence of
the parameters of LNRE models on the sample
size. This dependence is observed for both the
empirical development of a text, as well as for
its theoretical development in Monte Carlo sim-
ulations. We have first focused on the new pos-
sibilities that this finding offers for goodness-
of-fit testing, and for enhancing the interpolation
and extrapolation accuracy of LNRE models by

3 For a randomisation-based technique for comparing
developmental profiles, see Tweedie & Baayen
(1998).
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means of link functions.These link functions al-
low us to take the non-random aspect of word
use at the level of discourse organization in texts
into account.

Secondly, we have shown that using develop-
mental profiles of textual measures such as the
parameters of LNRE models can lead to im-
proved inference. We have outlined how to test
for differences between individual texts, and
how to investigate authorial structure. Both anal-
yses reveal some author-related similarities, but
it is evident that in our data within-author varia-
bility is at least as large as between-author vari-
ability. Indeed, texts by the same author may
turn out to be significantly different once a mod-
el is fitted. For more reliable authorship discrim-
ination, a greater range of variables (possibly
with their developmental profiles) should be tak-
en into account.
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APPENDIX
Author Title Key
Baum, L.F. The Wonderful bl
Wizard of Oz
Tip Manufactures a
Pumpkinhead b2
Carroll, L. Alice’s Adventures in
Wonderland al
Through the Looking-
glass and what Alice a2
Found There
Conan Doyle, A. The Sign of Four cl
The Valley of Fear c2
James Confidence Jjl
The Europeans j2
St Luke Gospel according to
St Luke (KJV) L1
Acts of the Apostles (KJV) L2
London, J. The Sea Wolf n
The Call of the Wild 2
Wells, H.G. The War of the Worlds wl
The Invisible Man w2




