Word Frequency Distributions

Revas J. Chitashvili, Tbilisi
R. Harald Baayen, Nijmegen

1. Introduction

Word frequency distributions have been studied from a variety of perspectives.
In literary studies, word frequency distributions have attracted the attention of
scholars interested in authorship attribution and vocabulary richness (Orlov
1983b, Muller 1977, 1979, Menard 1983, Thisted and Efron 1987, Herdan 1960,
1964). Psychologists have long been interested in word frequencies since word
frequency is one of the most robust and important predictors of response time
in a variety of experimental tasks addressing on-line word production and word
recognition (Carroll 1969, 1970, Scarborough et al. 1977, Whaley 1978). Re-
cently, word frequency distributions have also been exploited for the study of
morphological productivity, the extent to which various word formation pro-
cesses are alive in the language and may be expected to give rise to new (mor-
phologically complex) formations (Baayen 1992, 1993a). This paper focusses on
the probabilistic properties of word frequency distributions and on the statistical
techniques developed for their analysis. Some attempt will be made, however,
to understand the typical statistical properties of word frequency distributions of
running texts in terms of the morphological structure of the constituent words
and the productivity of the underlying word formation processes.

Our discussion is structured as follows. Section 2 introduces various ways of
describing empirical word frequency distributions as well as a number of 'laws'
that have been advanced in the literature as governing these distributions. Sec-
tion 3 develops a stochastic approach to word frequency distributions. The mul-
tinomial and Poisson models are introduced as means for obtaining theoretical
expressions for the expected vocabulary and the frequency spectrum as functions
of the sample (text) size. The important concept of the Large Number of Rare
Events Zone (LNRE ZONE) is introduced. It is shown that many empirical
samples are located in this zone where relative sample frequencies are biased
estimates of population probabilities. The consequences for the construction of
theoretical models for word frequency distributions are considered in detail.
Three such models for LNRE distributions are discussed, Carroll's (1967, 1969)
lognormal 'law’, Sichel's (1975, 1986) generalized inverse Gauss-Poisson 'law',
and Orlov and Chitashvili's (1982a, 1982b, 1983a, 1983b) extended generalized
Zipf's 'law'. In section 4 rationales for the lognormal 'law' and various extensions
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of Zipf's 'law' are discussed. Section 5 outlines how statistical analyses with
LNRE models may be carried out. Finally, section 6 discusses the relation be-
tween morphological productivity and the LNRE property of running texts.

Since our aim is to give a bird's eye view of the main results obtained in the
study of word frequency distributions, mathematical proofs have been ommitted,
many of the results reviewed here being common knowledge ever since Yule's
(1944) seminal study and the important papers by Good (1953), Good and
Toulmin (1956) and Kalinin (1965). For an in-depth mathematical discussion of
the to our mind central notion of LNRE distributions the reader is referred to
Khmaladze and Chitashvili (1989), part of which has appeared in English as
Khmaladze (1987).

2. LNRE Features of Word Frequency Distributions
In this section we introduce some general properties of word frequency distri-
butions. We first present some techniques for describing the frequency spectrum,

and then turn to review some of the 'laws' supposedly goveming word frequency
distributions suggested in the literature.

2.1. The Frequency Spectrum

We can view a running text as an ordered sequence of word tokens

W, W,,..,W,).

Usually the observed (or empirical) focabulary 4
LA/ = (ApAzs'"’Aﬁ)’ . . (1)

the (arbitrarily ordered) set of different words (or word types) used in the text,
or, altematively, :

>

Y = (A(l)sA(z)’ ---:A(ﬁ)a ) (2)

o

the set of word types ordered according to their (token) frequencies,
KAy 2 [Ag) 2 . 2 [i(dp), 3

contains a much smaller number ¥ of elements then the sample size (or text
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size) N. This makes it convenient to present a text in the form of an array 4

| Ak Tl Ty - - Ty
A Ty Yy - e
Am ¢ 'l:l(Am) 1,4 m)
A(H—]) : tl(A(r‘ﬂ)) tz(A(iﬂ))
4= 4)
Ay T,(4)

AUH}: . tl(AUﬂ))

A(ﬁ-l) ' 171(AW—1))
[ Ant T ’

i i indi iti in the text. For
in which 7,(4,), 7,(4,),.. indicate the positions of word 4, in )

instance, r:(zi(,ﬂ.)})) = 213"»‘f denotes that word A4, occurred for the sev'enth time on
the 137th stage (trial)). Note that in (4) the highest frequen.cy type is on the first
line and that the so-called hapax legomena, the types occuring once only, occupy

lines j down to 7. . '
Corresponding to the sample frequencies we have the sample relative fre-

quencies p(4,) and p(4,) for the unordered and frequentially ordered vocabulary
items respectively:

pA) = 5D o el
N
A

sy =280 o @) -pd) . ©

The information contained in 4 can be used for various purposes. For instance,
the transition probabilities

HlA) [l

]
Pyl = m;} ;} Lty sy ™
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can be used to study dependencies between words as they occur in some text.
In this paper we focus on the analysis of the frequency distribution, i.e. the set

(), £y A, £(4y))

of lengths of rows in array 4. To restrict attention to the frequency distribution
is to use the information which is invariant with respect to permutations of el-
ements both in the sample and in the vocabulary.

The characteristic feature of the samples (texts, morphological categories) we
are to investigate in this paper is that besides the elements with high (token) fre-
quencies (e.g. Py(4,,) ~0.05), in the above array the upper rows of substantial
length, we observe many elements that occur only once, twice, etc. Crucially,
these events constitute a significant part of the vocabulary. Often the number of
elements occurring only once approximates half the observed vocabulary size.
We will refer to distributions with this characteristic as Large Number of Rare
Events (LNRE) distributions.

The frequency distribution can be presented in at least four equivalent forms:

1. The frequency spectrum:

Let I?N(m) denote the number of elements of the vocabulary which occurred m
times in a sample of size N:

I?N(m)zzl[fu)-m]’ m =1’2J"'3 (8)
2l
where X, ) =m) is the indicator of the event [f{4) = m], i.e.

" B { 1 i fid) =m
Vie= 0 otherwise.

It is easy to observe that the (empirical) vocabulary size for sample size N is
given by

Ve = Y P, (m). 9)

mzl

We shall often make use of the relative frequency spectrum
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v, (m)

N

6,,(m) = m=12. . (10)

Figure 1 illustrates these functions for the English suffix -ness as it appears in
the Cobuild corpus (Sinclair 1987). (Here, and in all examples to follow, the
frequency count is lemma-based, inflectional variants of a stem being counted
as tokens of one and the same lemma type.) Note that the number of hapaxes

V.. (h)is approximately ¥, /2.
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Figure 1. Absolute and relative frequency spectrum for the English suffix -ness
as it appears in the Cobuild corpus, plotted on a double logarithmic
scale.
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2. The rank frequency distribution:
Given that the elements of the vocabulary
V=4, 4, .., Ay

are ordered aqcording to decreasing frequency as specified in (3), we can denote
any word by its rank 7 (its row number in 4) in the resulting list:

L = £, r=12,.. . (11)

This way .of representing word frequency distributions is well known from the
early studies by Zipf (1935) onwards.

1000
i

100
L

f{r}

10

| | | | r T |
1 5 10 50 100 500 1000

r

Figure 2. Remlc-ffrequency plot for the English suffix -ness as it appears in the
Cobuild corpus. The X-axis and the Y-axis are scaled logarithmically.
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Sometimes it is more natural to consider the relative rank-frequency dis-
tribution

Sy
N

Buirt =
Thus

B iry,1<r< V)

is the ordered set of relative frequencies

(By(4), 1Si< T
Note that, as shown in figure 2, it is often convenient (and more demonstrative)
to present graphs of the rank frequency distribution (or of the structural

distributions to be discussed below) in a double logarithmic scale, that is, to
consider the transformed step function

log, py{lal}, x20

of a variable x = log r, where we use the nutaﬁon [@°] to denote the integer part
of . Usually, e or 10 are chosen for the logarithmic base a.

3. The empirical structural type distribution

The cumulative type frequency or empirical structural type distribution is defined
in terms of the type probability p in the sample:

éN(P) = ZZI: I[f,(ngzwp] = g I[ﬁ,,(A,)zpl‘ (12)

In (12), GN(p) denotes the number of elements of the vocabulary which occurred
at least Np times in the sample (text).
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empirical structural type distribution empirical structural token distribution
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Figure 3. The empirical structural type and token distributions for the English
suffix -ness.

4. The empirical structural token distribution

Ehedcumulative token frequency or empirical structural token distribution is de-
ned as

F@) = X 8,01 o0 s ' (13)

izl

So F"N(p) is the relative frequency of those tokens in the sample which are in-
stances of types with a relative frequency not less then p. Sometimes we will re-
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fer to both G and F as empirical structural distributions. Figure 3 plots these
functions for the suffix -mess. Note how the presence of a single very high fre-

quency type effects a sizeable difference in the shape of the two graphs.
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Figure 4. The relation between the frequency spectrum and the empirical struc-

tural token distribution.’ GN (p)is shown for the first 23 distinct values

of p for the suffix -ness. The corresponding spectrum elements have
been added form =1, ..., 4.

These four ways of representing the frequency distribution are fully equivalent.
This becomes apparent when we make explicit the relations that hold between
them:

(2) The terms of the frequency spectrum (ﬁ'N(m)) m =1, Can be expressed

in terms of the empirical structural type distribution,
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- A M s m+l
Vy(m) = GN(F) - GN(T)’ m=12 ..
as shown in figure 4. Equivalently, we have

MRS NAC

kzm

(b) The empirical structural type and token distributions are related by the
equality

Gup) = Y LAl (),

g2zp
where AF’N(q)is a finite difference (i.e. the jump value) of the step function

FN(p) at a point g. Or, equivalently,

£ = % Y mPm).

m2Np

(c) The structural distribution GN(p) is an inverse function to the rank-fre-
quency distribution fi{z}, i.e.

&?}Q@MFn’=UW' 9

Gy

Some probabilistic meaning can be given to the relative frequency spectrum 6., (m).
If the empirical vocabulary of distinct word types is conceived of as constituting
the experimental population from which we are sampling a type at random, then
is the probability that some word type having token frequency m will be chosen,

or, equivalently, G'N (p)/I}N is the probability that some word type having a rela-
tive frequency of at least p will be chosen. A stochastic interpretation of the

token probability distribution F'N(p) is given in section 3.1.3.

2.2. Laws Proposed for Frequency Spectra

A number of simple analytical expressions have been suggested in the literature



64 R.J. Chitashvili & R.H. Baayen

for 'theoretical laws', either for the relative frequency spectrum or for rank-fre-
quency distributions, In terms of the relative spectrum these 'laws' can be pre-
sented as follows:

1. Zipf (Zipf 1935)

1

aw(m) ~ om) = ma (15)
2. Yule (Yule 1924; Simon 1955)
v ot < LB+ DIEp 6
6,(m) = alm) = LTI (B> 0), )
3. Yule-Simon (Simon 1956, 1960)
6 (m) =~ a(m) = P ®>0), (17)

m +B - Dim +B)°
4. Waring-Herdan-Muller (Herdan 1960, 1964; Muller 1979)

I'B +Na Im+P - a)

Bl - T B D’ (O<a<l, B>a), (18)

&y (m) = o(m) =

5. Karlin-Rouault (Rouault 1978)

al(m - )

= = 19
a,0m) » o) = BB, 0 <a<, (19
6. Zipf-Mandelbrot (Mandelbrot 1962)
1 1
Gpmy  afm) = - L _ | ¢ >0, 20

m (m+ 1y

We will refer to these 'laws' as the Zipfian family of models.

Graphs of these 'laws' for varying parameter values are shown in figure 5 and
figure 6. Note that in the case of the Waring-Herdan 'law' increasing the value
of o leads to an increase in type richness, as evidenced by the values of (1)

and the ratio r, = #/(f - o) by which I7N has to be multiplied to obtain the the-

oretical vocabulary V. Decreasing # similarly leads to higher values of V. Also
observe that especially high values of V are obtained when the difference
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between [ and « is small. Finally, note that for the Karlin-Rouault 'law', the
parameter o equals a,(1).

apha=0.05,bela =05, =1.11 alpha =0.05, bela=1.0, V= 1.05 alpha = 0,05, beta = 10.0, 1V = 1.01
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Figure 5. The Zipfian family of 'laws' for selected parameter values: Waring-
Herdan, Yule-Simon and Zipf.

The corresponding 'laws' for the rank-frequency distribution may be obtained
using the relation (14) between the cumulative structural distribution G and the
rank-frequency distribution p{r}. In fact, in the case of Zipf's 'law’, for instance,

the corresponding model for the structural distribution G(p) should be any func-
tion G(r) with the property
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Figure 6. The Zipfian family of 'laws' for selected parameter values: Karlin-
Rouault and Zipf-Mandelbrot.

The solution is simply
A NC 1)
= B,
X

with some parameters (C,B). Again using relation (14) we find that the cor-
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responding rank-frequency distribution should have the form

C
r - B

Byiry = p{r} =

as a solution for the equation

C
+ B =
Buir}
In the case of the Zipf-Mandelbrot 'law' we similarly have
CT[% - € .5 (22)
|
and o
C 1y
5 = 23
B} = pir) [r : B] | 23)

for some parameters C and B. Graphs of these distributions for varying choices
of the parameters are shown in figure 7. Note that small values of y effect a
downward curvature for the lower ranks » without influencing the shape of the
curve for the higher ranks. We will return to the independence of the head and
tail of the frequency distribution in section 3.3.3.
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Figure 7. Rank-frequency distributions: Zipf and Zipf-Mandelbrot distributions
for B = -1.5, C""= 0.9 and varying 1.



68 R.J. Chitashvili & R. H. Baayen

3. Stochastic Modelling of LNRE

In this section we first introduce expressions for the structural distributions using
the multinomial and Poisson models. We then define the concepts of the LNRE
ZONE and the generalized structural distribution. Finally, we consider the
rationale for generalized structural distributions using an asymptotic approach.

3.1. The Structural Distribution in the Classical Scheme
3.1.1. The Multinomial Model

Even though the four forms in which we may represent the frequency dis-
tribution are fully equivalent in that they summarize exactly the same infor-
mation, we will focus on the structural distributions since it is the structural dis-
tributions which contain explicit expressions for the relevant probabilistic cha-

racteristics.
Assuming the classical scheme of independent identically distributed trials,

let
(PA),1<isV)

be the probability distribution over the set
V=4, 4, ... 4)

of elements of the theoretical vocabulary.
As direct analogues for the empirical structural distributions we consider the
following expressions:

) = X Mpmem P20 | (24)

i=1

v

Fp) = ¥ P yyapy P20 (25)
i=1 2

The functions G(p) and F(p) can be interpreted in the same way as their empi-

rical analogues GN(p) and F’N(p), be it that the general population of words is
considered instead of the experimental sample population. We shall refer to
these functions as the theoretical structural type and token distributions, or,

b S 0 ——)
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alternatively, as the theoretical cumulative e
butions. ve type and token probability distri-

.Let's now consider how the theoretical and empirical distributions are related.
It is a well known fact that the vector of frequencies

lAD, (A, ... EAY) (26)

is multinomially distributed:

I174). @7

i=1

Pr(f,(4) = n, , 13;’510:[ N
nl’Z

s s T,

For the import‘ant special_ case of binomial probabilities and the corresponding
upper-cumulative probabilities we will use the notations

BN, m, p) = [:]p’"(l i (28)
BW, m, p) = Y| Vpa - oy
P &Em 2 PX ) i (29)

Similarly, trinomial probabilities will be referred to as

TN, m, 1, p, q) = [mN k]p"q*(l - p - g

3

For the expected values and covariances of the indicators

Im‘w_m], mz1
we have
El = (Mo ym1 peayy=
vy =m = | [P PA)™ = B(N, m, p(4)) (30)
and
COV( Ly s Ly i) = 8,8,,B(n, m, p(4))

+ (1-8 )T(N, m, k, p(4), p(4) @D
= BN, m, p(A))B(N, k, p(A),
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where
8 1 ifi=j
|0 otherwise.
Similarly,
EX s = B'®, m, p(d)
and

COV(Ly s+ Tggpen) = 8BV, max(m, B), p(4))
* (1 - a‘f) E T(Na [3 r P(A,)> p(A_,))

fzm,r2k

- B'(N, m, p(A))B'WN, k, p(4)).  (32)

Now the expected values for the frequency spectrum and the empirical

distributions GN(p) and F "(p) can be expressed as
Vym) = EVy(m) =E 3} Xy om

. E[i]p(,q,.)"'(l - pAY (33)

VN = EI?N = EE I?N(M)

mz1

& E;levww il
g EE(‘Z]p(A,-)"'(I - A"

mzl i

=Y - Q- pA)) (34)

| G,(p) =EG,®) =Y Y [ﬁ]ﬂ(A;)"’(l - pA) "

i mzNp

= E B'(N, Np, p(4))

(35)

RNE SN IE TS W Py ——

sa.3s
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Fy(p) = EE (p) = E%E mP, (m)

=Yy %[2’ ]p(A,)'"(l - pAY
= Y pAB'W - 1, Kp - 1, p(4)) (36)

and

COV(V,(m), V,(k) =
R

T 5 ](p(A,.))*"(p(Aj))’fu - pA) - pLAYE
T \m, k

N](p(A,»'"(l - A

p
m

N m + k - -m -k
S B - 2y

~ % ri:](P(Ai))m(] - AT E[]]:r](p(/if))"(l - PP (37)

]

Similar expressions can be obtained for the covariances of other characteristics

of the frequency distribution (CO V(I:“N @), F (@) for instance) as linear combi-
nations of the spectrum, but we omit them as we will be using simpler versions
based on the Poisson model. :

We shall now make a rather formal step to rewrite these expressions in in-
tegral form to show that (any) probabilistic characteristics of frequency distri-
butions can be expressed in terms of the corresponding theoretical structural dis-
tributions. This will also allow us to express further generalizations in a natural
way.

Since the theoretical structural type distribution G(p) is a (nonincreasing) step
function defined on the interval [0,1] with jumps at the points @Dy Py),

AG() = Gp) - G, (38)

where p + = lim, ™ G(p), and similarly for the structural token distribution,

AF(@p) = p(Gl) - Gp,*), (39)
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sums of the form

S =Y k),

i=l

with # some function of p, can be written as Stieltjes integrals:

S =Y hpAG(P)

= [Hp)dGe);

AF
S = Y hp)AP)
» p
1
dF
= (w22,
) p
We can now rewrite the expected frequency distribution as

1

7 = By = [V - ppraio

- [(Mra - e 22
0 L #
1
V, = BV, = [(1 - (1 - py)dG(p)
Gy(p) = EG, = [B(W, Np, q)dGi(g)

Fyp) = EE(p) = [qB'W - 1, Np - 1, 9)dG(q).

In the same way the covariances can be presented as

(40)

(41)

(42)

(43)
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CovV(7,(m), V. (k) = 8, EV, (m)

11
+ [T, m, k, p, 9)dGE)AG(g)
00

1
- [V, m, & p, PG
0
- EV,(mEV, (k). (44)
Note that we do not exclude the possibility that the theoretical vocabulary may
be infinite, i.e. /"= co. This is the reason that we consider the upper cumulative
distributions G and F, using for brevity the notation dG, dF instead of (-dG),
(-dF).
3.1.2. The Poisson Model
Generally, we may consider the multinomial model within the framework of the

Poisson model of the (sampling) experiment. In fact, if we assume that the
frequencies of the vocabulary elements

(f;(Al)s ﬁ(A2): srep f;(AV)):

are independent Poisson processes in continuous time f > 0 with parameters
(intensities)

(MAl)s MA2)= =203 z‘(A\/T))s

then the vector of frequencies
(o, (A, Sy (A)er £ (A)

observed at moments in time when the number of observed tokens is increasing,

T, = min{: zyjﬂ(A,) = N},

i=1

is multinomiaily distributed according to the probability distribution
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A
P) =, 1515 7)
¥ 14)
=1

Interestingly, for LNRE samples it may be assumed that for the terms of the
frequency spectrum the multinomial and the Poisson schemes are (asymptoti-
cally) equivalent. In the Poisson scheme the expressions for the expected values
become simpler. In particular, we now have

EV(m) = | %}f eMdG()

= jn(r, m, NG (45)
= [a - e™d60) (46
EGO) = [TI'G, i\, x)dG() ' “7)
EEQ) = IxII*(t, - 1, x)dG(x), (48)

where (GT(A), ﬁ,(h)) and (G()), F(A)) play the role of empirical and theoretical
distributions for type and token intensities in the general population. We use the
notations

T, m, 3) = %i”e-u (49)

@, m, &) =Y I, & A) (50)
k2m

for the Poisson probabilities and the corresponding upper sums.
The expressions for covariances are simplified significantly since the trino-
mial distribution is substituted formally as follows:

P i it e

¥ e e
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(M4)n)" (MA ey oM - 2y
“m! k! '

[ Jeareaya-say-puyy -

"Hence, for instance,

COV(T (m), V() =¥ 9“%)1 e
+ E (M:@I.!)t)'” (l(f;)t)k o MAN A
~ E (MA,)t)m*[m + lc] 1 I

“ m+ B m

MA )t)m oM

if

Em_uc

(M4 A
E - A

J

~ X~

= EV(m) - [””n': szi*EI?zr(m + k). (51)

For reasons of expositional clarity we will henceforth use the more traditional
notation p (probability) instead of A (intensity) in expressions making use of the
Poisson model, even though p may now range over the whole interval [0,0)
rather than [0,1]. Similarly pN will replace At,

3.1.3. Stochastic Interpretation of the Token Probability Distribution

Further insight into the structural token distribution can be gained by investiga-
ting how the text may be generated stochastically. Consider associating with any
word token w,, 1 <n <N in the running text both its relative frequency and its
(theoretical) probability, such that the text is viewed as a series of triplets (word
token, relative frequency, probability):

W, W, s Wy

ﬁy(wl)s p‘N(wz)a ey ﬁN(wN)
pw), pw,), .. pw,).

The probabilities on the second row are sampled from a population with dis-
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tribution /(without replacement). The probabilities on the third row are sampled
from a general population with distribution F (with replacement).

Now the following scheme for the stochastic generation of texts can be
suggested. At each n-th stage of the experiment, first generate the (random) pro-
bability p, according to the distribution F(p), then choose some appropriate word
type 4; from all words in the vocabulary for which p(4;) = p(w,) = p,. To define
the last step of this experimental scheme somewhat more precisely, let

Vb, 9 = (4: p sp(4) <q)

be the part of the vocabulary ¥ consisting of words with probability falling in
the interval [p, g]. Obviously, the number of elements V(p, ¢) in this 'subvo-
cabulary' is just

Vp, q) = EI[p<p(A‘)Sq]
1

= jdG(x)

9

= [Lare). (52)
- |

P

Now it is easy to see that the initial multinomial scheme of experiment is equi-
valent to that described above if only word w, is supposed to be chosen by
chance (i.e., according to the uniform distribution) from the subvocabulary
(p,,q,). In that case the variables (w,, w,, ...) are independently and identically
distributed. In addition,

pA)
1
R
r(w, = 4) Mp(4), p(A4) v
AF(p(A))
N s L . )
AG(p(4)) P

Thus the running text can be viewed as the realization of an experiment
governed by two stochastic mechanisms:

1. the token probability distribution F(p) to generate the probabilities p, at
each stage, and

2. the (conditional) distribution (4 | p) to generate words w, from subvoca-
bularies corresponding to the probability p, occurring at this stage.

Word frequency distributions 77

Moreover, in as far as we are restricting ourselves to the analysis of frequency
distributions, and since the particular character of the second mechanism (no-
tably the assumption of independence) does not affect the conclusions made on
the basis of the frequency distribution data, we can accept far more general hy-
potheses concerning the nature of the word distribution scheme, the only re-
quirement being that for any interval [p, ¢] the elements of the subvocabulary
V(p, q) should be uniformly distributed over the set :

@ 9 = 9. up 9, -

of positions through the running text at which the occurring probabilities p, fell
in the interval [p, q].

3.1.4. Interpolation

We sometimes need expressions for the vocabulary or the frequency spectrum
for sample sizes smaller than N. More prec1sely, if (V (m), m = 1,2,...) is a fre-
quency spectrum observed on a sample of size N, the question is how to esti-
mate the frequency spectrum (V (m), m = 1,2,...) for a subsample of the size
n. The formula

7y (m) = EP'(;)[ ][ ][ - %]j (53)

gives the best solution to this problem: V ,(m)is a_conditional expectation of
the spectrum ¥ (m) given the observed spectrum (V k), k=2 1):

Vyn(m) = EQ7 (m)P, (), k > 1),

that is optimal in the mean squares sense.

To see this, consider a finite population of size N consisting of ffN types of
elements

A, Ay oy Ay)

12 N

with corresponding frequencies
Ay, s £y ))-

l.ct some sample of size n be taken from this population without replacement.



78 R.J. Chitashvili & R H. Baayen

Denote by P"’N'n(k, /) the number of elements with a frequency & in the popula-
tion which occur / times in the sample, i.e.

VN.n(k’ ) = 2 I[f,(A,) =k L) =1 (54)

Evidently the spectrum terms in the sample can be presented as sums

7. = b Loty = (55)
=y I}N.,,(k, D). (56)

It can be shown that the (matrix) statistic I'}N'n(k, D), 1 <k, 1 < k,is distributed
by the compound hypergeometric law, i.e.

-1 N VR E (e
Pr(V, (k) = m,,, 1<k, 1<k<N) = [i‘:] Hm_r”(_%_'n [ﬂ (57)

on the domain

For sufficiently large sample sizes (n, N) the vectors
(I?'N_,,(ks l), I < k), k = 1,2,...

are independent in £ and multinomially distributed. As a result formula (53) can
be derived as well as an expression for the expected vocabulary,

%, =Y I?N(j)[l S [1 = %]j] (58)
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3.2, The LNRE ZONE

According to the law of large numbers, we have that for any probability
distribution

@A), 1<i<P)

with a finite vocabulary V the relative sample frequencies will converge to the
population probabilities for ever increasing sample size N:

PN(A,,) —%-£rA)

in probability as N — oo As a simple consequence,
V.,(m) = 0

for all m. If so, the relative expected spectrum

EV,(m)  V(m)

(I.N(m) = 5 I?N VN

may coinside with most of the 'laws' (15-20) only for finite samples (N < od).
If one of these 'laws' appears for N = o, then the general population must be ne-
cessarily infinite too. In qualitative terms, a sample in the LNRE ZONE can be
defined as a sample for which (a) the sample size is large enough to allow the
estimation of the first terms of the probability rank distribution (the big prob-
abilities), but where (b) the first terms of the relative frequency spectrum take
on significant values. The questions we shall try to give an answer to by apply-
ing the analytical expressions for the expected spectrum can be formulated as
follows:

1. What is the empirical criterion for the LNRE ZONE? In other words, how
can we ascertian whether a sample is located in the LNRE ZONE?

2. What is the theoretical definition for the LNRE ZONE? In particular, does
a theoretical distribution exist which realizes some given 'law' either on
finite or on infinite samples, such that the coincidence

om)=am), m=1,2, ..

takes place for 'laws' a(m) such as (15-20)?
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3.2.1. Locating Samples with Respect to the LNRE ZONE

In this section we address the first question, proposing two methods for
ascertaining whether a sample is located in the LNRE ZONE. The first method
makes use of the way the frequency spectrum develops through sampling time,
the second method gauges the extent to which the sample relative frequencies
are biased estimates of the population probabilities.

The following reasoning corresponds to the intuitive understanding that the
LNRE ZONE must be located in the neighborhood of sample sizes where the
(relative) expected spectrum terms achieve their peaks. Using the Poisson model
for the terms of the expected spectrum and differentiating in the variable N we
find that

d 1

' = : (59)
d 1
WV”(M) 2 ﬁ[mVN(M) =(m+DV(m + 1,m =12, (60)
d

i y(m) = o, (mm - o, (1)] - (m + Do, (m + 1), m = 1,2,... (61)
Denote by N,, m = 1,2, ..and N, m = I, 2, ... the values of those sample
sizes where the terms of the absolute (V,(m)) or relative (o (m)) expected
spectrum are achieving their maximums respectively. Interestingly, the dynamic
behavior of these functions is characterized by the following property. At the
time moment N = N; at which the expected number of hapax legomena (the
words occuring only once) V(1) reaches its maximum the number of hapaxes
is exactly twice that of the dislegomena ¥,(2): from

d oo
V(D) =0

we have by (60) that

ho 2,0
N N

H

hence V(1) =2V(2) at N;* Similarly, the number of dislegomena increases until
at time moment N = N, it becomes 3/2 of the expected number of words occur-
ring three times, ¥(3), and so on. The moments of peaks of the relative ex-
pected spectrum o,(m) are arranged in the same way but with some (often
substantial) anticipation,
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N, < N, N, < N,..

Now suppose that Zipf 's law is realized for some samplé size Z. When we
substitute the expression 1/[m(m+1)] in the right hand side of (61) and take

L) = 0,

then it is easy to see that

d
ﬁaw(l)lm <0
and that
d
=) |y, = 0

Hence we have that
N, <Z=N,<N,

Thus Z appears as the sampling time at which the relative number of expected
dislegomena E a,(2) achieves its maximum.

Given some observed frequency spectrum (I?N(l), I?N(2),...),we may test
whether a sample is located in the LNRE zone at sample size N by inquirin*g
whether the number of hapaxes and dislegomena are still increasing. If N <Ny,
that is,

1oy - 29 62
X{(VN(I) 2V,(2)) > 0, (62)

we know that the number of hapaxes is still increasing; if Ny < N < N;, that
is,

]

All(ffw(l) - 20,2) <0 |
; (63)
@ - 37,@) > 0
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we know that the number of hapaxes has passed its maximum while the number
of dislegomena is still increasing. We will refer to the 'time' interval (0, N;] as
the central LNRE ZONE and to the interval (N}, N;] for small k as the late
LNRE ZONE.

To see how this test can be applied to actual data, consider figures 8 and 9.

Q ©
3 b
- E
ES s %
P o
T
(@]
g |
(8] (o]
o ]
O A ,
0 5000 15000 0 5000 15000
N N

Figure 8. The development of the absolute and relative frequency spectra (m =
1, 2, 3) through sampling time: the productive English suffix -ress.
The continuous lines are calculated on the basis of the inverse Gauss-
Poisson 'law', the dotted lines are obtained by hypergeometric inter-
polation.

Figure 8 shows how the first three spectrum elements develop through sampling
time for the productive English suffix -ness. Since V(1) and V,(2) are still in-
creasing at the observed sample size, we may conclude that this sample is
located in the central LNRE ZONE. Next consider the corresponding graphs for

T i B
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the unproductive English prefix en- (figure 9). According to the Gauss-Poisson
model (see sections 3.2.2 and 5.1), the sample is at a position far beyond the
late LNRE ZONE. The hypergeometric interpolation curves appear to be less
useful here, due to the presence of extra maxima which are brought about by the
combined presence of a substantial number of very high frequency words and
a smallish number of low frequency words. In this case, the early maxima
observed for small N are indicative of the sample's location outside the late
LNRE ZONE. Note that the relative spectrum elements reach their maxima far
earlier than the absolute spectrum elements, which is the reason why the test is
formulated in terms of ¥, (m) rather than in terms of o, (m).

16

12

10

V(m)

T T T T T T T T T T T T T T

0 2000 6000 10000 0 2000 6000 10000
N N

Figure 9. The development of the absolute and relative frequency spectra (m =
1, 2, 3) through sampling time: the unproductive English prefix en-.
The continuous lines are obtained using the inverse Gauss-Poisson
"law'. The dotted lines are obtained by hypergeometric interpolation.
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For not too small samples located beyond the LNRE ZONE the absolute and
relative spectrum elements are (globally) decreasing functions of N. Note that
the extreme case when

N =N, = ..
can take place only if
N, =N, = .. =,

in which case the relative expected spectrum terms are increasingly converging
as the sample size N — oo, If some limiting 'law' cu(m) is to hold for N — o

o(m) = limo, (m)
N—eo
then the (stationarity) condition

lim%aN(m) = a(m)m - a(1)) - (m + Da(m + 1), (64)

Now

should necessarily be satisfied. In other words, the growth rates of the spectrum
elements should no longer vary with N. The unique solution to (64) is

om) = _ OLm - @)
(1 - o)(m + 1)

Thus Karlin-Rouault's 'law' appears as the only parametric family of limiting
'laws'. In section 4.2 we shall give a description of the theoretical structural dis-
tributions which can realize this law. First, however, we consider an alternative
method for establishing whether a sample is located in the LNRE ZONE.

From a standard asymptotic point of view we may consider ourselves as
situated outside the LNRE ZONE when, roughly speaking, we can convince
ourselves that the empirical distribution (p,(4,)) is so close to the theoretical
distribution that we can allow ourselves to replace theoretical expectations by
empirical ones, If the sample is located outside of the LNRE ZONE, the
expected spectrum elements can be approximated by the expressions

EV, (m) =¥

i

GUANY oy ia
|

Word frequency distributions 85

- [P a5,
m!

0

EV, =¥ (1 - M
= [a - e™dG, ().

We can use the differences between the expected values

EV,(m) - EEP, (m)

A A

EV, - EEV

N N
to evaluate the accuracy of the approximation and the extent of the bias intro-
duced by estimating population probabilities by sample relative frequencies.
Focussing on EE‘I?N, the expected vocabulary at the sample size N if instead of

the theoretical probabilities the empirical distribution Byd), 1 £i < P)is

“used to simulate the experiment on the same sample size, we find that

EEV, =EY (1 - e™P (m)

mzl

=Y - emEP, (m)

mz1

=EV gy -

In other words, if the expected vocabulary at the smaller sample size 0.63N is
approximately the same as for the sample size N, the sample is not located in

the LNRE ZONE. This state of affairs obtains only when diu JE—
A computationally convenient test is to consider the ratio
7, - ¥ - e, m)
C, = . - = EaN(m)e“"’, -~ (65)
Vy ' m

large values of which can be used to identify the LNRE zone. By way of ex-
ample, suppose Zipf's law is valid in the zone we are situated in. We then ob-
tain
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EEV(N) = Y - e""}E[V(N)_I_}

mzl m(m * 1)
= E[V(N)(e - 1)1 - In(e - 1))]
~ 0.5EV(N),

so that in this case we are loosing about half of the vocabulary on the assump-
tion that we are not positioned in the LNRE ZONE. Some typical empirical ex-
amples are presented in table 1. The sample of words prefixed with en- appears
with the lowest score for C,. This accords well with our previous findings con-
cerning the very early stage at which V,(1) achieves its maximum for en- (see
figure 9). Although low values of C, are typical for unproductive affixes, they
are rarely observed for texts. However, we would not be surprised to find that
the very large corpora that are at present being compiled (N » 300,000,000) will
be located outside the central LNRE ZONE and probably outside the late LNRE
ZONE as well,

Table 1. Some typical C, values for various kinds
of word frequency distributions

sample type C, vV n,

English -ness (Cobuild) 0.195] 1607 749
English en- 0.059 94 11
Dutch -heid 0.228 466 256
Durch -ing 0.147 942 302
Carroll's Alice in Wonderland 0.163| 1930 721
Bronte's Wuthering Heights 0.165 6420 2427
Pushkin’s Captain’s Daughter 0.213| 4783 2384

3.2.2. Generalized Structural Distributions

We have already discussed the fact that Rouault's 'law' appears as the only li-
miting 'law' for N — . We now turn to consider the question whether theore-
tical structural distributions can be found that realize some 'law' for a finite,
specific sample size Z. The unique solution for G as the (unknown) structural
distribution appearing in the formula for the relative expected spectrum using
the Poisson model,
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[ %’l—e“’za@(p)
ofm) = 2 , (66)
Ja - emydc(p)

0

given that one of the Zipfian laws ( 15-20) is substituted for a(m) in (66), takes
the parameterized form

~Zpx (IOg(l +x))7‘lxﬂ-—1
(1 +x)pP !

G(p) = cfe dx, (67)
P

with some constant C (cf. Orlov and Chitashvili 1983b). In fact, if we substitute
G(p) in (67) into (66), the relative expected spectrum om) can be expressed as

[Cog(1 + x)y e
; (1 i x)m+ﬁ+1

o(m, a, B, y) = (68)

% ¥ -1 a-1
J'(log(l )T
0 1+ -7‘7)[“1

All laws (15-20) appear as special submodels for particular choices of the para-
meters o, B and y (Zipf: oo =B =y =1, Yule: o = B, v =1, Yule-Simon: o =
1, ¥ = 1, Waring-Herdan: y = 1, Karlin-Rouault: p = 0, v = 1, Zipf-Mandel-
brot: a = B = 1). Unfortunately, expression (67) does not represent any real
structural distribution because

1. G(p) is not a step (or step-wise constant) function,
2. the distribution

©

F(p) = [xdG(x)

P
may not be a normalized distribution, and
3. the theoretical vocabulary ¥ = G(0) may be infinite.

Nevertheless, the reasoning presented above at least makes it natural to admit
generalized forms for structural distributions so long as they allow us to for-
mulate expressions for the expected spectrum at prescribed sample sizes,

In addition to the Zipfian family (15-20) defined by (67), to which we shall
refer as the generalized Zipf's structural distribution, two other structural distri-
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butions, i.e. decreasing functions G(p) of a general nature, should be mentioned.
These distributions, the lognormal distribution (Herdan 1960, Carroll 1967,
1969) ,

_ 1 wl _i(lw(t)-u)z .
G@p) = —e N ldx (69)
szn_pxz

and the generalized inverse Gauss-Poisson distribution (Sichel 1976,1986)

P - e
Gip) & —e—_ [xrle " S, 70
®) (bC)MKM(b){x e (10)

where K(b) is the modified Bessel function of the second kind of order ¥ and
argument b, allow the expected spectrum to be defined as

v, (m) = jg%me-PNdG@). : (71)

In both cases the structural distributions may be presented in the form

z 71 %X
Gep) = 1.7 oy = 26°02) (1)
o221 ;I; ¥
and
) = — 2 [y vy = 26°0D) @3)

cb' 'K, ,(b) 3

with the parameters Z = e* and Z = 1/¢ playing the role of the samﬁle-locator
defining the sample's position with respect to the LNRE ZONE.

3.2.3. Simulating Generalized Laws

We now present an algorithm by which an experiment (in the framework of the
multinomial model) could be simulated (approximately) corresponding to some
generalized structural distribution. In other words, given the generalized prob-
ability type distribution G°(p) defined by the relation

e
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=mP’" > dGe
a(m) '[wnﬁe"dG(p), -

for some relative spectrum law' of
m), we want to constru i
large N) the set of probabilities o (for a sufficiendly

Py 15i< V) )

such that the corresponding structural distribution
Gp) =Y1
@ = X1y, ., (76)
realizes on a sample of size N the relative expected spectrum

v (pi'NN)m e
o, (m) = ) _ ; m_

Y- e

i=1

[Eerace)
_ 0 ) »
Y ;_!efpdc;v(p) = a(m), (77)
Ja - emdce)
0

with G° the standardi )
S ardized correlate of G. To do this, construct for ¢ > 0 the

A(e), 1 <i<P)

from the relations

G°(ll(e)) =e
G (e) =G (&) +e, i22, (78)
where
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k
=¥, =mink: (1 - e"9) 2 .é). (79

i=1

Now define

n, = [3 A(e)]

i=]

and construct the probabilities by the formula

1<ign, (80)

with &, chosen so to satisfy

e, = max(e: n, = N). (81)

3.3. Asymptotic Approach

Under what conditions can the use of generalized su'ugmral dismbu!:lons tge
justified? This question is discussed in section 3.3.1. Section 3.3.2 cor_ls1ders the
accuracy of the theoretical models, and section 3.3.3 calls .attgnu(‘m to the
independence of the high and low frequency 'tails' of LNRE distributions.

3.3.1. The Triangle Scheme of Experiment

We may justify generalized structural distxibui:'ions (or generalized p?ﬁgllanorﬁ
probability distributions) by using the asymptotic approach argu{nent.. . oug !
the LNRE ZONE is usually located at rather _early stages of (lmag}na_be)'ex
periments, the samples in which the characteristic features ‘of LNRE distributions
are present are often large enough to apply the asymptotic _analysm. N
Within the framework of the classical scl}leme of experiment, the only Wayf
to justify generalized distributions is to ad!mt the so-called t[:langle schemic:.i od
experiment, i.e. to consider the asymptotic scheme when (i) the normalize

theoretical structural distribution
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Z

Gz(p) | 2= X= Mm

T(l - e"‘)dGZ(;)

indexed by some parameter Z, approaches some generalized structural distribu-
tion G°, and when (ii) the sample size N is taken in the neighbourhood of Z
(considered as the center of the LNRE ZONE), i.e. N ~Z.

We assume that the token probabilities p, are independent and identically dis-
tributed. Informally speaking, we find that at first sight there appears to be no
distinction between the following suggestions:

A. The author selects some structural distribution F(p) and then generates
(creates) a text of some sufficiently large size N according to this distribution;

B. The author determines some sample size Z (the desired horizon) and
chooses the structural distribution intending to get some (desired) frequency dis-
tribution 'law' on a sample of size Z and then generates a text of a size N < Z.

But the distinction becomes obvious when we set the problem in asymptotic
scheme. In fact, let some 'law' a(m), m > I be fixed. Now let the problem of the
existence of a structural distribution realizing this law be stated in an asymptotic
form, i.e., does a sequence G*(p), Z » I of structural distributions exist such that
the relative expected spectrum

o (m)~ a(m), mz1. (82)

But this approximation takes place if and only if the normalized structural dis-

tribution is approximated (for Z » /) by some (generalized and normalized) dis-
tribution G’(p),

G*(%)
G'(p) » z 5 (83)
- = -x Z(x
Ja - emaci)
where G°(p) is uniquely determined from the equation
am) = [ erdGp), m =12,... (84
o !

In other words, G*(p) with the property (82) for sufficiently large Z can be re-
presented as
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G(p) = V,G'(pD), _ (85)

where

< T - emac?
v, {(1 e )dGZ[Z]

is the expected vocabulary on the sample size Z and with the generalized struc-
tural distribution G° defined by (83). Thus to use the generalized structural dis-
tribution is equivalent to accept the hypothesis:

Glp) = G'(p)

with G%(p) satisfying (82) for some ‘law' ofm). Note that for the transition from
a discrete step function for the structural distribution to a continuous function G’
to be justified in the triangle scheme, the parameter Z, where Z = e for the
lognormal model and Z = 1/c for the generalized inverse Gauss-Poisson model,
should assume a value not too different from N - the ratio t = N/Z should not

be too small or too large.
Thus for samples of size N » 1 we have two possibilities for the asymptotics

of the relative expected spectrum. If G is fixed, that is, if we drop the index Z
from G?, we again have Rouault's law'

ol(m - o)
(1 - a)(m +1)

am) =

as the only limiting distribution. If we allow G to be parameterized for Z such
that (83) is satisfied, the triangle scheme leads to the following expression for

Qy(m):
J‘(pt)'m e—pf dG"(p)
() & , (86)

Ja - emdee

a parametric family of laws' extended in sampling time and parametﬂzed by Z;
the 'Zipf size, or equivalently by the parameter = N/Z. For the generalized Zipf
's law' (68) the extended version takes the form

) A L g, A BB . At g % B

it

e
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Figure 10. The role of the parameter ¢ in the extended generalized Zipf's 'law’,
the lognormal 'law' and the generalized inverse Gauss-Poisson 'law'.
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For Sichel's Gauss-Poisson 'law’, a,(m) can be expressed as

0L m.Y,b,1) = 1 :
(1_h'_il)wsz?[b"’(1+r)(1—l—:-f) ] = Kf(b\[th)

K, o (By140).

tym
(0.55y1 +tT+T)
m!

For Carroll's lognormal model we finally have that

T e,
_ op2 m!
o, (m, 0,0 = — ; (88)

Figure (10) illustrates the role of the parameter ! for these three 'laws'. The
Gauss-Poisson ‘law' is shown for y=-0.5 and b = 0.01, the lognormal 'law' for
o = 1 and the Waring-Herdan 'law' for & = p = 1 (Zipf). For all models,
increasing ¢ leads to theoretical distributions in which the lowest frequency
types play less prominent roles, as expected for samples moving away from the
LNRE ZONE.

3.3.2. The Accuracy of Theoretical Models

In the LNRE ZONE the accuracy of theoretical models for frequency distribu-
tions can be treated in the gaussian framework. Formally, if

E I}N(m)

N

N» 1, V,»1, = am) > 0,

then

V. (m) - EV,(m)

A

D
m 21| ~ N(O,R), (89)

oo
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by which'we mean that the normalized spectrum is approximated by the gaussian
vector with 0 mean and covariance matrix

_ +k) 1
Rm,k - Sm,kaN(m) - (m k ]Wam(m * k). (90)

Wlth respect to the sequence (,, 1 < n < N)of observed values of the
empirical vocabulary volumes through sampling time we have

D
" 1<n<N|~MOR , 91)

where »n denotes the current sample size and where the covariance matrix

_Ccovp, -V, V, - V)

" , 1Sn k<
" 7 n k<N
can be given in the form
-R:r.k = Vn+k - Vmax(n_k)! 1< ];15 k < N. (92)

If we use the interpolation formula
Pn =¥ I?N(;)[l -(1- i’)f]
721 N

for the vocabul_axy growth curve to estimate the accuracy of the model, we may
use the approximation

I?MN - Vn 2 53
N " 1< ngN|~NOR (93)

I

with covariance matrix

R,=V,-Ves, 1<Sn k<N o4

K
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3.3.3. The Distribution of the Frequency Spectrum

Even though the lower elements of the frequency spectrum are t_h_e most jmpor—
tant for LNRE samples, more global analyses of frequency _distnbutlons u%cluc.i-
ing the highest frequency terms are by no means devoid of interest. Speaking in
terms of the structural type frequency distribution GN(p), the theoretical models
considered above were intended to give satisfactory approximations for the left
hand tails, i.e.

G(%) = EGN(%) :

To test some theoretical model for the structural d.isfribut_ion G(p) on the whole
range of values 0 < p < 1 it is useful to know that the differences

Axp) = (6,() - EG, () 99
8:) = (G,(E) - EG(D) (96)

are asymptotically gaussian with variances

FANp) ~ ]—1, ©7)
FANp) ~ EV, (98)

and that, significantly, these differences are not correlated so that

COV(NA D), _I_AN(p)) ~ IE_J? Ix(l - I(p,))dG®).  (99)
EV, 0

N

The important conclusion from this fact, which might be expected intuitively, is
that mathematical models for tail and high frequency zones can be suggested
independently. In particular, if some analytical expression (a(m),. m=1,2.)
is suggested for the relative expected spectrum, then we may write

EG(p) = EV (Y a,(m) + A, 0), (100)

mzpN

——

sl LA o RN
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where A4,(p) is intended to improve the fit for not small values of p, with the
only property that ‘

1 P ’
EV, " N (

N

Note that 4,(p) is exactly the parameter B in the models (21) and (22) discussed
in section 2.2. This extra parameter can be used, in particular, to improve the fit
with the theoretical rank probability distribution at the left hand tail (i.e. the high
probability region) without affecting the low frequency zone.

4. LNRE Models and their Rationales

In this section we shall present and try to systematize different mathematical
models intended as analytical tools for LNRE samples. Since the empirical fre-
quency distribution is the main object for mathematical modelling, the practical
output of any such mathematical model is to suggest some analytical expression
such as Zipf 's law for the frequency distribution as described by the rank fre-
quency distribution, the frequency spectrum, or the cumulative type or token fre-
quency distributions. By the interpretation of the corresponding analytical ex-
pressions these models can be divided into three essentially different classes:

1. Models which consider the analytical expressions used to approximate the
rank-frequency distribution as structural probability distributions of a gen-
eral population. Typically, such models focus on developing stochastic
schemes generating such populations.

2. Models which consider the analytical expressions used to approximate the
frequency spectrum as limiting distributions that characterize the equi-
librium state. Typically, these models focus on stochastic schemes leading
to the desired steady (equilibrium) state.

3. Models which consider the analytical expressions used to approximate the
frequency spectrum as expected values for finite samples. These models
focus on general population models realizing these laws on finite samples.



98 R.J. Chitashvili & R.H. Baayen

4.1. Mandelbrot and Miller
Mandelbrot's rank-probability distribution

1/y

N 102
(r + B 4w

pir} =
or the corresponding structural type distribution
Gp) = S+ B
P

has proved to be a good enough approximation for a number of observed dis-

tributions py{r} or G,(p). Hence, from the point of view of traditional probabil-
istic modelling, it seems natural to be interested in general populations with a
rank-probability distribution of this form. Two approaches in this direction
should be mentioned. Mandelbrot (1953,1962) has shown that the significance
of the distribution p{r} can be explained by its optimality property of maxi-
mizing the information contained in a message constructed of words as se-
quences of letters indexed by different costs. Miller (1957) presented a pure
probabilistic model where p{r} appears as a rank probability distribution of
words viewed as sequences of letters chosen by chance at each stage of an ex-
periment (as if a monkey were typing text), and where the parameters (B, C, »
depend on the probability of a blank space and the number of letters.

But the significant bias between theoretical and empirical distributions symp-
tomatic for LNRE renders such interpretations unconvincing, at least in the
framework of the classical scheme of experiment. In fact, if the Zipf-Mandelbrot
law' is taken as the theoretical probability distribution, then the relative fre-
quency spectrum terms are converging to the expressions

V,(m)

-

N

ol(m - ) (103)
T - a)(m + 1)’

= @, (m) —>

ie. to the Karlin-Rouault 'law', instead of to the expression

I .
ou(m) sl

the Zipf-Mandelbrot 'law' in terms of the spectrum which might be expected.
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4.2. Rouault

A'Ls mentioned above, the law (103) is the only limiting expressio

tive expected spectrum when sampling from a generalg pc):)}ulat:imll1 \ffoiihﬂ:iefgilead
structur.al pro_b_ablhty distribution. It can be shown (Rouault 1978; Khmaladze
a{1d (.:hlt'aSthIl 1989) that the necessary and sufficient condition on 1’:11:: structural
distribution G(p) when the limit (103) exists is the property of tails

Gp) = p™dp) (104)
with some 0 < o < 1, and some at p = 0 slowly increasing function &, i.c.
lep)
=+ 1,p—>0
L)

for each ¢ > 0, as e.g. in the case that (102) takes i

ic] , 85 €.8. place. In Khmaladze and Chi-

tltfishwlri_h (t 1989) it is shown that condition (104) is even necessary to have posi-
ve limits

limo(m) > 0, » =1,2,... .

N—x

The aim of ﬂ_1e marhematic_al models to be considered here is to suggest some
natural stochastic scheme which provides the general population with property

(104). The most complete is the markovian model of word generation considered
by Rouault (1978), who generalized Miller's stochastic scheme. Let

D =oAL, Ly L, o}

!Je the set of elemfn-lts (letters) including the blank space L, which occur accord-
Ing to some transition probability p, . A particular word A can be viewed as a
(finite) sequence of letters limited by two blanks:

4 =[LLL, .., L.L].
Such a word has probability

PA) =po,p D, Py -
To form an idea of the structure of token probabilities p, | <n <N over a
sa‘mple of size N, let x, be the Markov chain realization of the procedure gener-
ating the running text as a sequence of letters. Let
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Tyv Tgs ooz Ty
be the successive moments when blanks occur in this sample. We can present
the sample of token words and the corresponding token probabilities as

W, = (i Xy s B

7,~1

pw) = [[p&, x,.)

t=1
w2 = (x'll’ x‘1+l’ e x'[:l)

1,-1

pw,) = H px, X,,)

Rouault (1978) shows that the collection of such probabilities over all words (of
any length) possesses (through its structural distribution) the property (104).
Note that Miller's (1957) model is a special case of Rouault's scheme with p,,
and p, not depending on i, j.

Thus, if the dynamics of a population are governed by the simplest multi-
plication rule, according to which a particular element enters the population or
is re-used with a constant probability not depending on the current state of the
system, then (103) expresses the only possible equilibrium state distribution.
However, the class of equilibrium distributions can be essentially enlarged if
more general birth and death stochastic schemes of population dynamics are
considered.

4.3. Dynamic Models: Simon, Waring-Herdan

We have seen that within the classical scheme of independent and identically
distributed observations the majority of Zipfian frequency distribution laws, with
as the only exception Rouault's 'law’, can be considered as analytical expressions
for the relative expected spectrum on finite sample sizes in the asymptotic set-
ting of the triangle scheme. In other words, we are dealing with 'laws' that do
not have the property of stability with respect to changing sample sizes. In order
to justify these 'laws' as laws expressing the equilibrium (or steady state) prop-
erty of well organized systems, we therefore need more general stochastic pro-
cesses as models for the formation of populations with large numbers of dif-
ferent elements. In this section we consider a number of such processes which
can be viewed as providing rationales for a number of 'laws' of the Zipfian
family.

The dynamic modelling idea becomes very natural if we look on the frequency
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n ,'f Ct. e iie uenc Of some w OId JI{ can be

fA) =f_(A) + ey, n=12., | (105)

5
( Ed ) pe 2t l‘

F =), 1<)

of the sample at the current sta iti
the . ge n. In other words, the conditi ili
coincides with the unconditional one, and is constant: onal probabilly

Pr(e, = 112) = Pr(e, = 1) = Pr(4). (106)

'Sl'he st;i)eciﬁcs of.the kind _o_f dynamic modelling considered here lies in the as-
umption tl_1at this probability may depend on the current state of the 'system'
and in particular on the frequency of the element A4,: ’

Pr(e, = 1) = Pr(4| 9. (107)

One of the versions of Simon's (1955, 1960) models can be presented as the

simplest (but nevertheless very natural) example. The iti ili
L} 1 ’ d
the 'birth' of the element 4, is defined as ’ SRS

4)

PrAIZ) = oy £4)

" Uy = +(1 - I ¥

v E I ) = OJP(AJ,) ( q) ) > 0 = s (108)
J

where 0 < ¢ s 1 stands for the probability that some new element from the
vocabulary with the frequency /(4) = 0 can be included into population, and

whe_re with probabih'ty 1 - g some already present element can be re-used pro-
portional to its frequency in the sample. From the simple relation

I = .
Gty =i = Ty el = Lo + Xy Ty (109)

the recursive relations for the spectrum terms can be derived
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P (m) = Dom) + Difom —1)9%”"_1)-- r‘/"(m)ﬁ':ﬂ se(m), (110)

where the additive term &,(m) is conditionally centered

E(e (m)|#) = 0. - ' (111)
For the expected spectrum we have the recursive equations
. (1 -q)(m-1) - (1-g)m 112)
V. (m) =V (m) +Vm 1)_7_ Vn(m)_._-n (
1 =
v =) +1- Vn(l)_n_q (113)
V - V + q, (114)

n+l n

Now recursive equations for the relative expected spectrum can be obtained
o, (m) = o(m) + 1[(1-Q)(m-1)0t,,(m-1) - ((1-g)m + Do, (m)] (115)
| n n

which tells us that the limiting law

o, (m) = a(m), n —> © (116)

— in fact it can be shown that this convergence and moreover the law of large

numbers
v, (m)

- o(m), n —> © (117)

n

takes place here - should be the solution of the equilibrium or steady state
equation

a-qm - Dam - 1) =(1 - g)m + Doa(m). (118)

The solution to (118),

ra + 1_1_4) T(m) —
WH=To7 Tae el

1-g

is a particular instantiation of Simon's (1960) model.
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For a slightly more general model where an element with frequency m, m >
0 can be re-used proportionally to its relative frequency but in which the prob-.
ability that a new word occurs on the n-th stage is proportional to the total prob-
ability of unused words, we have

14)
Pr4) %) P w0 * =5 Lo
i) = - (120)
rEP(AJ)I[r,(A) g *1
J

Note that the probability of generating new words will now eventually decrease
to 0. If the structural distribution

SOED ) NG
2z

of the general population satisfies the condition (104), then the steady state law
is

ITm)I'(Q + ar)

a(m) = m >

(121)

the beta function of Yule (1924).
Both the Yule distribution (119) and what we have called the Yule-Simon
Taw'

= p
om) TET R CEIR

which we have found to be the more useful expression for the analysis of texts,
are special cases of the law’ advanced by Simon (1960:69) on the basis of a
birth and death process model for the population dynamics,

om) = ANB(m + ¢, d - ¢ + 1),

with B(.,.) the Beta-function and with parameters c, d, A defining the birth and
death probabilities and with normalizing constant A. For specially chosen para-
meters and A fixed at unity both models can be derived. Interestingly, the Wa-
ring-Herdan-Muller model, which includes the two above versions of Simon's
model, can be obtained along similar lines when the probability of re-using some
word is a linear function of the frequency of that word (see Khmaladze and
Chitashvili, 1989).
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These dynamic (birth and death) equilibrium models are satisfactory for the
LNRE analysis of biological (distribution of species), social (distribution of in-
comes), psychological (distribution of responses to some stimulus), and a number
of other living and technical systems. Unfortunately, lexical samples generally
do not show the tendency to equilibrium state, and though the LNRE features
may be displaid clearly, the frequency distributions change considerably with
changing sample size.! This makes it natural to view such samples as being
located in the LNRE zone and to apply models for general populations realizing
appropriate frequency distributions on finite samples. In the following sections,
we discuss three such models.

4.4. The Lognormal Model (Herdan, Carroll)

In this model a word token is chosen on each stage of the experiment as a result
of some recursive procedure. Unlike the Markovian scheme underlying Rouault's
"law', this procedure is interpreted as a choice between words rather than as a
word generation procedure. The token probabilities are now expressed as pro-
ducts of transition probabilities which are themselves random.

In the lognormal model as considered by Carroll (1967, 1969) the structure
of the vocabulary is described in terms of a decision tree. (More general
schemes can be considered than that proposed by Carroll, here we will limit
ourselves to Carroll's approach.) Assume that we have a binary decision tree
where the paths leading to the leaves of the tree, the elements of the vocabulary,
may have different lengths. Let 7=y, (s =0,1,2,..) denote some path from
the root of the tree to some leaf, i.e. the sequence of decisions made at the

different levels of the tree, with y, € {0, 1} indicating the possible decisions on
each stage. For each path 7' we define some stopping moment t(¥) indicating the
length of the path. Each path uniquely determines some word A(y) as a result of
the decision procedure.

To define probabilities of words let #@@=n,s =012, ...)be decision prob-
abilities corresponding to the stages s = 0, 1, ... . Also assume that these prob-
abilities are randomly distributed according to some distribution function ¢(x),
(0 < = < 1) on the interval [0, 1]. Suppose finally that y, as well as , are in-
dependent. Then the probability of word w = w(y), given the probabilities
equals

! For a dynamic model which combines the Mandelbrot/Miller/Rouault approach with
that of Simon without imposing the equilibrium constraint, the reader is referred to Baayen
(1991), a simulation study that focusses on the similarity relations between words in the

lexicon.

s o DT OO

= g o R W ¢ Ve D A

G

Word frequency distributions 105

pw) =[xy - o) % (122)

5=0

The token probability distribution can now be expressed as

E(p) = Pr(p(w) 2 p) = P’[E D, log(m) + (1 - y)log(1 - m)] = log p

s=0

=0

= Pr[E [6(s) = log p]. (123)

The mean and the variance of the random variable 8 are easily calculated:
0 =E8 = E[xnlogn + (1 - mlog(l - m)]

1
= I[x log x + (1 - x)log(1 - x)]d®(x) (124)

oi = VARG = j{xaogxf +(1 - x)(log(l - x)P1dd(x) - 62 (125)

We peeq some conditions on the stopping moment 7 and on the variance of the
dlsmbutfon tI) Suppose that (i) r is a Markov moment. This is a conventional
assumption in .the theory of stochastic processes when sums of random numbers
f)f random variables are investigated. In the present case, the assumption that 7
is a Markov moment implies that for any path y’ the event [z = k], given the
pat-h (v, 0 <5 <k, does not depend on the future values (y, & + 1,' <s <N)

Th!s condition.is met when, for instance, 7 does not depend 01; the path 7 :;t all‘
as 1s‘assumed in Carroll (1969). Also suppose that (ii) the expected path-lcugth’
the time needed to come to one of the leaves of the decision tree, is suﬁicienﬂ);

large (E7 » ) and that the variance is relativel i i
i g Ui atively small, as in the case of thaving

VAR() |
E7 )

Finally, suppose that
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VAR(D)

VARO —
Et

Under these assumptions the token probability distribution indexed by the para-
meter Z can asymptotically be expressed as

F(p) = F¥p) — Pr(cN* - log(2)) = log(p)
where we introduce the notation Z = ¢, and where N? is an asymptotically

standard gaussian variable. Equivalently,

Fp) = Fi(p)
@ (log x - log 2)!

=g = &

=L (L (126)
X

2R O
z

Thus the lognormal model is justified asymptotically in the framework of the
triangle scheme discussed above.

4.5. The Generalized Inverse Gauss-Poisson 'Law'

“The motivation for the generalized inverse Gaussian-Poisson distribution (Sichel,
1986), which is presented by the structural distribution

_ QUBCY [yt g 127)
Gp) = = |¥"exp(-= -+ dx, . (
2Kv(b)-|,: ( : 4)

seems formal, though as special cases it includes e.g. the I'-distribution (b = 0)
and the distribution of an inverse of a Gaussian random variable (¢ — « -
0, d’c = const).

4.6. The Generalized Zipf's 'Law’

The basis for the rationale of the generalized Zipf 's model, presented by the
structural distribution
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3

_ & 2 (log (1 + %)) 1271
G(p) C"[l:e e

is clear enough: this is the unique parametric family of structural distributions
which can realize on a finite sample of a particular size Z (Z being one of its
parameters) a desired representative of the Zipfian family of laws' in terms of
the relative expected spectrum.

5. Statistical Analysis with LNRE Models

In this section the information needed for the application of parametric LNRE
models to statistical data analysis is presented. In section 5.1 we discuss the ex-
pressions for the various theoretical characteristics in which we are interested.
We present some expressions for covariances in section 5.2. Section 5.3 outlines
a number of ways in which the parameters of theoretical models may be
estimated. Section 5.4 briefly discusses how to estimate confidence regions for
estimated parameters. Goodness-of-fit tests for theoretical models are given in
section 5.5. Section 5.6 contains some suggestions how to compare LNRE
samples. Finally, the software known to us for the modelling of LNRE distri-
butions is discussed in section 5.7 and applied to a number of empirical distri-
butions. '

To make these sections as independent of the other parts as possible and thus
more convenient for application, we give some expressions in detail even though
they can be found in previous sections. For ease of presentation, we will phrase
the discussion in terms of a general three-parameter model with the structural
distributions

G@p) =G o, B, ¥)
Fp) =F(p; o, B, ) (128)
o) = 0p; o, B, 1), '

where ¢(p) is the density function of the token probability distribution F(p),

o d
o) = EEF(p)'
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5.1. Expressions for the Theoretical Spectrum
5.1.1. Nonparametric Expressions

General expressions for the expected frequency spectrum and the .expected em-
pirical vocabulary for three parameter models can be presented in integral form:

v, om) =V m; o, B,y) = EV(m)

T@fe-ﬂﬂde(p)
i m!

- ='[M e Ly p)ap. (129)
o M D

for the expected frequency spectrum, and

v 0) = V(0; o, B, ¥) = EV,

1}

[a - e™dG()
= fa - ) L arp)
0 P

- fa - e-"”)’}q)(p)dp. (130)

for the expected empirical vocabulary. Note that for notational convenience the
expected empirical vocabulary is denoted by ¥},(0). Thus the vector V™, m=
0, 1, 2, ..., M) denotes the first M elements of the theoretical frequency spectrum
and the expected empirical vocabulary jointly. The same holds for its empirical
analogue, (V,™, m =0, 1, 2, ..., M).

Word frequency distributions 109

5.1.2. Parametric Expressions

We now present explicit expressions for the three parametric families of
structural distribution models, the lognormal model, the inverse generalized
Gauss-Poisson model, and the generalized Zipf model.

The lognormal model. Carroll's (1967, 1969) lognormal model is defined by the
structural token probability distribution

Foy = L (L=

U‘Z?'pr

dx. (131)

The expected spectrum and vocabulary for the sample size N can be expressed
in integral form:

V. (m) = EV,(m)

= 1f log(x) ~ 1
1 (xmme"w—;( = P)dx (132)
oy2m o x*m!
vV, =EV, (133)
= _1[log®) - u ]
=L fa-emie {2 )dx. (134)
oy2n o X

The theoretical vocabulary (number of types) is obtained by considering 7, in
the limit for N — oo :

o

V = lim VN=eT_

N e

Note that the parameter p, the mean value of log p in the general population,
typically is a negative number < -1.

The generalized inverse Gauss-Poisson model. Sichel's (1975, 1986) general-
ized inverse Gauss-Poisson 'law' is based on the structural type distribution

o) =;1,-(2/130)" et g (135) }

2K (5) -
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where K (b) is the modified Bessel function of the second kind of order y and
argument b. The theoretical vocabulary ¥, the number of types in the population,
can be determined on the basis of the normalizing argument. In fact, since

[dr@) = [pdG() =1,
0 0
we can easily find the expression for V;

2 K@) (136)
be K, ,(5)

For the expected vocabulary and the (relative) expected spectrum for arbitrary
sample size N explicit formulas in terms of the Bessel function can be found:

1) w2 KO | K,(byT +cN)
TR KB (1 + NYTK ()]
V,(0) (0.50.,8,)"
14 = - LD , (137
N(m) (I_BN)-,-MKT(G'N(I _BN)lfz) _ Ky(%) i -,-m(ax) (137)
0.50,8,)"
o (m) = 1 (0.501,8,) Wm(aN),

(1-6,)7"K (a,(1-0)'"%) - K (o) !

where the parameters oy, = b(1 + cN)"? and ), = eN/(1 + cN) are introduced for
notational simplicity. Note that the parameters ¢, and 6, are functions of the
sample size N, while the parameters b, ¢ and y are population invariants.

The extended generalized Zipf's 'law'. Orlov and Chitashvili (1982a,b, 1983
a,b) develop a model that is a generalization of Zipf's law. For this model the
structural probability type distribution

G(p) = ije 3
P

i (1 +xf*!

where C is a normalizing coefficient (defined below), is characterized by the
property that it realizes on the sample size Z the relative expected spectrum

_ng(ln(l * x))v-lxwldx Aoy o '.?"1'; -
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f [n@ + )P 4
a(m) = 1;(1 + 31+ )
[In(1 + )P d
o ¢! +y)[5+1

A number of known 'laws' are included as special cases. The following expres-
sions for the expected vocabulary ¥, and frequency spectrum terms V,(m) can
be obtained:

V,(m) = EV,(m) ‘ (138)
} (_[n(1 +y)p-he

=C(Z, a, B, )" d) 39

Z a, B, 1) {(Hy)m(l — (139)

v, =EV, (140)

« ¢z, o, p, IV, (141)

o (& + )1+ p)f

where t = N/Z and where the coefficient C is defined by

l'/Z
CZ o B, v) = . (142)
J‘[ln(l Y
s (1 +yPr!

The expected number of types ¥, for the sample size Z can be determined by the
normalizing argument, namely from the relation

NEA1}

N=Y mV,(m),

m=1

where p,{1}is the maximal observed relative frequency. Application of this re-
lation to the expected frequency spectrum for Z = N leads to the following ex-
pression
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}[1:1(1 + y)]*"y“"dy

V=2 L e . ae)
DnQt + );)];;y{:}'z[(hy)zpﬂru - Bty
o (1 +3)" "4 L+y

For the important case of the extended Waring-Herdan-Muller law (y = 1), all
formulas are significantly simplified:

Vym) = C(Z, u, B)t™ Y’ dy (144)
¥ {(wy)'“‘(lw)ﬂ”
i ‘ e -1
Vv, =C@Z o p)t [—L —dy (145)
N { ¢ + N + )P
with
C@, w, B) = — V2
f. yu -1
o1 + )P *1!

The theoretical vocabulary ¥ is finite if B > o and can be expressed as

V.
v VP
B-a
If, furthermore, oo = 1 (the extended Yule-Simon law), then the expression for
¥, can be approximated by

Z

V, & ————, 146
2 B In(@Zp,{1}) S

5.2. Expressions for Covariances

The covariances between the terms (Vy, Vy(m), m = 1, 2, ...), i.e. the autoco-
variances and crosscovariances for varying sample sizes, can be presented in
terms of the expected values of the spectrum terms, as shown in sections 3.1
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and 3.3.2. When convenient, they can be stated in integral form, applying the
parametric and non-parametric ;ePresentations discussed above.

Given the vector statistic (¥, =0, 1, 2, ..., M ) and the expressions for
Vifm), m =0, 1, 2, .., the corresponding covariance matrix R, (N, M) is easily
calculated: ,

8, Vlm) - ("’n‘: "] 2}:* Vo + K for my k = 1,2,... M.

- %Vw(ni)  form=0k=1,2,.,M14D

Vv - Vay _ Jorm =0,k = 0.

For two different samples with size N and »n, N <n we have

COV(V (m), V,(k) = V,,(m){rz][]i]k [l i i]""‘ -
n

n
Vm,,(m+k)[m+k]{ i [1 DL ]
m N N+n N+n
% N Y
covv, 7 k) - [—N] Y, o)
coviv m), V) =|_2 ¥z (m) - |1 -—ALMV('")
n s TN n+N nN n L
COV(I},,: I?N) = VntN - Vmin(]\l'.ﬂ]'

In section 3.1.4 we considered the interpolation problem. The results obtai-
ned there can be generalized, so that for arbitrary », N the recursive relations

v (m) = ZVN(;‘)[; ][%]m[l . %]’m (148)

_ oo oo 7Y
V=Y VNU)[I _ [1 Wﬂ (149)

21
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between the expected spectrum terms can be defined (Good and Toulmin 1956;
Kalinin 1965). The autocovariance of V,,, equals

cov(p,

i P =V s~ Pym VE R RSN (150)
The mean square deviation of ¥, from the "true" value of the vocabulary on
the sample of size » (the interpolation accuracy) can be presented as

BV, ~ bY =Vye-¥,. (151)

N

Expected spectrum elements for sample sizes N' > N are often required in
the formulas for variances and covariances. Unfortunately, the nonparametric
expressions (148) and (149) become unstable for n > 2N (see e.g. Good and
Toulmin 1956), even though for instance (149) still possesses some optimality
property: it gives the best linear extrapolation whereas the optimal extrapolation
formula

P =EVIV. k), k= 1)

N,

is strictly nonlinear for » > N and rather complicated for an exact calculation.
Perhaps the best way to proceed is to use the simple extrapolation formulas
based on some parametric model and to substitute the estimated parameters (&,
"B 7) for their theoretical counterparts (o, B . In the case of extrapolated
vocabulary sizes,

f}n.N = V(8 BN’ T

the accuracy of the predicted values can be gauged by considering

D, =EP, - V¢,

nN n

where VA',,.N can be approximated for sufficiently large N by

D mV, 4 (G -+ B, - B, + @, - V)V (152)

n,

where
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V, =V B, Y1)
Vi = Vi B )
v, = %Vn(a, B, v)
7= -;;— (0 B, 1)

Note that_to use this accuracy expression, we must again replace the parameters
(@, B p) in the right hand side of D, by their estimators (&, B, %)-
5.3. Paramefer Estimation

Several procedures can be suggested for estimating the parameters of a word
frequency 'law’.

5.3.1. Method 1
The simplest way is to require that the first (three) 'most remarkable' terms of

the frequency spectrum, that is, the vector (I7N(m), m=0, 1, 2), should coincide
with their expected values:

7(0) = V,(0; o, B, )
P = V(L o, B, Y)f = W B T (153)
V(2) = V(2 o, B, ¥)

where we denoted the resulting parameter estimators by

Gy Bro 7)
Note that the number of equations equals the number of parameters.
5.3.2. Method 2 _
A more global, though rather complicated algorithm can be used which takes

more terms of the spectrum into consideration. We fix some number M 2> 3 of
terms of the vector
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P m =0,1,2,...M)

N

and construct the chi-square statistic

Yo = Y, (Flm) = V(m)R,N, MYV (k) - V (k) (154)

0<m k<M

where R;f,,(N,M), 0 <m, k <M is the inverse of R,, (N,M). We then search for
the estimators

(0w, B T

for which x*,.; is minimal.

5.3.3. Method 3

A method that we have found to be especially useful is to fix one parameter,
say ¥, and to choose the other two parameters such that

7,0) = V\(0; a, B, 7). (155)
7 =V o B, ¥)

is satisfied. Following this, y is varied (and o and £ adjusted to satisfy (155)
such that the value of 2, ., is minimal.

5.3.4. Method 4

As a modification of method 2, the estimator

(', By ¥i)

can be constructed so as to minimize the chi-square statistic for the differences
between the (nonparametric) interpolated vocabulary growth curve

?a =X I?N(m)[l - - _nﬁ)m]

mzl
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and its expectation with respect to the parametric model. Thus the estimators

oy, Bx's 1x)

are chosen such that

Tous = 3 Uy = VIRLINMP, , - V,) (156)

1€17=M

. <. et | . . .
is minimal, where R%(N, M), 1 < n, n, < N is the inverse of the covariance
matrix

R, NM) =COV@, . V)=V, ~V,, =1<n n<N

n+n, n, 7

5.4. Confidence Intervals

For completeness, we briefly discuss how confidence -regions for the estimators

can be constructed. To do so, we need the matrix V(M,3) = V,(M,3),.0,5 u
of partial derivatives of the expected spectrum with respect to the parameters:

;

o ;.
AU RN EACE N 30 a—iVN(o; o B, 7)
o 8. . o ..
V.'(M’ 3) - 1 5&“‘ N(I! q" ﬁ> 'Y) % N(la C“) B’ Y) aVN(I: {1, B! ’Y) L )
0 bl
VW06 @, B, 1) SV, 04 0, B, ) a"?‘-VN(M; o, B, 7)
(157)

Then for the parameter estimators

G Bis 72

the normal distribution can be assumed
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6, - o
D
By - B| > NO, ), (158)
Y =7

with the covariance matrix

C = (C)ciyes = (VBI)RW,3)F3,3)™ (159)

iy

For the estimators

(%, By Yx)

the normal distribution

Gy - O

* & 2 ¥

By - B|—= NO, C), (160)
Tw =Y

can be used with the covariance matrix
C* = (C))cy<s = [PMIRINMVM3I)™. (161)

With M = 3 these covariances obviously coincide, but if A > 3 then the es-
timators

(O Bas ¥)

are characterized by the narrower confidence region.

5.5. Goodness-of-fit Test for Models

The minimal values of the ” statistics can be used to test whether the chosen
parametric model fits the data. For instance, if estimation method 2 is used, then
the minimal value of xz(m) obtained when the parameters (o, B, ) are substi-

tuted by their estimators (G, P, f~) should be less then the desired signifi-
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cance level of the %* distribution with M-3 degrees of freedom.
Note also that some particular parametric model, satisfactory for the first M
terms of the spectrum statistics

Z Vm), L <m < M - 1)
may not be acceptable in a global sense for the whole vector

(7, (m), 1 < m).

5.6. Comparing Samples
Two samples can be compared to establish the identity of the (theoretical) prob-
ability distributions of the corresponding general populations, for instance for
the purpose of authorship determination.

Let two samples of sizes N’ and N’ be given with, generally speaking, dif-

ferent vocabularies, as in the case that texts written in different languages are
compared:

V= (4, 4y s A4) 0 = 1,2,

The corresponding frequencies, rank frequency distributions and frequency
spectra are, for i = 1,2:

Sy, fou(dy), fruAy)
Lol 2 ) 2 .. 2 fL(4p),

Vi) = 3T o om =12,
21

Py = X 7' u(m).

mzl

We must distinguish several ways in which the comparison problem can be
stated in terms of the corresponding theoretical models expressed in the form of
probability distributions

PUA) 1P, 1=12

or structural probability distributions h
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V’
Gp) = Ellwhapr p20i=12
=

First consider the case for which the vocabularies are identical,

-?'h,_
Il
Hh;”
|

=4,j =12,.,

the two texts being written in one and the same language. It is natural to con-
struct this comparison problem in terms of the hypothesis that the (individual)
probabilities coincide:

P4) =PA),1<j< V.

Since high and low frequencies can be considered as independent for LNRE
samples (see section 3.3.3), we can focus on the left hand (high probabilities)
or on the right hand (low probabilities) tails of a rank probability distribution.
We can apply e.g. the standard * test to check the coincidence of high prob-
abilities. The testing of the right hand tails is quite nontrivial, however.

To do this, consider the united sample of size N =N’ + N? with frequencies

fod) = fuld) + fuld),

fydy) = fuld) + fldy), .,

fydy) = fuldy) + fldy).
Introduce the joint frequency spectrum

ﬁw(m: kD = EI[)",,(A)=m,,!"~,(AJ)=k,fN:(A)=ﬂ’ m=12... kt=m,
=

the number of elements which appear k times in the first and / times in the
second sample, and let V,(m) be a frequency spectrum on the united sample:

Applying the scheme of sampling without replacement presented in section
3.1.4, according to which, for large enough N, the vector
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Vi, b, D, 0 <k smk+1=m

is multinomially distributed given I?N(m), the following series of x* statistics
can be suggested for the test of comparison:

n (Py(m, & D) ~ B(m, k, 230, m))?

X(m) =y e
k=0 B(m, k, )Y
in particular,
N'V\(1, 0, 1) - N*V,(1, 1, 0))*
(1) = 1 (NV( ) - N*V,(1, 0)).

NINZ - Pu(1,0,1) + P(l, 0, 1)
For equal sample sizes (N' = N?), the distance between two samples measured

in terms of the hapaxes, the number of elements that appeared in exactly one of
the samples only, is expressed by the ratio

_ (1,0, 1) - P, 1, 0)
V1,0, 1) + V,(1, 1,0

x%(1)

By successively checking the admissibility of the values

(), 1) + £’ x*Q) + x2Q) + x*B3)ye.

with respect to the critical levels of the y*-distribution with 1, 3, 6, ... degrees
of freedom respectively, we are able to accept with increasing accuracy the
hypothesis of coincidence on the tails of the probability distributions studied.

Next consider the case that the samples have been obtained from general
populations with different vocabularies (texts written in different languages). It
is reasonable to analyse this problem in terms of structural probability distribu-
tions. Of course, we can do this even when the vocabularies are the same, in
which case we accept the identity of the theoretical models and state that al-
though the individual probabilities may be different, the rank probability distri-
butions coincide.

To check the coincidence of the right hand tails of rank probability distribu-

tions we must compare the components of the frequency spectra 17:,.(.-11) and

Vi,,(m), m 2 1. To construct the x* statistic for the difference of the spectrum
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terms (even in the case that the sample sizes are the same), we need the co-

variance matrix COV(I;';.(m), ﬁ';,,(k)), which is itself unknown. We can apply
formula (147), which represents this matrix in terms of the expected spectrum
components corresponding not only to the sample sizes N' and N?, but to 2N’
and 2N? as well. The natural way to proceed is to use (149) to obtain Vo (m),
m 2 1, substituting the observed values for the expected ones. Unfortunately, we

are again confronted with the problem of the instability of (149) for n 2 2N,

apart from the necessity of taking into account the differences between the
sample sizes.

To avoid these difficulties, the following construction scheme of a y>-di-
stance between the samples can be suggested. First construct the interpolated
vocabulary growth curves for both samples i = 1, 2:

Vn = EVLU)[I - (1- 7’\11)1] 1<ns N (162)

Jz1

Next construct the estimations Q‘;,,(n, k),1<nk<N,i=12 for the
covariances

COVPy, V) 1S k<N

using

_p

Nop+k-2
Wk 5

Ouin, B) = 7,

N n+k

(cf. sections 3.3.2 and 5.2). Finally, fix some sample size values on which the
interpolated vocabulary growth curves for two samples should be compared,

: 1
1<n £n<n <. <mnN', N?),
and construct the %’-distance

2

A 1 A ] A A
DY, W) = 32 Py, Ve, JOam )P, V)
J
where Q7 is the inverse matrix of the sum of the matrices

Oi(n, k) + Ol(n, k).

Word frequency distributions 123

In other words, the identity of the theoretical structural distributions is checked
by the y*-distance between the interpolated vocabulary growth, and the above-
mentioned difficulty is avoided because the maximal index », + n, is selected to

be less than min(N’, N°) in the expression of Q;ﬂ(nj, n,).

Up till now we have focussed on non-parametric tests for the identity of two
samples. If some parametric family of (structural) probability distribution is
accepted as satisfactory for both samples, then the comparison tests can be im-
proved (become more powerfull) if they are based on the comparison of the
estimated parameters. Let

G Bl T30 F = 1,2)

be the estimated parameters constructed by one of the estimation schemes
discussed above. As the y’-distance between the samples we can consider the
quadratic form (a y’-statistic with three degrees of freedom)

(X, AX) = in.A(._.DXj

ij=1 LJ
where
o i 2
Xl =0, - ahrz
Al A2
X, = BN' -~ B

and where A“” is the inverse matrix of the sum of covariance matricies of the
estimators.

5.7. Software

Software for carrying out LNRE analyses is currently being developed by vari-
ous researchers. J.K.Orlov and A.J.Orlov have completed a program (STA-
TEXT) for IBM-compatible PC that estimates the parameters for the extended
Zipf and Yule-Simon 'laws'. The output of the program is a plot of log(¥) versus
log(py{r}) and a short list with the main summary statistics and the estimated
theoretical vocabulary V. Figure 11 shows the output of STATEXT when run on
the frequency spectrum of the English suffix -ness, using the extended Zipf's
law'. STATEXT exploits the independence of the head and tail of the dis-
tribution, plotting separate graphs for the left and right hand sides of the dis-
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tribution. The plot shows that there is considerable divergence for the lowest
probabilities. A similar plot using the Yule-Simon 'law' is, at least to visual
inspection, quite satisfactory.

At the Institute of Mathematics of the Georgian Academy of Sciences (Tb111-
si), the first author has initiated a more general project for the investigation of
various aspects of LNRE distributions such as modelling of LNRE samples,
comparison of samples, distribution and interaction between words, and the
analysis of word frequency distributions using the generalized Zipf's 'law'. With
respect to the analysis of the frequency spectrum, a program has been developed
for PC that estimates parameters for the Zipf and Yule-Simon 'laws'. Like STA-
TEXT, it plots the empirical and expected rank frequency curves, but in ad-
dition it calculates confidence intervals for the frequency spectrum as well as
the goodness-of-fit in terms of the test statistic fm_h), with 4 the number of
parameters. For the data on -ress the fit obtained for the Yule-Simon model is
shown in table 2. The parameters of the Yule-Simon ( f§ = 1.009, { = 3.342)
model were estimated using the Thilisi program (¥’ = 65.66, q « 0.001).

ko “[loeTxons EHPIRICAL THEORY 2 || Lotr¥ ... ATEXT
i o . T S g =22856 b | ir.X
i T e T T e o =£5en
gé;gg?ggég.q Copuright{ay
tNY =" 1608 Yuri Or
f=" et —
Lim=Infinity Andreu Orlov
graghis © -
IPRProOXim. 2 Input zaoon <= 9
b=
L_d
n neass .spr

N = 22056

S PSRN 5 .11 SN 9 | becom mmmmsen " Press ENTER to

LadPry | i N f:g i i i continue

Figure 11. Rank-probability plot of the extended Zipf 's 'law': STATEXT ap-
plied to the English suffix -ness.

A semi-automatic program for estimating the parameters of the extended
Waring-Herdan 'law' has been developed at the Max-Planck Institute for Psycho-
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linguistics by the present authors. This program, which runs under UNIX,
allows one to interactively search through the parameter space for parameter
values satisfying V,(0) = V, w(0) and V(1) = V,(1) and minimalizing x,M .
Thusfar, attempts to develop a fully automatic estimation procedure have failed,
due to the for numerical calculation infelicitous expression for ¥Z (143) and the
bounded parameter ranges. The results obtained for English -ness are sum-
marized in table 2. The fit, with the estimated parameters (&= 0.712, f=1.075,
i = 0.1) is optimal in the chi- -square sense, other choxces of the parameters
leading to higher values of the 7y’ statistic. Since 7° @= 821, q = 0.084, we
may be confident that a reasonable fit has been obtained.

Table 2. Observed and estimated frequency spectrum: -ness

. Vi(m)
i, | Vil Yule-Simon | Waring-Herdan | Lognormal | Gauss-Poisson
1 749 646 748 523 749
2 215 257 228 226 229
3 126 144 110 130 116
4 68 94 65 86 73
5 59 66 44 62 51
6 30 50 32 47 38
7 31 39 24 37 30
8 29 31 19 30 24
9 22 25 15 25 20
10 20 21 13 21 17

The authors have completed a fully automatic estimation and evaluation pro-
grams for the lognormal 'law' and the Gauss-Poisson 'law'. The results obtained
for -ness can be found in table 2. For the lognormal law', the parameter values
f2=-5.0, 6= 2.570 lead to a minimal chi-square value (3%, = 206.73) that, un-
fortunately, fails to meet any standards of acceptability (q = 0.000). The lowest
chi-square value for the Gauss-Poisson Taw’, %} w = 6292, ¢ = 0.178, was
obtained for the parameters 7= 0.5, 6 = 0. 0092 ¢ = 0.0264. Evidently, the
Gauss-Poisson 'law’ provides the best fit. Perhaps not surprisingly, the 'law' with
the smallest number of parameters, the lognormal 'law', fails to meet the sim-
ultaneous requirements ¥, = ¥, and V, (1) = V(1) ".

! In this paper, the lognormal 'law' is fitted to the data using the expressions (132), the
integrals being evaluated numerically by means of Romberg integration (see Press et al.
1988). The results obtained contrast with those reported in Baayen (1993b). Using. the
annroximation method suggested hv Carroll (1967). he obtained reasonable fits for the more
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Table 3. Observed and estimated frequency spectrum: en-.

9 Vy(m)
= n(m) Waring-Herdan Lognormal Gauss-Poisson
1 11 6 11 11
2 9 4 8 7
3 4 3 6 5
4 7 2 4 4
5 1 2 4 3

By way of comparison, consider table 3, which lists the results obtained for
the unproductive prefix en-. The lognormal 'law' (4 = -2.0, & = 2.335, 7(2(3; =
4.27, g = 0.234) does much better than the extended Waring-Herdan 'law' (& =
0.3, B = 1.0027, i = 10, x’s, = 34.47, g = 0.000), which fails to provide a para-
meter set that simultaneously satisfies the equations ¥, = ¥, and V(1) = V,,
(1). Given that en- is located outside the (late) LNRE ZONE (see table 1 and
section 3.2.1), and given that the extended Waring-Herdan model is tightly
linked with the LNRE ZONE, the lack of accuracy - note the large value of §
- is to be expected. The most accurate fit is again provided by the Gauss--
Poisson 'law' (7= -0.0005, b = 0.02289, ¢ = 0.0683, x2(3)= 3.31, g = 0.346),

but even here the extremely low value of #and the slightly too high values for -

m =3, 4, 5 suggest that this law' is stretched to, or perhaps beyond its limits in
its attempt to model the frequency spectrum of this unproductive prefix. (For a
more detailed comparison of these models with respect to goodness-of-fit for a
variety of samples the reader is refered to Baayen 1993b).

6. Morphology and the LNRE ZONE

In the previous sections the frequency spectra of the English affixes -ness and
en- have been analyzed in some detail. The suffix -ness, a typical example of
a productive affix, is characterized by a frequency distribution that is domin.ated
by low-frequency types. Not surprisingly, the theoretical vocabulary as estima-
ted by the Gauss-Poisson 'law' exceeds the observed vocabulary by a factor 5

productive affixes. The more rigidly defined methods used in the present paper, however,
suggest that for the more productive affixes the lognormal 'law' fails to reach the same level
of accuracy as the Waring-Herdan and Gauss-Poisson 'laws’.
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(V = 8261, V,, = 1607). In contrast, the frequency distribution of the unproduc-
tive prefix en- is dominated by the higher-frequency types and the theoretical
vocabulary ¥ = 114, again calculated using the Gauss-Poisson 'law’, is only
slightly larger than the observed vocabulary I7N =94,

Interestingly, frequency spectra of full texts resemble the spectrum of the
morphological category of nouns in -ness, the spectrum of the prefix en- being
quite atypical. Since the large numbers of rare types appearing in the frequency
spectra of the productive morphological categories as realized in some text
necessarily appear as the 'rare events' of the frequency spectrum of the text as
a whole, it seems natural to explore the hypothesis that productive word forma-
tion processes anchor texts in the LNRE ZONE. We will investigate this
possibility by analysing the morphological constituency of the words appearing
in two 'texts', E.Bronte's 'Wuthering Heights' (N =~ 120,000), the full text of
which was obtained by anonymous fip from the Online Book Initiative at
obi.std.com, and the Dutch INL corpus (N = 40,000,000), using the word
frequencies as given in the CELEX lexical database (Burnage, 1990).

6.1. The Development of Morphology in Bronte's 'Wuthering Heights'

First consider E.Bronte's novel. According to the tests developed in section
3.2.1, we are dealing with a text that is located in the central LNRE ZONE: C,
- P : d _ =
= 0.165, the number of hapaxes is increasing (Iu r) = Elf (7 (1) - 2V, ()=
(1/119321)*(2427 - 2*973) > 0), and in addition, the theoretical vocabulary V
as calculated using the Gauss-Poisson 'law' encompasses some 12,150 word
types, a number exceeding by roughly a factor 2 the observed vocabulary
(6420).

One way of investigating the extent to which productive morphological rules
may be held responsible for this novel's location in the central LNRE ZONE is

. to focus on how morphology contributes to the growth rate ;':'V V,of the vocabu-

lary. Using (59), we may estimate the growth rate by II;‘;;:) = 0.02. Note that

the growth rate, when viewed as a function of the sample size, is completely
determined by the number of hapax legomena. Thus it seems natural to ap-
proach the question of whether morphology effects a text's location in the
LNRE ZONE by investigating what proportion of the hapax legomena are mor-
phologically complex, since this will allow us to gauge the extent to which
word formation gives rise to the substantial growth rate of Bronte's vocabulary
as it unfolds through ‘text time'. The left hand graph of figure 12 plots the
fraction
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Figure 12. The relative contribution of simplex words and a selected set of
affixes to the growth rate of the vocabulary in E.Bronte's "'Wu-

thering Heights'. The measurement mterval for N equals 500 word.

tokens.
ﬁ(s) - r},::) ( 1)
N A
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of hapax legomena that are monomorphemic or simplex (s) as a function of the
text size N. The right hand graph plots the fraction

g0
N T =
7,(1)
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of polymorphemic hapaxes for selected affixes e. What we find is that ﬁﬁ) is

~ a decreasing function of N, whereas FI‘”’ increases with N, notably so for highly

productive suffixes like -ness and especnally -ly. Note that for the full novel, the
relative contribution of morphology is substantial:

46 )
2D =Y AP =0.502.

Bronte's novel is too small to allow us to investigate how the relative con-
tribution of morphology to the growth rate will develop for larger samples. The
left hand graph of figure 12, however, suggests that a further increase in the re-
lative contribution of morphology may be expected for larger texts. To gain

some insight into the 'limiting' properties of Efif} and Hf? we therefore analyze

the frequency distribution of a much larger sample, the INL corpus of written
Dutch.

6.2. Morphology in the INL Corpus

The INL corpus, compiled by the Dutch Institute for Lexicography, contains
roughly 40,000,000 wordforms. With the exception of the hapaxes, the frequen-
cies of the words occurring in this corpus as well as detailed information on the
orthographical, morphological and phonological properties of these words are
available in the CELEX lexical database. The first spectrum elements of the fre-
quency distribution of the INL corpus are presented in table 4, Even though the
hapax legomena are not registered in the CELEX lexical database, the available
spectrum elements allow us to ascertain that even this moderately large text
corpus is located in the LNRE ZONE. For instance, using (63) we find that
ks V(2) > 0. In addition, C, = 0.022, which is quite high given that some
65,000 types have been registered. Inspection of the morphological constituency

of the dislegomena reveals that ﬁS) = 291/7264 = 0.04, a substantially lower
value than the corresponding value for Bronte's 'Wuthering Heights', 540/973 =
0.555 (p < 0.001). This suggests informally that the asymptotic value of Iflf:)
for N — eco will tend to zero.

Table 4. The tail of the frequency distribution of the lemmas
registered in the CELEX lexical database.

m 1 2 3 4 5 6 7 8 9 10
Vm) |- 7269 4355 3433 2569 2296 1834 1646 1391 1313
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The crucial relation between morphology and the LNRE property of texts can
also be approached from a slightly different angle. Figure 13 plots the degree
of morphological complexity, measured in terms of the number of morphologi-
cal constituents of a word, as a function of the frequency of that word, using a
non-parametric regression technique (see Haerdle 1991). Clearly, morphological
complexity is a decreasing function of word frequency, an illustration on the
morphological level of Zipf's 'law of abbreviation' (Zipf 1935). Table 5 illustra-
tes the same point in a slightly different way: a relatively small set of mono-
morphemic words accounts for the bulk of all tokens, morphological complexity
being relatively scarce token-wise but, paradoxically, frequentially dominant
type-wise.

2.5

2.0

E [# morphemesim]

1.5

1.0

! | | | T | |
1000 10M 1002 1013 1004 1075 108

m

Figure 13. The number of constituent morphemes as a function of (log) word
frequency (In m) in the INL corpus. (WARPing approximation of
the Nadaraya-Watson estimator using an Epanechnikov kemel, a
bin width 0.5 and a window width 2.0).
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Table 5. Statistics for the morphological constituency
of the lemmas in the CELEX lexical database.

Morphology N Vy V(2)
monomorphemic words 30197189 8083 293
compounding 1959754 | 32622 | 5324
derivation 2713506 13656 | 1144
synthetic compounding 85025 1206 159
undefined 3464960 9795 679
Total 38420434 65362 | 7599

6.3. Productive Rules as LNRE Generators

We have seen that word formation rules play a crucial role in anchoring texts
in the LNRE ZONE. This result seriously questions the validity of the rationals
for the Rouault, Mandelbrot and Waring-Herdan 'laws' discussed in section 4.
The main problem with these rationals is that they fail to take into account what
Martinet (1965) has called the 'double articulation' of language, the fact that
language is structured on two relatively autonomous planes, the phonological
plane and the morphology-syntax plane. Since Markovian models in which
words appear as strings of letters focus exclusively on the phonological plane,
they cannot and in simulations do not give rise to lexica with realistic frequen-
cy-length characteristics, nor can the similarity relations in the lexicon be
modelled adequately (see Baayen 1991 for detailed discussion),

Interestingly, the defining characteristic of monomorphemic words is, from
a quantitative point of view, that the associated theoretical vocabulary is strictly
finite. In contrast, productive morphological categories can be argued to be, at
least in theory, infinite. To see this, first consider the simplex words registered
in the Ascot version of the Longman dictionary of Contemporary English and
the Oxford Advanced Learner's Dictionary. Table 6 summarizes the first ten

spectrum elements. The first value of m for which 2 V,(m) > 0 equals 6, indi-
dNv

cating that this sample is located outside the late LNRE ZONE. This is confir-
med by a comparison of the observed number of types ¥, = 11869 and the
approximated theoretical vocabulary size ¥ =~ 12,000, calculated on the basis of
a rather bad Gauss-Poisson fit (x*,, = 836.87, 7= -0.01, 5 = 0.0229, ¢ =
0.00067). The nearly identical sizes of the observed and thecretical vocabularies
is reminiscent of what we have observed for the unproductive prefix en-. In
both cases we are dealing with strictly finite populations.
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Table 6. The tail of the frequency distribution of the monomorphemic
lemmas in the Longman dictionary of Contemporary English and
the Oxford Advanced Learner's Dictionary in the Cobuild
corpus as registered in the CELEX lexical database.

m I & 3 4 5 6 7 8 9 10
Vum) | 357 336 259 264 261 225 182 193 163 169

Next consider the Dutch diminutive -fje, an extremely productive derivational
suffix. Using the Uit den Boogaart (1977) corpus, the Gauss-Poisson 'law' pre-
dicts a theoretical vocabulary of 1,239,156,496 types (x’y; = 19.95, ¢ =
0.0965), a value large enough to substantiate the claim that unrestricted produc-
tivity gives rise to infinite populations. From this point of view, the following
formal definition for LNRE distributions (Khmaladze & Chitashvili 1989),
which can be realized only for infinite ¥ (see section 3.2),

lim o, (1) > 0 (163)

N>

appears to be useful as a formal definition of productivity as well. Of course,
many productive categories do not meet this strict probabilistic definition. In the
case of -ness, for instance, the theoretical vocabulary is approximately 8,000,
exceeding the observed vocabulary by ‘only’ a factor 5. Even in the case of the
highly productive English adverbial suffix -ly (¥, = 3914) the estimated theore-
tical vocabulary equals a 'mere' 24,000 types (Gauss-Poisson estimation, ;f{,s)
= 166.09). Observe, however, that -y by itself potentially generates a morpholo-
gical category with twice as many types as estimated for the monomorphemic
English words discussed above (see table 6). This suggests that, even when
(163) is not strictly met, the very large numbers of 'morphologically possible
words' defined by all word formation rules of the language jointly, will anchor
running text in the LNRE ZONE for substantial values of N. How large N
should be for a text to move out of the late LNRE ZONE into the 'Law of
Large Numbers ZONE' is at present unclear. Perhaps the huge corpora that are
at present being compiled, such as the British National Corpus and the Inter-
national Corpus of English, will shed more light on this issue, that, for as yet,
has to be left unresolved. '
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