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Abstract

This study addresses a series of methodological questions that arise when modeling inflectional
morphology with Linear Discriminative Learning. Taking the semi-productive German noun sys-
tem as example, we illustrate how decisions made about the representation of form and meaning
influence model performance. We clarify that for modeling frequency effects in learning, it is
essential to make use of incremental learning rather than the endstate of learning. We also
discuss how the model can be set up to approximate the learning of inflected words in context.
In addition, we illustrate how in this approach the wug task can be modeled in considerable
detail. In general, the model provides an excellent memory for known words, but appropriately
shows more limited performance for unseen data, in line with the semi-productivity of German
noun inflection and generalization performance of native German speakers.

Keywords: German nouns, Linear discriminative learning, semi-productivity, multivariate mul-
tiple regression, Widrow-Hoff learning, frequency of occurrence, semantic roles, wug task
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1 Introduction

Computational models of morphology fall into two broad classes. The first class, which comprises
the largest number of models, addresses the question of how to produce a morphologically complex
word given a morphologically related form (often a stem, or an identifier of a stem or lexeme) and
a set of inflectional or derivational features. We will refer to these models as form-oriented models.
The second, much smaller class, covers models that seek to understand the relation between words’
forms and their meanings. We will refer to these models as meaning-oriented models. We first
consider some important form-oriented models.

Analogical Modeling of Language (Skousen, 1989, 2002) and Memory Based Learning (Daele-
mans and Van den Bosch, 2005) are nearest-neighbor classifiers. Input to these models are tables
with observations (words) in rows, and factorial predictors and a factorial response in columns. The
response variable specifies, for each observation, a particular outcome class (e.g., an allomorph),
and the model is given the task to predict the outcome classes from the other predictor variables
(for allomorphy prediction, typically position-specific specifications of words’ phonological make-
up). Predictions are based on sets of nearest neighbors, serving as constrained exemplar sets for
generalization. These models have proved very useful for understanding a range of morphological
phenomena, ranging from the allomorphy of the Dutch diminutive (Daelemans et al., 1995) to stress
assignment in English (Arndt-Lappe, 2011).

Within the tradition of generative grammar, Minimum Generalization Learning (Albright and
Hayes, 2003) offers an algorithm for rule induction (for comparison with nearest neighbor methods,
see Keuleers et al., 2007). The model finds rules by an iterative process of minimal generalization
that combines specific rules into ever more general rules. Each rule comes with a measure of
prediction accuracy, and the rule with the highest accuracy is selected for predicting a word’s form.
The model as laid out in Albright and Hayes (2003) works with fine-grained phonological features.

Another model coming from the generative tradition is that of Belth et al. (2021), which makes
use of a particular implementation of recursive partitioning. Their study illustrates the algorithm for
a dataset with words as observations, with as predictors a word’s stem, some stem-final segments,
and its inflectional features, and as response a categorical variable specifying the morphological
change that produces the inflection from the stem.

Ernestus and Baayen (2003) compared the performance of the MBL, AML, and GLM models,
as well as a logistic regression model and a recursive partitioning tree (Breiman et al., 1984), on the
task of predicting whether word-final obstruents in Dutch alternate with respect to their voicing.
They observed similar performance across all models, with the best performance, surprisingly,
for the only parameter-free model, AML. Their results suggest that the quantitative structure of
morphological data sets may be straightforward to discover for any reasonably decent classifier.

All models discussed thus far are exemplar-based, in the sense that the input to any of these
models consists of a table with exemplars, exemplar features selected on the basis of domain knowl-
edge, and a categorical response variable specifying targeted morphological form changes. In other
words, all these models are classifiers that absolve the analyst from hand-engineering lexical entries,
rules or constraints operating on these lexical entries, and theoretical constructs such as inflectional
classes. In this respect, they differ fundamentally from the following three computational methods.

Evans and Gazdar (1996) introduced the DATR language for defining non-monotonic inheri-
tance networks for lexical knowledge representation. This language is optimized for removing any
redundancy from lexical descriptions. A DATR model requires the analyst to set up lexical entries
that specify information about, for instance, inflectional class, gender, the forms of exponents, and
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various kinds of phonological information. The challenge for the analyst is to set up the lexicon
in such a way that the number of lexical entries is kept as small as possible, while still allowing
the model, through its mechanism of inheritance, to correctly predict all inflected variants. The
theory of realizational morphology (RM) of Stump (2001), which sets up rules for realizing bundles
of inflectional and lexical features in phonological form, can also be seen as a formal language (a
finite-state transducer) that provides mappings from underlying representations onto their corre-
sponding surface forms and vice versa (Karttunen, 2003). Finally, the Gradual Learning Algorithm
(Boersma, 1998; Boersma and Hayes, 2001, GLA) works within the framework of optimality theory
(Prince and Smolensky, 2008). The algorithm is initialized with a set of constraints and gradu-
ally learns an optimal constraint ranking by incrementally moving through the training data, and
upgrading or downgrading constraints according to the algorithm’s current predictions.

A third group of form-oriented computational models comprises connectionist models. The
famous past-tense model developed by Rumelhart and McClelland (1986) used as its core engine
a simple network, mapping input form features to output form features. This model was trained
to produce English past-tense forms given the corresponding present-tense form. An early en-
hancement of this model was proposed by MacWhinney and Leinbach (1991), for an overview
of the many follow-up models, see Kirov and Cotterell (2018). Kirov and Cotterell proposed a
sequence-to-sequence deep learning network, the ED learner, that they argue does not suffer from
the drawbacks noted by Pinker and Prince (1988) for the original model of Rumelhart and McClel-
land (1986). Malouf (2017) introduced a recurrent deep learning model trained to predict upcoming
segments, and showed that this model has high accuracy for predicting paradigm forms given the
lexeme and the inflectional specifications of the desired paradigm cell. An independent line of
research focuses on incremental topological learning using temporal self-organizing maps (TSOMs,
Ferro et al., 2011; Chersi et al., 2014; Marzi et al., 2012, 2018).

In summary, the class of form-oriented models comprises three subsets of models: statistical
classifiers (AML, MBL, GLM, recursive partitioning), generators based on linguistic knowledge
engineering (DATR, RM, GLA), and connectionist models (paste-tense model, ED learner). The
models just referenced presuppose that when speakers use a morphologically complex form, this
form is derived on the fly from its underlying form. The sole exception is the model of Malouf
(2017), which takes the lexeme and its inflectional features as point of departure. As pointed out
by Blevins (2016), the focus on how to create one form from another has its origin in pedagogical
grammars, which face the task of clarifying to a second language learner how to create inflected
variants. Unsurprisingly, applications within natural language processing also have need of systems
that can generate inflected and derived words.

However, it is far from self-evident that native speakers of English would create past-tense forms
from present-tense stems, or that speakers of Estonian would inflect nouns on the basis of criteria
such as inflectional class and a set of stem allomorphs. The class of meaning-oriented models for
morphological processing, which is more sparsely populated than the class of form-oriented models,
comprises models proposing that in comprehension, the listener or reader can go straight from the
auditory or visual input to the intended meaning, without having to go through a pipeline requiring
identification of underlying forms and exponents. Likewise, speakers are argued to start from a
meaning, and realize this meaning in written or spoken form.

The class of meaning-oriented models comprises both symbolic and subsymbolic models. The
symbolic models of Levelt et al. (1999) and Dell (1986) implement, albeit in different ways, the
general approach of realizational morphology. Concepts activate morphemes, which in turn activate
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stems and exponents. Both models hold that the production of morphologically complex words is a
compositional process in which at various hierarchically ordered levels, units are assembled together
and ordered for articulation. It is worth noting that these psycholinguistic models have been worked
out only for English, and to our knowledge have not been applied to languages with non-trivial
morphological systems.

Unlike these symbolic models, the subsymbolic triangle model of Harm and Seidenberg (2004)
sets up multilayer networks between orthographic, phonological, and semantic units. No attempt
is made to define morphemes, stems, or exponents. To the extent that such units have any reality,
they are assumed to arise, statistically, at the hidden layers. Likewise, the model for auditory
comprehension of Gaskell and Marslen-Wilson (1997) uses a three-layer recurrent network to map
speech input onto distributed semantic representations, without any attempt to isolate units such as
phonemes or morphemes. The triangle model is applied by Mirković et al. (2005) to a language with
a rich morphological system, Serbian. Instead of taking gender to be a theoretical primitive (serving,
for instance, as input to a classifier), this study argues that gender is an emergent property of the
network that arises from statistical regularities governing both words’ forms and their meanings
(see Corbett, 1991, for discussion of semantic motivations for gender systems).

The naive discrimination learning (NDL) model proposed by Baayen et al. (2011) represents
words’ forms subsymbolically, but words’ meanings symbolically. It thus is a hybrid model. The
modeling set-up that we discuss in the remainder of this study, that of linear discriminative learning
(LDL, Baayen et al., 2019), replaces the symbolic representation of word meaning in NDL by
subsymbolic representations that build on distributional semantics (Landauer and Dumais, 1997;
Mikolov et al., 2013b).

LDL is an implementation of Word and Paradigm Morphology (Matthews, 1974; Blevins, 2016),
and as such explicitly eschews sublexical units such as stems and exponents. However, semantic
representations in LDL are analytical, in the sense that the semantic vector (word embedding) of an
inflected word is constructed (by means of vector addition) from the semantic vector of the content
lexeme of that word and the semantic vectors of the inflectional functions that are to be expressed.
Below, we introduce this concept in more detail. Here, we note that both NDL and LDL make
use of the simplest possible networks, networks with only input and output layers, without any
intervening hidden layers. Mathematically, NDL implements multiple label classification, whereas
LDL implements multivariate multiple regression (see, e.g., Baayen and Smolka, 2020; Chuang and
Baayen, 2021).

To place LDL in perspective, the distinction made by Breiman et al. (2001) between statistical
models and machine learning is useful. The goal of statistical models is to provide insight into the
mechanisms that are likely to have generated the data. The goal of machine learning, on the other
hand, is to optimize prediction accuracy, and if the system that best optimizes prediction accuracy
is a black box, this is no reason for concern. LDL is much closer to statistical modeling than to
machine learning. All representations at input and output levels can be set up to be transparently
interpretable (Baayen et al., 2019). Furthermore, because the model is a multivariate multiple
regression model, the mathematical properties of which are well-understood, modeling results do
not depend on architectural hyper-parameters (such as how many LSTM layers with how many
LSTM units to build into the model), and are completely determined by the representations chosen
by the analyst.

The goals of this study are, first, to clarify how choices of representation affect LDL model
performance; second, to illustrate how much can be achieved simply with multivariate multiple
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regression; and third, to call attention to the kind of problems that are encountered when the
modeling of word meaning is taken seriously. We do so by addressing the comprehension and pro-
duction of German nouns. In what follows, we first introduce some basic properties of the German
noun system, and review some of the models that have been proposed for German nouns. We
then introduce the framework of LDL, after which we proceed to the heart of this study, a system-
atic overview of modeling choices with respect to the representation of form, the representation of
meaning, and learning algorithm (incremental learning versus the regression ‘endstate of learning’
solution).

2 German noun morphology

The German noun system is characterized by three different genders. As can be seen in Table 1,
plural forms are marked with one of four suffixes (-(e)n, -er, -e, -s) or without adding a suffix (−0;
a “zero” morpheme (Köpcke, 1988, p. 306)), three of which can pair with stem vowel fronting (e.g.
a (/a/) → ä (/E/)) (e.g. Köpcke, 1988). There are some additional suffixes which usually apply to
words with foreign origin, such as -i (e.g. Cello → Celli, ‘cellos’) (Cahill and Gazdar, 1999). These
eight classes can be further subdivided according to various sub-regularities in nouns’ phonology
and gender. For example, Cahill and Gazdar (1999) subcategorise the nouns into 11 classes, based
on whether singular forms have a different suffix than plural forms (e.g. Album → Alben, ‘albums’).
On the other hand, Nakisa and Hahn (1996) distinguished 60 different classes. None of the plural
classes is prevalent overall (Köpcke, 1988), and it is impossible to fully predict plural class from
gender, syntax, phonology or semantics (Köpcke, 1988; Cahill and Gazdar, 1999; Trommer, 2021).
To illustrate, consider the neuter nouns Fett, Brett and Bett with their nominativ plurals Fette,
Bretter and Betten or the masculine nouns Schmerz → Schmerzen and Scherz → Scherze.

The five broad classes of German nouns that can be set up by considering just the plural
exponents have to be further subdivided into more fine-grained declension classes once case is
taken into account. German has four cases: nominative, genitive, dative, and accusative. There are
only two additional endings available to mark case: -(e)n and -(e)s (Schulz and Griesbach, 1981).
Since many forms do not receive a separate marker for case in plural forms, the system has been
described as “degenerate” (Bierwisch, 2018, p. 245) (see Table 2). Just as plural forms, case forms
are not fully predictable from gender, phonology or meaning.

Plural class Example Type frequency

-(e)n Tasse → Tassen ‘cup(s)’ 56.5%
(uml+)-e Tag → Tage ‘day(s)’

Topf → Töpfe ‘pot(s)‘ 23.9%
(uml+)-er Brett → Bretter ‘board(s)’

Glas → Gläser ‘glass(es)’ 2.3%
(uml+)-0 Daumen → Daumen ‘thumb(s)’

Apfel → Äpfel ‘apple(s)’ 13.3%
-s Kamera → Kameras ‘camera(s)’ 2.6%

Table 1: Plural classes of German nouns (relative frequencies from Gaeta (2008)). Most of the
classes can appear with both masculine and neuter nouns. Feminine nouns belong mostly to the
-(e)n class (97%).
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The German noun system is in many ways irregular and unpredictable. Unsurprisingly, it has
been the subject of a long-standing debate whether a distinction between regular and irregular nouns
is useful for German. It is also unsurprising that the system shows limited productivity. Several
so-called ‘wug’ studies, where participants are asked to provide inflected forms of presented nonce
words, clarified that German native speakers struggle with generalizing the system to new plural
forms. Köpcke (1988); Zaretsky et al. (2013); McCurdy et al. (2020) reported a high variability
across speakers with respect to the plural forms that they produced. Köpcke (1988) took this as
evidence for a “modified schema model” of German noun inflection. According to Köpcke, plural
forms are generated based not only on a speaker’s experience with the German noun system, but
also based on the “cue validity” of the different plural markers. For example, -(e)n is a very valid
cue for plural, as it does not occur with many singular forms, and therefore is informative for
plurality. By contrast, -er has low cue validity for plurality, as it occurs with many singular forms.
According to Köpcke, additional factors such as grammatical gender can also modify cue validity.

Köpcke (1988) also observed that -s is used slightly more in his wug experiments than would
be expected from corpus data. Marcus et al. (1995) and Clahsen (1999) took this as a starting
point for a dual-route model of German noun inflection. They argued that -s serves as the regular
default plural marker in German, in contrast to all other plural markers that are supposed to be
irregular and rote-learned. Others, however, have argued that an -s default rule does not provide
any additional explanatory value in a theory of German plurals (Nakisa and Hahn, 1996; Zaretsky
and Lange, 2015; Behrens and Tomasello, 1999; Indefrey, 1999). Furthermore, Baayen et al. (2002)
showed that the kind of arguments used by Clahsen (1999) to support the default status of the
German -s exponent don’t generalize to Dutch.

Subregularities within the German noun system have also been pointed out (Wunderlich, 1999;
Wiese, 1999). For instance, Wunderlich (1999, p.7f.) reports a set of rules that German nouns
adhere to, which can be overridden on an item-by-item basis through ‘lexical storage’. For example,
he notes that

a. Masculines ending in schwa are weakly inflected (and thus also have n-plurals).
b. Non-umlauting feminines have an n-plural.
c. Non-feminines ending in a consonant have a @-plural. [. . . ]
e. All untypical nouns have an s-plural. [. . . ]

He also allows for semantics to co-determine class membership. For instance, masculine animate

case & number masculin I masculin II neutral feminin

Nom. sg. der Freund der Mensch das Kind die Mutter
Gen. sg. des Freundes des Menschen des Kindes der Mutter
Dat. sg. dem Freund dem Menschen dem Kind der Mutter
Acc. sg. den Freund den Menschen das Kind die Mutter
Nom. pl. die Freunde die Menschen die Kinder die Mütter
Gen. pl. der Freunde der Menschen der Kinder der Mütter
Dat. pl. den Freunden den Menschen den Kindern den Müttern
Acc. pl. die Freunde die Menschen die Kinder die Mütter

Table 2: German noun declension. Plural endings vary with declension class. Table adapted from
Schulz and Griesbach (1981, p. 105).
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nouns show a tendency to belong to the -n plural class (see also Gaeta, 2008). A further remarkable
aspect of the German noun system, especially for second language learners, is that whereas it is
remarkably difficult to learn to produce the proper case-inflected forms, understanding these forms
in context is straightforward.

In the light of these considerations, the challenges for computational modeling of German noun
inflection, specifically from a cognitive perspective, are the following:

1. to construct a memory for a highly irregular, degenerate, semi-productive system,

2. to ensure that this memory shows some moderate productivity for novel forms, but with all
the uncertainties that characterize the generalization capacities of German native speakers,
and

3. to furthermore ensure that the performance of the mappings from form to meaning, and from
meaning to form, within the framework of the discriminative lexicon (Baayen et al., 2019),
are properly asymmetric with respect to comprehension and production accuracy (see also
Chuang et al., 2020a).

2.1 Computational models for German nouns

Unsurprisingly, the complexity of the German declension system has inspired many researchers to
come to grips with this system with the help of computational modeling. Currently, a wide range of
models is available. The DATR model of Cahill and Gazdar (1999) belongs to the class of generating
models based on linguistic knowledge engineering. It divides German noun lexemes into carefully
designed hierarchies of declension classes. Each class inherits the properties from classes further
up in the hierarchy, but will override some of these properties. This model provides a successful
and succint formal model for German noun declension. The downside of the model is that for new
nouns, the correct declension class has to be assigned manually. The model of Trommer (2021),
which draws on Optimality Theory (OT), falls into the same class of models. This model requires
carefully hand-crafting and ranking a set of constraints. Again, for novel words, proper diacritics
have to be assigned to the underlying forms in the lexicon before the model can be made to work.

The model of Belth et al. (2021) is an instance of a statistical classifier. It makes use of recursive
partitioning, with as response variable the set of morphological changes required to transform a
singular into a plural, and as predictors the final segments of the lexeme, number, and case. At
each node, nouns are divided by their features, with one branch including the most frequent plural
ending with those features (which will inevitably include some nouns with a different plural ending,
which are labelled as exceptions), the other branch including the remainder of the nouns. Each leaf
node of the resulting tree is said to be productive if a criterion for node homogeneity is met. Node
homogeneity is determined by applying a tolerance principle, such that leaf nodes with a smaller
number of noun types can tolerate a higher number of minority plural endings compared to leaf
nodes with larger numbers of types. An older model that also is a classifier, was developed 20 years
earlier by Hahn and Nakisa (2000).

Connectionist models for the German noun system include a model using a simple recurrent net-
work (Goebel and Indefrey, 2000), and a deep learning model implementing a sequence-to-sequence
encoder-decoder (McCurdy et al., 2020). The latter model takes letter-based representations of
German nouns in their singular form as input, together with information on the grammatical gen-
der of the noun. The model is given the task to produce the corresponding plural form. The model
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learned the task with high accuracy on held out data (close to 90%), but was more locked in on
the ‘correct’ forms compared to native speakers, who in a wug task showed substantially more
variability in their choices.

This short overview of the computational models for the German noun system clearly illustrates
the marked difference between linguistically insightful models, such as the DATR model of Cahill
and Gazdar (1999) that require careful hand-crafting, and black boxes such as sequence-to-sequence
deep learning (McCurdy et al., 2020). The deep learning models show generalization to novel
nouns, which is not possible with the DATR model without further complementary algorithms
that assign inflectional class probabilities to novel forms. In fact, especially for paradigms much
richer than those of German, a speaker needs to have encountered all principal parts (the minimal
subset of forms one needs to know in order to predict all other forms in a paradigm) for successful
generalization across the paradigm (Finkel and Stump, 2007). For German, for instance, given
a dative plural with the exponent -en, it is impossible to decide whether a word belongs to the
masculin II class (Menschen) or the masculin I class (Freunden). Thus, evaluating performance on
held-out data is not straightforward, but can in principle be implemented also for models based on
the DATR language.

Interestingly, both DATR-based models and deep learning models may perform better than
native speakers. The deep learning model of McCurdy et al. (2020) is an example of a morphological
artificial intelligence that provides more focused predictions than those available to human learners.

It is against this background that the LDL model comes into its own. This model is mathemati-
cally highly constrained: it implements multivariate multiple linear regression, and hence it cannot
handle non-linearities that even shallow connectionist models (Goldsmith and O’Brien, 2006) can
take in their stride. Although it is widely believed that nonlinearities are ubiquitous, our hypothesis
is that morphological systems are by and large linear in nature, given appropriate representations
for form and meaning. We do not commit ourselves to the position that morphological systems are
completely linear, and hence cases where model predictions are less precise under linearity can be
seen as indicative of learning bottlenecks. In short, LDL is developed as a model of human lexi-
cal processing, with all its limitations and constraints, rather than as an optimized computational
system for generating (or understanding) morphologically complex words.

By applying LDL to the modeling of the German noun system (including its case forms), we also
address a question that has thus far not been addressed computationally, namely the incorporation
of semantics. Semantic subregularities in the German noun system have been noted by several
authors (e.g. Wunderlich, 1999; Gaeta, 2008), and although deep learning models can be set up
that incorporate semantics (see, e.g., Malouf, 2017), LDL by design must take semantics into
account.

In what follows, we first introduce the LDL model in more detail, and then proceed with an
overview of the many modeling decisions that have to be made, even for this model that implements
the most simple network mathematically possible. An important part of this overview is devoted
to moving beyond the modeling of isolated words, as words come into their own only in context
(Elman, 2009), and case labels do not correspond to contentful semantics, but instead are summary
devices for syntactic distribution classes (Blevins, 2016; Baayen et al., 2019).
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3 Linear Discriminative Learning

Linear Discriminative Learning (LDL) is the computational engine of the discriminative lexicon
model (DLM) proposed by Baayen et al. (2019). The DLM implements mappings between form
and meaning for both reading and listening, and mappings from meaning to form for production.
It also allows for multiple routes operating in parallel. For reading in English, for instance, it sets
up a direct route from form to meaning, in combination with an indirect route from visual input to
a phonological representation that in turn is mapped onto the semantics (cf. Coltheart et al., 1993).
In what follows, we restrict ourselves to the mappings from form onto meaning (comprehension)
and from meaning onto form (production). Both mappings are set up with Linear Discriminative
Learning. Mappings can be obtained either with trial-to-trial learning, or by estimating the endstate
of learning. In the former case, the model implements incremental regression using the learning
rule of Widrow and Hoff (1960), in the latter case, it implements multivariate multiple linear
regression, which is mathematically equivalent to a simple network with input units, output units,
no hidden layers, and simple summation of incoming activation without using thresholding or
squashing functions.

Each word form of interest is represented by a set of cues. For example, wordform1 might
feature the cues cue1, cue2 and cue3, while wordform2 could be marked by cue1, cue4 and cue5.
We can thus express a word form as a binary vector, where 1 denotes the presence and 0 the absence
of a particular cue. This information is coded in the cue matrix C:

C =

( cue1 cue2 cue3 cue4 cue5

wordform1 1 1 1 0 0
wordform2 1 0 0 1 1

)

Next, we need to decide on how to represent words’ meanings. Here, we have to choose between
discrete semantic outcomes, as in Naive Discriminative Learning (NDL) (Baayen et al., 2011), and
continuous outcomes (LDL). Focussing on LDL, the semantic outcomes can again be represented
by a vector, where each entry denotes the strength of a certain semantic feature. Semantic features
can either have a concrete meaning or they can be ‘latent’, abstract, dimensions (see Section 4.2
below). In the following example, wordform1 has strong negative support for semantic features S3
and S5, while wordform2 has strong positive support for S4 and S5. This information is brought
together in a semantic matrix S:

S =

( S1 S2 S3 S4 S5

wordform1 0.1 0.004 −1.95 0.03 −0.54
wordform2 −0.49 −0.32 0.03 1.06 0.98

)

Comprehension and production in LDL are modelled by means of simple linear mappings from
the form matrix C to the semantic matrix S, and vice versa. The mappings specify how strongly
input nodes are associated with output nodes. The weight matrix for a given mapping can be
obtained in two ways. First, using the mathematics of multivariate multiple regression, a compre-
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hension weight matrix F is obtained by solving

S = C · F,

and a production weight matrix G is obtained by solving

C = S ·G.

As for linear regression modeling, the predicted row vectors are approximate, and borrowing nota-
tion from statistics, we write

Ŝ = C · F

for predicted semantic vectors (row vectors of Ŝ), and

Ĉ = S ·G

for predicted form vectors (row vectors of Ĉ).
Estimating the mappings F and G using the matrix algebra of multivariate multiple regression

provides optimal estimates, in the least squares sense, of the connection weights (or equivalently,
beta coefficients) for datasets that are type-based, in the sense that each pair of row vectors c
of C and s of S is unique. Having multiple instances of the same pair of row vectors in the
dataset does not make sense, as it renders the input completely singular and does not add any
further information. Thus, models based on the regression estimates of F and G are comparable
to type-based models such as AML, MBL, MGL, and models using recursive partitioning.

In order to make the estimates of the mappings sensitive to frequency of use, the weight matrices
have to be estimated using incremental learning, which updates weights after each word token that
is presented for learning. Incremental learning is implemented using the learning rule of Widrow
and Hoff (1960), which defines the matrix W t+1 with updated weights at time t+ 1 as the weight
matrix W t at time t, modified as follows:

W t+1 = W t + c · (oT − cT ·W t) · η,

where c is the current cue (vector), o the current outcome vector, and η the learning rate. Con-
ceptually, this means that after each newly encountered word token, the weight matrix is changed
such that the next time that the same cue vector has to be mapped onto its associated outcome
vector, it will be slightly closer to the target outcome vector than it was before. Details on the
Widrow-Hoff formula and its applications in language sciences can be found in Milin et al. (2020),
an example of its use in the context of the DLM is given in Chuang et al. (2020a). The learning rule
of Widrow-Hoff implements incremental regression. As the number of times that a model is trained
again and again on a training set increases (training epochs), the network’s weights will converge to
the matrix of beta coefficients obtained by approaching the estimation problem with multivariate
multiple regression (see, e.g. Shafaei-Bajestan et al., 2021). As a consequence, the regression-based
estimates pertain to the ‘endstate of learning’, at which the data have been worked through in-
finitely many times. Unsurprisingly, effects of frequency and order of learning are not reflected
in model predictions based on the regression estimates. Such effects do emerge with incremental
learning, as we will demonstrate in Section 4.5.

This completes the model specification for comprehension. Model accuracy for a given word ω
is assessed by comparing its predicted semantic vector ŝω with all gold standard semantic vectors in
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S, using either the cosine similarity measure or the Pearson correlation measure. In what follows,
we use the correlation measure, and select as the meaning that is recognized that gold standard
row vector smax of S that shows the highest correlation with ŝω. If smax is the targeted semantic
vector, the model’s prediction is classified as correct, otherwise, it is taken to be incorrect.

For the modeling of production, a supplementary algorithm is required for constructing actual
word forms. The predicted vectors ĉ provide information about the amount of support that cues
receive from the semantics. However, information about the amount of support received by the
full set of cues does not provide any information about the order in which a small subset of these
cues have to be woven together into actual words. The problem can be conceptualized using graph
theory, by taking cues to be the vertices of a graph. The question then amounts to finding a proper
path in the graph that represents a word’s form. The algorithms that are available for setting up
such paths all build on the insight that when form cues are defined as n-grams (n > 1), the cues
contain implicit information about order. For instance, for digraph cues, cues ab and bc can be
combined into the string abc, but cues ab and cd cannot be merged. Therefore, when n-grams
are used as cues, directed edges can be set up in the graph for all vertices with the proper partial
overlap. By distinguishing between initial n-grams (starting with an initial word edge symbol,
typically a # is used) and final n-grams (ending with #), a word is uniquely defined by a path in
the graph from an initial to a final n-gram. This raises the question of how to find a word’s path.
The core idea is straightforward: first discard n-grams with low support from the semantics below
a threshold θ, then calculate all possible remaining paths, and select for articulation that path for
which the corresponding predicted semantic vector (obtained by mapping its corresponding cue
vector c onto s using comprehension matrix F ) best matches the semantic vector that is the target
for articulation. This approach is described as ‘synthesis by analysis’, see Baayen et al. (2019) and
Baayen et al. (2018) for further details and theoretical motivation.

The first algorithm that was used to enumerate possible paths made use of a shortest-paths
algorithm from graph theory. This works well for small datasets, but becomes prohibitively ex-
pensive for large datasets. The JudiLing package (Luo et al., 2021) offers a new algorithm that
scales up much better. This algorithm is first trained to predict, from either the Ĉ or the S ma-
trix, for each possible position in the word, which cues are best supported at that position. All
possible paths with the top k best-supported cues are then calculated, and subjected to synthesis
by analysis. Details about this algorithm, implemented in julia in the JudiLing package as the
function learn paths can be found in (Luo, 2021). The learn paths function is used throughout
the remainder of the present study. A word form is judged to be produced correctly when it exactly
matches the targeted word form.

4 Modelling considerations

When modelling a language’s morphology within the framework of the DLM, the analyst is faced
with a range of considerations and choices. Figure 1 provides an overview of the most important
choice points. From left to right, choices are listed for representing form, for the unit of analysis,
for the representation of semantics, for the handling of context, and for the learning regime. With
respect to form representations, we need to decide on what kind of n-grams to use (setting n,
defining the kind of grams to use, and deciding on how to model stress or lexical tone). With
respect to the unit of analysis, the analyst has to decide whether to model isolated words, or words
in phrasal contexts. A third set of choices concerns what semantic representations to use: simulated
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Figure 1: Options when modelling a language’s morphology with LDL. Examples with options in
italics are discussed in the present study.

word form pronunciation lemma case number frequency gender

Aal al Aal nominative singular 29 m
Aal al Aal dative singular 29 m
Aal al Aal accusative singular 29 m
Aale al@ Aal nominative plural 34 m
Aale al@ Aal genitive plural 34 m
Aalen al@n Aal dative plural 17 m
Aalen al@n Aal accusative plural 17 m

Table 3: Representation of the paradigm for Aal ‘eel’ in our dataset. Genitive singular (Aals) is
not included as it does not appear in CELEX.

representations, or word embeddings such as word2vec (Mikolov et al., 2013b), or grounded vectors
(Shahmohammadi et al., 2021). A further set of choices for languages with case concerns how to
handle case labels, as these typically refer to syntactic distribution classes rather than contentful
inflectional features (Blevins, 2016). Finally, a selection needs to be made with respect to whether
incremental learning is used, or instead the endstate of learning using regression-based estimation.
In what follows, we consider several of these choice points using examples addressing the German
noun system, and discuss their advantages and drawbacks.

The dataset on German noun inflection that we use for our worked examples was compiled as
follows. First, we extracted about 6,000 word forms from German CELEX (Baayen et al., 1995).
Of these we retained the 5,486 word forms for which we could retrieve grammatical gender from
Wiktionary, thus including word forms of 2,732 different lemmas. The resulting data was expanded
such that each attested word form was listed once for each possible paradigm cell it could belong
to. For instance, Aal (‘eel’) would be listed once as singular nominative, once as dative and once
as accusative, see Table 3. This resulted in a dataframe with 18,147 entries, with word form
frequencies ranging from 1 to 5,828 (M log frequency 2.56, SD 1.77). Word forms are represented
in their DISC notation, which represents German phones with single characters1.

From Table 3 we can immediately notice that there are many homophones, words sharing the
same form but differing in meaning. In German, because many of the word forms are not marked
for case and number, even though we have a relatively large dataset, the actual number of distinct
word forms is only 5,486, which amounts to on average about two word forms per lemma.

There are many ways in which model performance can be evaluated. First, we may be interested
in how well the model performs as a memory. How well does the model learn to understand and
produce words it has encountered before? Note that because the model is not a list of forms, this

1Data and code for this study are available in the supplementary materials at https://osf.io/zrw2v/.
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is not a trivial question. For evaluation of the model as a memory, we can consider its performance
on the training data (henceforth train). Second, we may be interested in the extent to which
the memory is productive. Does it generalize so that new forms can be understood or produced?
Above, we observed that the German noun system is semi-regular, and that German native speakers
are unsure about what the proper plural is of words they have not encountered before (McCurdy
et al., 2020). If our modeling approach mirrors the human limitations on generalization from data
with only partial regularities, evaluation on unseen data should not be perfect. In the light of
these considerations, it is important to assess model performance on held-out data. At this point,
however, several issues arise that require careful thought.

For one, from the perspective of the linguistic system, it seems unreasonable to assume that
any held-out form can be properly produced (or understood) if some of the principal parts (Finkel
and Stump, 2007) of the lexeme are missing in the training data. In what follows, we will make
the simplifying assumption that under cross-validation with sufficient training data, this situation
will not arise.

A further question that arises is how to evaluate held-out words that have homophones in the
training data. On the one hand, these homophones present novel combinations of a form vector
(shared with another data point in the training data) and a semantic vector (not attested for this
form in the training data). We may therefore evaluate comprehension performance under the strict
criterion that it should get the semantic vector exactly right. But then, when presented with a
homophone, a human listener cannot predict which of a potentially large set of paradigm cells is
the targeted one. We may therefore want to use a lenient evaluation criterion for comprehension
according to which comprehension is judged to be accurate when the predicted semantic vector
ŝ is associated with one of a homophonic word’s possible semantic interpretations. Yet a further
possible evaluation metric is to see how well the model performs on words that have forms that have
not been encountered in the training data. These possibilities are summarized in Table 4. Below,
in section 4.3.1, we will consider further complications that can arise in the context of testing the
model on unseen forms.

Table 4: Types of model evaluation

evaluation type

simple blind evaluation of all held-out data val all

nuanced evaluation on novel forms only val newform

evaluation on homophones strict val strict

lenient val lenient

For evaluating the productivity of the model, we split the full dataset into 80% training data
and 20% validation data, with 14,518 and 3,629 word forms respectively. In the validation data,
3309 forms are also present in the training data, and 320 are new forms. Among the 320 new forms,
8 have novel lemmas that are absent in the training data. Since it is unrealistic to expect the model
to understand or produce inflected forms of completely new words, these 8 words are excluded from
the validation dataset for new forms, although they are taken into consideration when calculating
the overall accuracy for the validation data. The same training and validation data are used for all
the simulations reported below, unless indicated otherwise.
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4.1 Representing words’ forms

Decisions about how to represent words’ forms depend on the modality that is to be modelled.
For auditory comprehension, Arnold et al. (2017) and Shafaei-Bajestan et al. (2021) explore ways
in which features can be derived from the audio signal. Instead of using low-level audio features,
one can also use more abstract symbolic representations such as phone n-grams. For visual word
recognition, one may use letter n-grams, or, as lower-level visual cues, for instance, features derived
from histograms of oriented gradients (Dalal and Triggs, 2005; Linke et al., 2017). In what follows,
we use vectors with combinations of phonological units to represent the forms of German nouns.
We first consider form representations with n-phones as cues. Next, we will present results for when
n-syllables are used as cues.

4.1.1 Phone-based representations

Sublexical phone cues can be of different granularity, such as biphones and triphones. For the
word Aale (pronunciation al@), the biphone cues are #a, al, l@, and @#, and the triphone cues
are #al, al@, and l@#. The number of unique cues (and hence the dimensionality of the form
vectors) increases as granularity decreases. For the present dataset for example, there are 931
biphone cues, but 4,656 triphone cues. For quadraphones, there are no less than 9,068 unique cues.
Although model performance tends to become better with more unique cues, we also run the risk
of overfitting. That is, the model does not generalize and thus performs worse on validation data.
The choice of granularity therefore determines the balance of having a precise memory on the one
hand and a productive memory on the other hand. In the simulation examples with n-phones that
follow, we made use of simulated semantic vectors. Details on the many different kinds of semantic
vectors that can be used are presented in Section 4.2.1.

comprehension production
train val all val lenient val newform train val all val lenient val newform

biphone 22% 16% 17% 8% 48% 31% 33% 12%
triphone 93% 88% 92% 51% 84% 64% 68% 21%
quadraphone 97% 93% 97% 53% 91% 67% 73% 11%
bisyllable 99% 93% 99% 20% 95% 63% 69% 0.3%
word2vec 87% 72% 80% 0.3% 97% 88% 94% 25%

Table 5: Comprehension and production accuracy for train and validation datasets, with biphones,
triphones, quadraphones, and bisyllables as cues. For the first four rows, we used simulated semantic
vectors. For the last row, cues are triphones, and semantic vectors are word2vec embeddings
(discussed in Section 4.2.2). For the learn paths algorithm, the threshold θ was set to 0.05, 0.008,
0.005, 0.005, and 0.008 respectively.

Model accuracy for n-phones is presented in the first three rows of Table 5. For the training
data, comprehension accuracy is high with both triphones and quadraphones. For biphones, the
small number of unique cues clearly does not offer sufficient discriminatory power to distinguish
word meanings. Under strict evaluation, unsurprisingly given the large number of homophones in
German noun paradigms, comprehension accuracy plummets substantially to 8%, 33%, and 35%
for biphone, triphone, and quadraphone models respectively. Given that there is no way to tell the
meanings of homophones apart without further contextual information, we do not provide further
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details of strict evaluation. However, in Section 4.4.1 we will address the problem of homophony
by incorporating further contextual information into the model.

With regards to model accuracy for validation data, we see that overall accuracy (val all)
is quite low for biphones, while it remains high for both triphones and quadraphones. Closer
inspection reveals that this high accuracy is mainly contributed by homophones (val lenient).
Since these forms are already present in the training data, a high comprehension accuracy under
lenient evaluation is unsurprising. As for unseen forms (i.e., val newform), quadraphones perform
slightly better than triphones.

Production accuracy, presented in the right half of Table 5, is highly sensitive to the threshold
θ used by the learn paths algorithm. Given that usually only a relatively small number of cues
receive strong support from a given meaning, we therefore set the threshold such that the algorithm
does not need to take into account large numbers of irrelevant cues. Depending on the form and
meaning representations selected, some fine-tuning is generally required to obtain a threshold value
that optimally balances both accuracy and computation time. That is, we aim for the best accuracy
that the algorithm can achieve within a reasonable time span. Once the threshold is fine-tuned for
the training data, the same threshold is used for the validation data.

Production accuracy is similar to comprehension accuracy, albeit systematically slightly lower.
Triphones and quadraphones again outperform biphones by a large margin. For the training data,
triphones are somewhat less accurate than quadraphones. Interestingly, in order to predict new
forms in the validation data, triphones outperform quadraphones. Clearly, triphones offer better
generalizability compared to quadraphones, suggesting that we are overfitting when modeling with
quadraphones as cues. Accuracy under the val newform criterion is quite low, which is perhaps not
unexpected given the uncertainty that characterizes native speakers’ intuitions about the forms of
novel words (McCurdy et al., 2020). In Section 4.3.2 we return to this low accuracy, and consider
in further detail the best supported top candidates.

4.1.2 Syllable-based representations

Instead of using n-phones, the unit of analysis can be a combination of n syllables. The motivation
for using syllables is that some suprasegmental features, such as lexical stress in German, are bound
to syllables. Although stress information is not considered in the current simulation experiments,
suprasegmental cues can incorporated (see Chuang et al., 2020a, for an implementation).

As for n-phones, when using n-syllables, we have to choose a value for the unit size n. For
the word Aale, the bi-syllable cues are #-a, a-l@, and l@-#, with “-” indicating syllable boundary.
When unit size equals two, there are in total 8,401 unique bi-syllable cues. For tri-syllables, the
total number of unique cues triples increases to 10,482. Above, we observed that the model was
already overfitting with 9,068 unique quadraphone cues. We therefore do not consider tri-syllable
cues, and only present modeling results for bi-syllable cues.

As shown in the fourth row of Table 5, comprehension accuracy for the training data is almost
error-free, 99%, the highest among all the cue representations. For the validation data, the overall
accuracy is also high, 93%. This is again due to the high accuracy for the seen forms (val lenient

= 99%). Less than a quarter of the unseen forms, however, is recognized successfully (val newform

= 23%). As for production, accuracies for the training and validation data are 95% and 63%
respectively. The model again performs well for homophones (val lenient = 69%) but fails to
produce unseen forms (val newform = 0.3%). This extremely low accuracy is in part due to the
large number of cues that appear only in the validation dataset (325 for bisyllables, but only 23 for
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triphones). Since such novel cues do not receive any training, words with such cues are less likely
to be produced correctly. We will come back to the issue of novel cues in Section 4.3. For now, we
conclude that triphone-based form vectors are a good choice.

4.2 Semantic representation

There are many ways in which words’ meanings can be represented numerically. The simplest
method is to use one-hot encoding, as implemented in NDL (Baayen et al., 2011). One-hot encoding,
however, misses out on the semantic similarities between lemmas: under one-hot encoding, all
lemmas have meaning representations that are orthogonal. Instead of using one-hot encoding,
binary vectors with multiple bits on can be derived from WordNet (Chuang et al., 2020a). In
what follows, however, we will work with real-valued vectors, known as ‘word embeddings’ in
Natural Language Processing. In the present study, we refer to word embeddings as semantic
vectors. Semantic vectors can either be simulated, or derived from corpora using methods from
distributional semantics (see, e.g. Landauer and Dumais, 1997; Mikolov et al., 2013b).

4.2.1 Simulated semantic vectors

When corpus-based semantic vectors are unavailable, semantic vectors can be simulated. The
JudiLing package enables the user to simulate such vectors using normally distributed random
numbers for content lexemes and inflectional functions. By default, the dimension of the semantic
vectors is set to be identical to the dimension of the form vectors. Thus, the dimension of the
semantic vectors was smallest for the simulation using biphones (931), followed by that using
triphones (4,656), and largest for that using quadraphones (9,068).

The semantic vector for an inflected word is obtained by summing the vector of its lexeme
and the vectors of all the pertinent inflectional functions. As a consequence, all vectors sharing a
certain inflectional feature are shifted in the same direction in semantic space. By way of example,
consider the German plural genitive of Aal ‘eel’, Aale. We compute its semantic vectors by adding

the semantic vector for plural and genitive to the lemma vector
−−→
Aal:

−−→
Aale =

−−→
Aal +

−−−−−→
plural +

−−−−−−→
genitive

The corresponding singular can be coded as:

−−→
Aals =

−−→
Aal +

−−−−−−−→
singular +

−−−−−−→
genitive

Alternatively, the singular form could be coded as unmarked, following a privative opposition
approach:

−−→
Aals =

−−→
Aal +

−−−−−−→
genitive

For the remainder of the paper, we treat number as equipollent opposition (the former approach).
Finally, a small amount of random noise is added to each semantic vector, as an approximation of
further semantic differences in word use other than number and case (see Sinclair, 1991; Tognini-
Bonelli, 2001, and further discussion below). The results reported above in Table 5 were all obtained
with simulated vectors.

It is worth noting that when working with simulated semantic vectors, the meanings of lexemes
will still be orthogonal, and that as a consequence, all similarities between semantic vectors originate
exclusively from the semantic structure that comes from the inflectional system.
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4.2.2 Empirical semantic vectors

A second possibility for obtaining semantic vectors is to derive them from corpora. Baayen et al.
(2019) constructed semantic vectors from the TASA corpus, in such a way that semantic vectors
were obtained not only for lexemes but also for inflectional functions. With their semantic vectors,
the semantic vector of Aale can be straightforwardly constructed from the semantic vectors of Aal,
plural, and genitive.

However, semantic vectors that are created with standard methods from machine learning, such
as word2vec (Mikolov et al., 2013a), fasttext (Bojanowski et al., 2017) or GloVe (Pennington et al.,
2014), can also be used. In what follows, we illustrate this for 300-dimensional vectors generated
with word2vec, trained on the German Wikipedia (Yamada et al., 2020). For representing words’
forms, we used triphones.

Results are presented in the last row of Table 5. The model in general performs well for the
training data. For the validation data, while the homophones are easy to recognize and produce,
the unseen forms are again prohibitively difficult. Interestingly, if we compare the current results
with the results of simulated vectors (cf. second row, Table 5), we observe that while the train

and val all accuracies are fairly comparable for the two vector types, their val newform accura-
cies nonetheless differ. Specifically, understanding new forms is substantially more accurate with
simulated vectors (51% vs. 0.3%), whereas word2vec embeddings yield slightly better results for
producing new forms (21% vs. 25%).

To understand why these differences arise, we note, first, that lexemes are more similar to each
other than is the case for simulated vectors (in which case lexemes are orthogonal), and second, that
word2vec semantic vectors are exactly the same for each set of homophones within a paradigm, so
that inflectional structure is much less precisely represented. The lack of inflectional structure may
underlie the inability of the model to understand novel inflected forms correctly. Furthermore, the
lack of differentiation between homophones simplifies the mapping from meaning to form, leading
to more support from the semantics for the relevant triphones, which in turn facilitates synthesis
by analysis.

To better understand the difference between simulated vectors and word2vec semantic vectors,
we took the word2vec vectors, and reconstructed from these vectors the vectors of the lexemes and
of the inflectional functions. For a given lexeme, we created its lexeme vector by averaging over the
vectors of its inflectional variants. For plurality, we averaged over all vectors of forms that can be
plural forms. Using these new vectors, we constructed semantic vectors for a given paradigm cell by
adding the semantic vector of the lexeme and the semantic vectors for its number and case values.
The mean correlation between the new “analytical” word2vec vectors and the original empirical
vectors was 0.79 (sd = 0.076). It follows that there is considerable variability in how German word
forms are actually used in texts, a finding that has also emerged from corpus linguistics (Sinclair,
1991; Tognini-Bonelli, 2001). The idiosyncracies in the use of individual inflected forms renders
the comprehension of a novel, but nevertheless idiosyncratic, word form difficult if not impossible.
From this we conclude that the small amount of noise that we added to the simulated semantic
vectors is likely to be unrealistically small compared to real language use.

Interestingly, semantic similarity may facilitate the production of unseen forms. A Linear
Discriminant Analysis (LDA) predicting nine plural classes (the eight sub-classes presented in Table
1 plus one ‘other’ class) from the word2vec semantic vectors has a prediction accuracy of 62.7%
(50.5% under leave-one-out cross validation). Conducting 10-fold cross-validation with Support
Vector Machine (SVM) gives us an average accuracy of 57.2%, which is significantly higher than
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the percentage of majority choice (35.6% for the -n plural class). This indicates that semantically
similar words do tend to inflect in similar ways. When a novel meaning is encountered in the
validation set, it is therefore possible to predict to some extent its general form class. Given
the similarities between LDA and regression, it seems likely that the same kind of information is
captured by the mapping from meaning to form in LDL.

4.3 Missing forms and missing semantics

Evaluation on held-out data is a means for assessing the productivity of the network. However, it
often happens during testing that the model is confronted with novel, unseen cues, or with novel,
unseen semantics. Here, linguistically and cognitively motivated choices are required.

4.3.1 Novel cues

For the cross-validation results presented thus far, the validation data comprise a random selection
of words. As a consequence, there often are novel cues in the validation data that the model has
never encountered during training. The presence of novel cues is especially harmful for production.
As mentioned in Section 4.1.2, the model with bi-syllables as cues fails to produce unseen forms,
due to the large number of novel cues in the validation data.

What is the theoretical status of novel cues? To answer this question, first consider that
actual speakers rarely encounter new phones or new phone combinations in their native languages.
Furthermore, novel sounds encountered in loan words are typically assimilated into the speaker’s
native phonology. Second, many cues that are novel for the model actually occur not only in the
held-out nouns, but also in verbs, adjectives, and compounds. Thus, the presence of novel cues is
in part a consequence of modeling only part of the German lexicon.

Since novel cues have zero weights on their efferrent connections (or, equivalently, zero beta
coefficients), they are completely inert for prediction. One way to address this issue is to select
the held-out data with care. That is, instead of randomly holding out words, we make sure that in
the validation data all cues are already present in the training data. This is a linguistically more
interesting, and statistically more sensible, alternative for evaluating a model’s productivity.

As before, we split the dataset into 80% training and 20% validation data, now making sure
that there are no novel triphone cues for the validation dataset. Among the 3629 validation words,
3331 are homophones, and 298 are unseen forms. Changing the kind of cues used typically has
consequences for how many datapoints can be held out for validation. For instance, when bisylla-
bles are used instead of triphones, due to the sparsity of bisyllable cues, we have to increase the
percentage of validation data to include sufficient numbers of unseen forms. Even for 65% training
data and 35% validation data, we still have that the majority of validation data are homophones
(98.5%), and only 76 cases represent unseen forms (but with known cues).

comprehension production
train val all val lenient val newform train val all val lenient val newform

triphone 92% 88% 91% 53% 85% 62% 67% 14%
bisyllable 99% 99% 99% 61% 95% 52% 52% 14%

Table 6: Comprehension and production accuracy for train and validation datasets, which are split
in such a way that no novel cues are present in the validation set. Both the triphone and bisyllable
models make use of simulated semantic vectors.
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For the triphone model (top row, Table 6), for both comprehension and production, the train,
val all and val lenient accuracies are similar to the results presented previously (Table 5). For
the evaluation of unseen forms (val newform), there is a slight improvement for comprehension
(from 51% to 53%), for other datasets, the improvement can be larger. However, for production,
val newform becomes worse after we make sure that there are no novel cues in the validation data
(from 21% to 14%). The reason is that even though all triphone cues of the validation words are
present in the training data, they obtain insufficient support from the semantics. The solution is to
allow a small number of triphone cues with weak support (below the threshold θ) to be taken into
account by the algorithm that orders triphones into words. This requires turning on the tolerance
mode on in the learn paths function of the JudiLing package). By allowing at most two weakly
supported triphones to be taken into account, production accuracy for unseen forms increases to
56%.

The bi-syllable model, on the other hand, benefits more from the removal of novel cues in the
validation data. Especially for comprehension, the accuracy of unseen forms reaches 61% (com-
pared to 20% with random selection). For production, we observe a non-negligible improvement
as well (from 0.3% to 14%). Further improvements are expected when tolerance mode is used
(but given the large number of bisyllables, this comes at considerable computation costs). In other
words, bisyllables provide a model that is an excellent memory, but a memory with very limited
productivity specifically for production.

4.3.2 Unseen semantics

In real language, speakers seldomly encounter words that are completely devoid of meaning: even
novel words are typically encountered in contexts which narrow down their possible meanings. In
the wug task, by contrast, participants are often confronted with novel words presented without
any indication of their meaning, as, for instance, in the experiment on German nouns reported by
McCurdy et al. (2020). Within the framework of the discriminative lexicon, this raises the question
of how to model the semantics of nonwords, as without a semantic representation for a nonword,
the model has no way to produce inflected variants.

In order to model the wug task, and compare our model’s performance with that of German
native speakers, we take as starting point the observation that the comprehension system generates
meanings for nonwords. Chuang et al. (2020b) showed that measures derived from the semantic
vectors of nonwords were predictive for both reaction times in an auditory lexical decision task and
for nonwords’ acoustic durations in a reading task. In order to model the wug task, we therefore
proceeded as follows:

1. We first simulated a speaker’s lexical knowledge prior to the experiment by training a com-
prehension matrix using all the words described in Section 4. In what follows, we made use
of simulated semantic vectors.

2. We then used the resulting comprehension network to obtain semantic vectors snom.sg for the
nominative singular forms of the nonwords by mapping their cue vectors into the semantic
space, resulting in semantic vectors snom.sg.

3. Next, we created the production mapping from meaning to form, using not only all real words
but also the nonwords (known only in their nominative singular form).
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4. Then, we created the semantic vectors for the plurals (snom.pl) of the nonwords by adding the
plural vector to their nominative singular vectors after subtracting the singular vector.

5. Finally, these plural semantic vectors were mapped onto form vectors (ĉnom.pl) using the
production matrix, in combination with the learn paths algorithm that orders the triphones
for articulation.

We applied these modeling steps to a subset of the experimental materials provided by Marcus
et al. (1995) (reused by McCurdy et al., 2020), in order to compare the predictions of our model
with those reported by McCurdy et al. (2020). The full materials of Marcus et al. (1995) contained
nonwords that were set up such that only half of them had an existing rhyme in German. We
restricted ourselves to the nonwords with existing rhymes, first, because non-rhyme words have
many cues that are not in the training data; second, because, as noted by Zaretsky and Lange
(2015), many of the non-rhyme words have unusual orthography and thus are strange even for
German speakers, and third, because many of the non-rhyme nonwords share their endings and
therefore do not provide strong data for testing model predictions.

McCurdy et al. (2020) presented nonwords visually and asked participants to provide the plural
form in writing. In what follows, we therefore made use of letter trigrams rather than triphones.
We represented words without their articles as the wug task implemented by McCurdy et al. (2020)
presented the plural article as a prompt for the plural form, so that participants only produced
the plural form without the article. In order to assess what forms are potential candidates for
production, we examined the set of candidate forms, ranked by how well their internally projected
meanings (obtained with the synthesis-by-analysis algorithm, see Section 3), correlated with the
meaning snom.pl targeted for production. We then examined the top best candidates as possible
alternative plural forms.

The model provided a plausible plural form as the best candidate in 7 out of 12 cases. Five of
these belonged to the -en class. A further plausible candidate was also only provided in 5 of the
cases. The lack of diversity as well as the bias for -en plurals does not correspond to the responses
given by German speakers in McCurdy et al. (2020).

Upon closer inspection, it turns out that a more variegated wug performance can be obtained
by changing two parameters. First, we replaced letter trigrams by letter bigrams. This substan-
tially reduces the number of n-grams that are present in the nonwords, but that do not occur in
the training data. Second, we made a small but important change to how semantic vectors were
simulated. The default parameter settings provided with the JudiLing package generate semantic
vectors with the same standard deviation for both content words and inflectional features. There-
fore, the magnitudes of the values in the semantic vectors is very similar for content words and
inflectional features. Since words are inflected for case and number, their semantic vectors are
numerically dominated by the inflectional meanings. To enhance the importance of the lexeme,
and to reduce the dominance of the inflectional functions, we reduced the standard deviation when
generating the semantic vectors for number and case. As a consequence, the mean of the absolute
values in the plural vector decreased from 3.25 to 0.32. (Technical details are provided in the
supplementary materials.)

With these two changes, the model generated a more diverse set of plural nonword candidates,
as shown in Table 7. Model performance is now much closer to the performance of native speakers,
as reported by (Zaretsky et al., 2013; McCurdy et al., 2020).

The model also produces some implausible plural candidates, all of which are phonotactically
legal; these are marked with an asterisk in Table 7. Sometimes a plural marker is interfixed instead
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Bral Kach Klot Mur Nuhl Pind Pisch Pund Raun Spand Spert Vag
Bralen Kachen Klot Muren Nuhlen Pinden Pischen Punden Raunen *Spanend Sperten Vag
Bral Kach *Klotten Murn Nuhl Pind Pisch *Punend Raun Spand Sperte Vagen

*Bralenen Kacher *Klotte Mur Nuhle Pinder Pischer Pund *Raunern *Spanende Sperter Vage
*Bralern Kache *Klotter *Murnen *Nuhlern Pinde Pische Punde Rauner *Spanenden *Spererten Vager
Braler *Kachern *Klieloten Murer *Nuhlere *Pindern *Pischern *Pundene Raune *Spatend *Spererte *Vagern

Table 7: First five candidates for the plural forms of nonwords. Forms that are implausible as
plurals are marked with an asterisk.

of suffixed (e.g., Spand, Span-en-d; Pund, Pun-en-d), almost all words have a candidate which
shows double plural marking (e.g. Bral, Bral-en-en; Nuhl, Nuhl-er-e; cf. Dutch kind-er-en; Pind,
Pind-er-n), or a mixture of both (e.g. Span, Span-en-d-e; Spert, Sper-er-t-en). For Klot, doubling of
the -t can be observed, as this form is presumably more plausible in German (e.g. Motte (‘moth’),
Gott (‘god’), Schrott (‘scrap, rubbish’)) and one plural has been attracted to an existing singular
(Spand, Spaten-d). Apparently, by downgrading the strength (or more precisely, the L1-norm) of
the semantic vectors of inflectional functions, the model moves in the direction of interfixation-like
changes.

Interestingly, the model does not produce a single plural form with an umlaut. This is surprising
in the sense that in corpora, umlauted plurals are relatively frequent (see e.g. Gaeta, 2008). The
model’s performance may simply reflect that pertinent bigrams are ‘still’ missing, but then this
processing limitation does seem to reflect the performance of German speakers: The German
speakers in McCurdy (2019) also tended to avoid umlaut forms with as exception Kach → Kächer).

Finally, it is noteworthy to see that most nonwords have a plural in -en as one of the candidates
(10 out of 12 cases), with as runners-up the -e plural (8 out of 12 cases), and the -er plural (8 out of
12). There is not a single instance of an -s plural, which fits well with the low prevalence (around
5%) of -s plurals in the experiment of McCurdy et al. (2020).

In summary, this simulation study shows that it is possible to make considerable headway
with respect to modeling the wug task for German. The model is not perfect, unsurprisingly,
given that we have worked with simulated semantic vectors and estimates of nonwords’ meanings.
Furthermore, the strong weight imposed on the stem shifts model performance in the direction of
interfixation-like morphology. Last but not least, the model has no access to information about
words’ frequency of use, and hence is blind to an important factor shaping human learning (see
Section 4.5 for further discussion). Nevertheless, the model does mirror the uncertainties of German
speakers fairly well.

4.4 Words in context

Thus far, we have modeled words in isolation. However, in German, case and number information
is to a large extent carried by preceding determiners. In addition, in actual language use, a given
grammatical case denotes one of a wide range of different possible semantic roles. In other words,
the simplifying assumption that an inflectional function can be represented by a single vector,
which may be reasonable for grammatical number, is not at all justified for grammatical case. In
this section, we therefore explore how context can be taken into account. In what follows, we
first present modeling results of nouns learned together with their articles. Next, we break down
grammatical cases into actual semantic functions, and show how we can begin to model the noun
declension system with more informed semantic representations.
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4.4.1 Articles

We first consider definite articles. Depending on gender and case, a noun can follow one of the six
definite articles in German — der, die, das, dem, den, des. These articles, transcribed in DISC
notation, are added before the nouns. Although in writing articles and nouns are separated by
space (e.g. der Aal), to model auditory comprehension we remove the space (e.g., deral). By
adding the articles to the noun forms, the number of homophones in our dataset is reduced to a
substantial extent, and the number of unique word forms now more than doubles (from 5,427 to
12,798).

In the first set of simulations we used the same semantic vectors as we did previously for
modeling isolated words. That is, the meanings of the definite articles are not taken into account
in the semantic vectors, as all forms would be shifted in semantic space in the same way. After
including articles, the validation data now only contained 3,982 homophones, but the number of
unseen forms increased to 3,260. Using triphones as cues, we ran two models, one with simulated
vectors and the other with word2vec semantic vectors. As shown in Table 8, for simulated vectors
the results are generally similar to those obtained without articles (Table 5). However, if we look
at the evaluation of comprehension with the strict criterion (according to which recognizing a
homophonic meaning is considered incorrect), without articles val strict is 0.6%, whereas it is
30% with articles. The generalizability of the model also improves as the number of homophones
in the dataset decreases. Even though there are more unseen forms in the current dataset with
articles than in the original one without articles, the val newform for comprehension still increases
by 12% from 51% to 63%.

With respect to word2vec embeddings, the addition of articles in form representations also
benefitted the comprehension of unseen forms: the val newform astonishingly increases from 0.3%
to 58%. This is because previously homophones all shared the same form representations and
exactly the same word2vec vectors. Many triphone cues are superfluous in the sense that they
cannot serve as good predictors for lemma or inflectional meanings. Now, with the addition of
articles, the form space is better discriminated. Given that the number of predictors (triphone cues)
has increased, the model is now able to predict and generalize more accurately for comprehension.
However, for production, model performance is generally worse when articles have to be produced.
For the training data, for instance, production accuracy drops from 97% (without articles) to 48%.
This is again unsurprising. In the simulation with articles, the semantic representations remain
the same, but now these semantic vectors have to predict more variegated triphone vectors. The
learning task has become more challenging, and inevitably results in less accurate performance.
Replacing the contextually unaware word2vec vectors by contextually aware vectors obtained using
language models such as BERT (Devlin et al., 2018; Miaschi and Dell’Orletta, 2020) should alleviate
this problem.

We can test the model on more challenging data by including indefinite articles (ein, eine, einem,
einen, einer, eines), and creating two additional semantic vectors, one for definiteness and one for
indefiniteness. This doubles the size of our dataset: half of the words are preceded by definite
articles, and the other half by indefinite articles. However, because German indefinite articles
are restricted to singular forms, only indefinite singular forms are preceded by indefinite articles.
On the meaning side, the

−−−−−−→
definite vector is added to the semantic vectors of words preceded by

definite articles, and the
−−−−−−−−→
indefinite vector is added to those of words preceded by either indefinite

articles in the singular, or no article in the plural.
The validation data of this dataset is faced with in total 3,982 homophones and 3,260 unseen
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comprehension production
train val all val lenient val newform train val all val lenient val newform

simulated 94% 76% 92% 63% 81% 37% 57% 19%
word2vec 91% 69% 81% 58% 48% 14% 28% 0.1%
def + indef 94% 80% 93% 64% 82% 40% 61% 15%

Table 8: Comprehension and production accuracy for train and validation datasets with articles.
All three simulations use triphones as cues. The first two rows present results with simulated
vectors and word2vec embeddings as semantic representations. The simulation presented in the
bottom row also makes use of simulated vectors, but includes both definite and indefinite articles.

forms. Homophones comprise slightly more words with indefinite articles (57%) whereas unseen
forms consist of slightly more definite articles (59%). The results, presented in the bottom row of
Table 8, are very similar to those with only definite articles (top row). Closer inspection of the
results for the validation data shows that for comprehension, accuracies do not differ much across
definite and indefinite forms. For production, however, especially for unseen forms, the accuracy for
definite articles is twice higher than that for indefinite articles (20% and 9%, averaging out to 15%).
This is a straightforward consequence of the much more diverse realizations of indefinite nouns. For
definite nouns, the possible triphone cues at the first two positions in the word are always limited
to the triphone cues of the six definite articles. For indefiniteness, however, in addition to the six
indefinite articles, initial triphone cues also originate from words’ stems, given that indefinite plural
forms are realized without articles. The mappings for production are faced with a more complex
task for indefinites, and the model is therefore more likely to fail on indefinite forms.

4.4.2 Semantic roles

The simulation studies thus far suggest it is not straightforward to correctly comprehend a novel
German word form in isolation, even when articles are provided. This is perhaps not that surprising,
as in natural language use, inflected words appear in context, and usually realize not some abstract
case ending, but a specific semantic role (also called thematic role, see, e.g., Harley, 2010). For
example, a word in the nominative singular might express a theme, as der Apfel in Der Apfel fällt
vom Baum. (‘The apple falls from the tree’), or it might express an agent as der Junge in Der Junge
isst den Apfel. (‘The boy eats the apple.’). Exactly the same lemma, used with exactly the same
case and number, may still realize very different semantic roles. Consider the two sentences Ich bin
bei der Freundin (‘I’m at the friend’s’) and Ich gebe der Freundin das Buch. (‘I give the book to
the friend‘). der Freundin is dative singular in both cases, but in the first sentence, it expresses
a location while in the second it represents the beneficiary or receiver. Semantic roles can also be
reflected in a word’s form, independently of case markers. For example, German nouns ending in
-er are so-called “Nomen Agentis” (Baeskow, 2011). As pointed out by Blevins (2016), case endings
are no more (or less) than markers for the intersection of form variation and a distribution class of
semantic roles. Since within the framework of the DLM, the aim is to provide mappings between
form and meaning, a case label is not a proper representation of a word’s actual meaning. All it
does is specify a range of meanings that the form can have, depending on context. Therefore, even
though we can get the mechanics of the model to work with case specifications, doing so clashes
with the ‘discriminative modeling approach’. In what follows, we therefore present an attempt to
implement mappings with more realistic semantic representations of German inflected nouns.
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Case Semantic roles

Nominative agent (50%), theme (40%), patient (10%)
Genitive possessive (90%), partitive (10%)
Dative beneficiary (50%), location (50%)
Accusative patient (40%), motion (30%), experiencer (30%)

Table 9: Probabilities of semantic roles by cases in the German noun system. Semantic roles are
informed by Schulz and Griesbach (1981). Percentages are chosen arbitrarily.

Our starting point is that in German, different cases can realize a wide range of semantic roles.
For our simulations, we restrict ourselves to some of the most prominent semantic roles for each
case (see Table 9). Even though these clearly do not reflect the full richness of the semantics of
German cases, they suffice for a proof-of-concept simulation.

In order to obtain a data set with variegated semantic roles, we expanded the previous data
set, with each word form (including its article) appearing with a specification of its semantic role,
according to the probabilities presented in Table 9. The resulting dataset had 45,605 entries,
which we randomly split into 80% training data and 20% validation data. For generating the
semantic matrix, we again used number, but instead of a case label, we provided the semantic
role as inflectional features. Comprehension accuracy on this data is comparable to the previous
simulations: 89% for the training data train, and 85% val lenient. Comprehension accuracy
on the validation set drops dramatically when we use strict evaluation (4% accuracy). This is
unsurprising given that it is impossible for the model to know which semantic role is indicated
when only being exposed to the word form and its article in isolation, without syntactic context.
Production accuracy is likewise comparable to previous simulations with val lenient at 61%
(val newform = 25%). This simple result clarifies that in order to properly model German nouns,
it is necessary to take the syntactic context in which a noun occurs into account. Future research
will also have to face the challenge of integrating words’ individual usage profiles into the model
(see also Section 4.2.1 above).

4.5 Incremental learning versus the endstate of learning

In the simulation studies presented thus far, we made use of the regression method to estimate the
mappings between form and meaning. The regression method is strictly type based: the data on
which a model is trained and evaluated consists of all unique combinations of form vectors c and
semantic vectors s. In this respect, the regression method is very similar to models such as AML,
MBL, MGL, and to statistical analyses with the GLM or recursive partioning methods. However,
word types (understood as unique sets {c, s}) are not uniformly distributed in language, and there
is ample evidence that the frequencies with which word types occur co-determines lexical processing
(see, e.g., Baayen et al., 1997, 2016, 2007; Tomaschek et al., 2018). While some formal theorists
flatly deny that word frequency effects exist for complex words (Yang, 2016), others have argued
that there is no problem with integrating frequency of use into theories of the lexicon (Jackendoff,
1975; Jackendoff and Audring, 2019), and yet others have argued that it is absolutely essential to
incorporate frequency into any meaningful account of language in action (Langacker, 1987; Bybee,
2010).

Within the present approach, effects of frequency of occurrence can be incorporated seamlessly
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word form lemma case number semantic role form frequency form+role
frequency

Adresse Adresse nominative singular agent 137 20
Adresse Adresse nominative singular theme 137 16
Adresse Adresse nominative singular patient 137 0
Adresse Adresse genitive singular possessive 137 0
Adresse Adresse genitive singular partitive 137 35
Adresse Adresse dative singular beneficiary 137 18
Adresse Adresse dative singular location 137 18
Adresse Adresse accusative singular patient 137 0
Adresse Adresse accusative singular motion 137 0
Adresse Adresse accusative singular experiencer 137 35

Table 10: Example of simulated frequencies for combinations of case and semantic role for the word
form “Adresse”.

by using incremental learning instead of the endstate of learning as defined by the regression equa-
tions (see Danks, 2003; Evert and Arppe, 2015; Shafaei-Bajestan et al., 2021, for the convergence
over learning time of incremental learing to the regression endstate of learning). We illustrate this
for our German nouns dataset with number and semantic role as crucial constructors of simulated
semantic vectors.

We begin with noting that word forms usually do not instantiate all possible semantic roles
equally frequently. For instance, a word such as der Doktor (‘doctor’) will presumably occur
mostly as agent in the nominative singular form, rather than as theme or patient. If the model is
informed about the probability distributions of semantic roles in actual language use, it may be
expected to make more informed decisions when coming across new forms, for instance, by opting
for the best match given its past experience.

Incremental learning with the learning rule of Widrow-Hoff makes it possible to start approx-
imating human word-to-word learning as a function of experience. As a consequence, the more
frequent a word type occurs in language use, the better it can be learned: practice makes perfect.
This sets the following simulation study apart from models such as proposed by Belth et al. (2021)
or McCurdy et al. (2020), who base their training regimes on types rather than tokens.

In the absence of empirical frequencies with which combinations of semantic roles and German
nouns co-occur, we simulated frequencies of use. To do so, we proceeded as follows. First, we
collected token frequencies for all our word forms from CELEX. Next, we assigned an equal part freqp
of this frequency count to each case/number cell realising this word form. Third, for each paradigm
cell, we randomly set to zero some semantic roles, drawing from a Binomial distribution with
n = 1, p = 1

K , with K the number of semantic roles for the paradigm cell. In this way, on average,
one semantic role was omitted per paradigm cell. Finally, given a proportional frequency count
freqp, the semantic roles associated with a paradigm cell received frequencies proportional to the
percentages given in Table 9. Further details on this procedure are available in the supplementary
materials, a full example can be found in Table 10.

Having obtained the simulated frequencies, we proceeded by randomly selecting 274 different
lemmas (1,289 distinct word forms with definite articles included), in order to keep the size of the
simulation down — simulating with the Widrow-Hoff rule is computationally expensive. The total
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number of tokens in this study was 4,470. For the form vectors, we used triphones. Semantic
vectors were simulated. The dimension of the semantic vectors was identical to that of the cue
vectors. As before, the data was split into 80% training and 20% validation data. We followed the
same procedure as in the previous experiments, but instead of computing the mapping matrices in
their closed form solution, we used incremental learning.

While for comprehension, the implementation of the learning algorithm is relatively straight-
forward, this is not the case for production. The learn paths algorithm calculates the support for
each of the n-grams, for each possible position in a word. In the current implementation of JudiL-
ing, the calculation of positional support is not implemented for incremental learning. Therefore,
we do not consider incremental learning of production here.

Comprehension accuracy was similar to that observed for previous experiments. Training ac-
curacy when taking into account homophones was 85%, validation accuracy on the full data was
79% (val lenient). Without considering homophones, validation accuracy drops substantially
(val strict = 7%). This is unsurprising given that from the form alone it is once again impossible
to predict the proper semantic role.

The accuracy of the model’s predictions is also closely linked to the frequencies with which words’
form+role combinations are encountered in the training data. If a word’s form+role combination
is very frequent, it is learned better. Figure 2 presents the correlations of words’ predicted and
targeted semantic vector against their frequency of occurrence. The left panel presents the results
for the incrementally learned model, the right panel for the endstate of learning. Clearly, after
incremental learning the model predicts the semantics of more frequent form+role combinations
more accurately than for less frequent ones. For the endstate of learning on the other hand, no
such effect can be observed. These results clearly illustrate the difference between a token-based
model and a typed-based model.

The effect of frequency of use on the kind of errors made by the model is also of interest. We
zoom in on those cases where the model was able to correctly identify the lemma and paradigm
cell of the word form, but did not get the semantic role correct. Figure 3 provides scatterplots
graphing the number of times a semantic role was (incorrectly) understood against the frequency
of the form’s semantic role, cross-classified by training method (incremental, left panels; endstate of
learning, right panels) and by evaluation set (top panels: training data, bottom panels: validation
data).

For incremental learning, there is a positive correlation between the number of times a semantic
role was (incorrectly) identified and the frequency of the semantic role in the training data. Note
that the relation is not linear, but curvilinear. A linear relation would have implied that a fixed
proportion of word forms would be incorrectly recognized, across all semantic roles. What we see, by
contrast, is that greater exposure in language use has an increasingly detrimental effect on learning,
with more probable semantic roles being over-identified. Importantly, for the endstate of learning,
this curvilinear effect of frequency on learning is absent, with the patient role representing an
outlier. This outlier status may be due to the patient semantic role being realized by two cases:
nominative and accusative. As a consequence, it is not only frequent, but it is also predicted by
many more different cues (especially cues from the articles) than is the case for other semantic
roles.
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Figure 2: Correlation between the simulated frequency and correlation of the predicted semantic
vector with its target. Generally, the more frequent a word form is, the more accurate its semantic
vector is predicted. The blue line indicates a loess smooth with a .95 confidence interval.
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Figure 3: Counts of overgeneralization errors of semantic roles for training (top) and test data
(bottom), for incremental learning (left) and the endstate of learning (right), conditional on the
model having understood lexeme, number, and case correctly.
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Figure 4: Comprehension accuracy over the course of learning. After a very fast increase in accuracy
over the first 15,000 learning events, the amount of learning levels off. Points indicate the accuracy
at the endstate of learning which the incremental model would reach eventually after an infinite
number of learning events.

In other words, with incremental learning, strong frequency effects emerge, hand in hand with
overgeneralization of semantic roles. (The study by Ramscar et al. (2013) makes the same point for
irregular English noun plurals.) By contrast, for the endstate of learning, such effects are absent.
Mathematically, this makes sense: as experience (i.e., volume of training data) goes to infinity, all
forms are learned an infinite number of times, and frequency is no longer distinctive.

With incremental learning, it is also possible to follow the learning trajectory of the model.
Figure 4 presents this trajectory at 10 evaluation points. Learning proceeds rapidly during the first
15,000 learning events and slows down afterwards. Validation accuracy val lenient closely follows
training accuracy, which is a straightforward consequence of the large numbers of homophones.
val newforms on the other hand stays relatively low, in accordance with the semi-productivity of
the German declension system.

Note that in this simulation we only pass through the data once, in the sense that if a word
form has a form+role frequency of 1, it is only seen a single time during training. As such, it is not
possible for the model to reach accuracies as high as at the endstate of learning (indicated as dots
in Figure 4), which would be reached eventually after an infinite number of passes through the data
(Danks, 2003; Evert and Arppe, 2015; Shafaei-Bajestan et al., 2021). This sets our approach apart
from deep learning, where models are trained on many epochs of the data set until the loss function
reaches a local minimum. Whereas such a procedure makes sense for language engineering, it does
not make sense for human learning: we don’t relive the same exposure to data multiple times, and
for healthy people, there is no point in learning after which performance degrades. For instance,
vocabulary learning is a continuous process straight into old age (Keuleers et al., 2015).

In summary, what this simulation clarifies is that the present modeling framework offers the pos-
sibility to approximate incremental human learning and the consequences of frequency of exposure
for learning (see also Chuang et al., 2020a, for learning in a multilingual setting).

4.6 Model complexity

LDL is costly in the number of connection weights, or equivalently, the number of beta coefficients.
For example, the mapping matrix F for the dataset discussed in Section 4.4.2 has 35 million weights
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Figure 5: (A) Distribution of weights in the mapping matrix from form to meaning for the dataset
with semantic roles. (B) Accuracy of the endstate model as a function of the proportion of con-
nection weights close to zero are pruned. About 40% of the weights can be set to zero without
seriously affecting the performance of the model.

(5913 × 5913 dimensions), rendering it much more costly in terms of the number of weights than
deep-learning models, or models such as AML, MBL, and recursive partitioning methods.

Inspection of the distribution of weights, however, clarifies that most weights are very close to
zero. In other words, most cues have low discriminative value. This suggests they can be pruned
without seriously affecting model performance. This can be tested by selecting a threshold ϑ and
setting all absolute values in the mapping matrix that fall below this threshold to zero. Figure 5
shows, for varying ϑ, that up to 40% of the small weights can be pruned without substantially
impacting the performance of the model. As neural pruning is part and parcel of human cortical
development (see, e.g. Gogtay et al., 2004), an interesting topic for further research is to integrate
incremental learning with neural pruning of uninformative connections.

5 Discussion

In this study, we illustrated the methodological consequences of the many different choices that have
to be made when modelling morphological systems within the discriminative lexicon framework,
using LDL as modeling engine. We illustrated these choices for the German noun system. In
one way, this system is ‘degenerate’, as many of its paradigm cells share the same word forms
(homophones). This system is also in many ways irregular: a noun’s declension class can often not
be fully predicted by its phonology, gender, or semantics (Köpcke, 1988). The results we obtained
with LDL reflect this complexity. The model can learn word forms very well, achieving accuracies
of more than 90% on both comprehension and production when evaluated on training data. It
can also generalize very well to new paradigm cells when it comes to word forms it has already
seen, thanks to the ubiquitous homophony that characterizes German noun paradigms. However,
it also mirrors the unpredictability of German inflections when it comes to word forms it hasn’t
seen before. Accuracies for both comprehension and production suffer, but nevertheless the model
shows some semi-productivity and succeeds in generalizing to many of the subregularities found in
the German noun system (Wunderlich, 1999), reaching accuracies of 50% on comprehension and
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20% on production. Since German speakers encounter similar problems with new German word
forms, as has been demonstrated in various wug studies (Zaretsky et al., 2013; McCurdy et al.,
2020), our model properly exhibits the limitations that are also encountered by native speakers.

In this study, we also probed the modeling of German nouns in context. The rampant ho-
mophony that characterizes German noun paradigms is a straightforward consequence of consid-
ering words in isolation. The amount of homophony can be substantially reduced by including
articles, in which case the model still performs well. In context, case-inflected words typically do
not realize a specific case meaning, but rather a specific semantic role. As case endings typically
do not stand in a one-to-one relation with semantic roles, we also examined to what extent we
can make the model more realistic by replacing semantic vectors for cases with semantic vectors
for a variety of semantic roles. For the simulated dataset that we constructed, the model again
performed well. For this dataset, we also demonstrated how the consequences of frequency of occur-
rence can be brought into the model, namely, by moving from the endstate of learning (estimated
with regression) to incremental learning using the Widrow-Hoff learning rule. One limitation of
our model is that in most of the implementations, we have been using very high-level abstract
representations. The phone-based representation, for example, involves tremendous simplifications
compared to real speech, as variability in pronunciations is enormous (Johnson, 2004; Ernestus
et al., 2002). On the meaning side, traditional case labels have no intrinsic semantic content, and
although we can replace cases with semantic roles, these too are still too simplistic to be able to
capture the full complexity of the semantics of words in context. However, we note that even with
the present high-level representations, the model can still generate useful predictions, and various
studies carried out within this framework have successfully modeled a range of aspects of human
lexical processing (see Chuang and Baayen, 2021, for further details). In summary, even though
the current framework undoubtedly misses out on a great number of nuanced but potentially infor-
mative features of forms and meanings in real language use, it can still serve as a useful linguistic
tool to explore the strengths and weaknesses of morphological systems.

A question that inevitably arises in the context of computational modeling is how cognitively
plausible a model is. In the introduction, we called attention to the distinction made by Breiman
et al. (2001) between statistical models and machine learning models. We view LDL primarily as
a statistical model that enables us to clarify quantitative structure in the lexicon. However, since
the matrix of beta coefficients of multivariate multiple regression model can be conceptualized as
the weight matrix characterizing connection strengths in a simple network, and given that such a
network can be trained incrementally, it is worth noting that the principle of error-driven learning
with the very simple learning rules of Widrow-Hoff and Rescorla-Wagner has excellent credentials
across a wide range of domains of inquiry (see, e.g., Rescorla, 1988; Schultz, 1998; Marsolek, 2008;
Oppenheim et al., 2010; Trimmer et al., 2012).

It is possible to take the model as point of departure for addressing questions at the level of
neural organization in the brain. For instance, Heitmeier and Baayen (2021) were interested in
clarifying whether the framework of the discriminative lexicon properly predicts the dissociations
of form and meaning observed for aphasic speakers producing English regular and irregular past-
tense forms, following Joanisse and Seidenberg (1999). They took the unordered banks of units
of form and meaning (the column dimensions of the C and S matrices) and projected them onto
two-dimensional surfaces approximating, however crudely, cortical maps. This made it possible to
lesion the network in a topologically cohesive way, rather than by randomly taking out connections
across the whole network. They made use of an algorithm from physics (http://www.schmuhl.
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org/graphopt/) used to display graphs, but temporal self-organizing maps (TSOMs, Ferro et al.,
2011; Chersi et al., 2014; Marzi et al., 2012, 2018) offer a much more fine-grained and principled
way for modeling morphological organization building on principles of error-driven learning.

Deep learning algorithms provide the analyst with powerful modeling tools, but it seems that
current architectures are too powerful (see, e.g., McCurdy et al., 2020) for understanding not
only the strengths but also the weaknesses and the frailties of human lexical memory and lexical
processing. However, linguistic models are in a different way also too powerful on the one hand,
and too underspecified on the other hand. Paradigms are typically constructed to accommodate
any contrast between forms and inflectional functions, even when a contrast is attested only for a
few forms. The result is an overabundance of homophones, which are severely underspecified with
respect to their actual meanings in real language use (such as their semantic roles). Furthermore,
in actual language use, many paradigm cells remain empty (Karlsson, 1986), which in turn has
clear consequences for lexical processing (Loo et al., 2018).

In this study, we have provided an overview of the many choice points that arise in psycho-
computational modeling, each of which requires knowledge of morphology and morphological the-
ory. The implications of our approach to psycho-computational modeling for morphological theory
depends on the specifics of a given (often rival) theory of morphology. Our approach is broadly
consistent with usage-based approaches to morphology (Bybee, 1985, 2010), and with Word and
Paradigm Morphology (Blevins, 2016). It is less clear whether our modeling approach is informative
for theories that are only interested in defining possible words. With this methodological study,
we have shed some light on the many questions and issues that do not arise in formal theories of
morphology, but that have to be addressed in a linguistically informed way when the goal of one’s
theory is to better understand, and predict, in all its complexity, human lexical processing across
comprehension and production.
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