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This study addresses the choice of linking elements in novel Dutch noun—noun com-
pounds. Previous off-line experiments (Krott, Baayen, & Schreuder, 2001) revealed that this
choice can be predicted analogically on the basis of the distribution of linking elements in
the left and right constituent families, i.e., the set of existing compounds that share the left
(or right) constituent with the target compound. The present study replicates the observed
graded analogical effects under time pressure, using an on-line decision task. Furthermore,
the analogical support of the left constituent family predicts response latencies. We present
an implemented interactive activation network model that accounts for the experimental data.
[J 2002 Elsevier Science (USA)

Key Words: analogy; analogical modeling; constituent families; compounds; linking ele-
ments; interfixes; interactive activation model; graded effects.

INTRODUCTION

Dutch noun—noun compounds often contain so-called linking elements or in-
terfixes. Thetwo main ones are -en- and -s- asin schaap+en-+bout, ‘‘leg of mutton,”’
or schaap+s+kaooi, ‘‘sheep fold.”” The linking -en- also occurs as the orthographic
variant -e-. Linguistic descriptions indicate that the occurrence of linking elements
seems to be characterized by tendenciesinstead of clear-cut morphological rules (e.g.,
Van den Toorn, 1982; Mattens, 1984; Haeseryn, Romijn, Geerts, Rooij, & Van den
Toorn, 1997; see adso Plank, 1976). A survey of the CELEX Lexica Database
(Baayen, Piepenbrock, & Gulikers, 1995) reveals that all phonological and morpho-
logical rules that are reported in the linguistic literature apply to only 51% of all
Dutch compounds. Of this subset, they correctly predict only 63%, which amounts
to 32% of al compounds (Krott, Schreuder, & Baayen, in press). Thus, rules do not
provide an adequate account of linking elements. Nevertheless, linking elements are
used productively in novel compounds and, as it has been shown in Krott, Baayen,
and Schreuder (2001), with substantial agreement among native speakers.

Whereas rule-based approaches have resulted in observationally inadequate analy-
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ses, an analogical approach has proved to be fruitful (Krott et al., 2001; in press).
These studies, which used off-line production experiments in which participants had
to choose the linking elements for novel Dutch compounds, report the crucia role
of agraded, probahilistic factor: the distribution of linking elements in what we have
caled the left and right constituent families. The left (or right) constituent family is
the set of existing compounds that share a left (or right) constituent with the novel
compound. We confirmed the predictive power of the constituent families by simulat-
ing the choice of linking elements by means of the analogical models AML (Skousen,
1989) and TiMBL (Daelemans, Zavrel, Van der Sloot, & Van den Bosch, 2000). In
the case of the novel compounds used in our experiments, these models’ choices
were comparable to those of an average participant. In the case of existing com-
pounds, these models correctly predict 92% of the linking elements in all Dutch
compounds in CELEX, which is remarkable considering the mere 32% that can be
accounted for by rules.

In this article we focus on three main questions. First, do the left and right constit-
uent families affect the choice of the linking element in Dutch novel noun—noun
compounds when the choice has to be made under time pressure? Second, do constit-
uent families also affect the speed of the selection process? Third, can we formalize
the processes that underlie the choice and the response latencies in terms of an imple-
mented computational model?

In what follows, we first present an on-line production experiment in which re-
sponses have to be given under time pressure. The results show that the constituent
families indeed also affect the choice of linking elements under time pressure. There
is also an effect of the left constituent family on the reaction latencies. We will give
an interpretation of these findings in terms of a two-stage cognitive process.

In the second part of the article, we present an interactive activation model that
implements the morphological analogical processes. A simulation study of the experi-
mental results shows that our model can account for the effect of the constituent
families on the choices as well as the response latencies.

ON-LINE PRODUCTION EXPERIMENT

In order to cometo gripswith theinfluence of the constituent families on the choices
of linking elements under time pressure, we focus on the linking element -en-.

Method

Materials. The materials were identica to those used in Experiment 1 reported in Krott et al. (2001),
i.e., three sets of left constituents (L1, L2, and L3) and three sets of right constituents (R1, R2, and R3).
The constituents of L1 and R1 had constituent families with as strong a bias as possible toward the linking
element -en-. Conversely, L3 and R3 showed a bias as strong as possible against -en-. The sets L2 and
R2, the neutral sets, contained nouns with families without a clear preference for or against -en-.

Asin the previous experiment, each of the three sets of |eft constituents (L1, L2, and L 3) was combined
with the three sets of right constituents (R1, R2, and R3) to form pairs of constituents for new compounds
in a factorial design with two factors: Bias in the Left Position (Positive, Neutral, and Negative) and
Biasin the Right Position (Positive, Neutral, and Negative). The items were presented to each participant
in a separate random order.

Procedure.  The participants performed an on-line cloze task. The experimental items were presented
on a computer screen as pairs of two compound constituents separated by two underscores. We asked
the participants to combine these constituents into new compounds and press as quickly as possible and
according to the chosen linking element a button labeled either *“‘E/EN’" or labeled **S/-."" Participants
were asked to give a sign when the pressed button was not intended. We kept a protocol of these er-
rors. All participants pressed the E/EN button with their dominant hand. Each stimulus was preceded
by afixation mark in the middie of the screen presented for 500 ms. After another 50 ms, the stimulus
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appeared in the same position and remained on the screen for 2000 ms. The maximum time span allowed
for the response was 2500 ms from stimulus onset. Stimuli were presented on Nec Multicolor monitors
in white lowercase 21-point Helvetica letters on a dark background. The experiment lasted approxi-
mately 15 min.

Occasionally, the first constituent may change its form when it is combined with a linking element
[e.g., schip (*‘ship’”) appears as scheep in the compound scheepswerf (*“shipyard'’)]. The instructions
made clear that these changes were not of interest and could be ignored.

Participants. Twenty participants, undergraduates at Nijmegen University, were paid to participate
in the experiment. All were native speakers of Dutch.

Results and Discussion

We distinguished two different types of errors, time-out errors and self-corrections.
Taking both types of errors together, al participants performed the experiment with
an error rate of maximal 10% and no item showed an error rate of more than 20%.
Therefore, al participants and items were included in further analyses. Table 1 sum-
marizes the percentages of -en- responses versus not -en- responses, the time-out
errors, and the self-corrections for the nine experimental conditions. A by-item logit
analysis (seg, e.g., Rietveld & Van Hout, 1993) of the valid responses showed a main
effect of both Bias in the Left Position [F(2, 180) = 156.6, p < .001] and Bias in
the Right Position [F(2, 180) = 8.2, p < .001] and no interaction between these
factors [F(4, 180) = .4, p = .829]. Thus, the linking elements chosen by the partici-
pants follow both the Right and the Left Bias. This is illustrated in the two upper
left panels of Fig. 1 for both the -en- and the not -en- responses. With this result we
have replicated the findings obtained with the off-line cloze task used in Krott et al.
(2001). We conclude that the choice of the linking element for a novel compound
is based on analogy even under time pressure. Apparently, the members of the constit-
uent families become available quite fast.

Note that participants responded slightly more often with -en- than expected on

TABLE 1
Mean Percentages of Selected Linking Elements and Errors
with Varying Left and Right Bias for -en-

Right position

Left position Positive Neutral Negative
Positive
en 90.0 (2.2) 92.4 (1.6) 82.1 (2.8)
not en 8.8 (2.1) 6.7 (15) 16.4 (2.6)
self-corr 1.0 14 14
time-out 12 1.0 14
Neutral
en 68.1 (4.3) 75.5 (3.0) 57.9 (4.8)
not en 30.0 (4.1 22.1 (2.9 39.8 (5.1)
self-corr 12 0.7 14
time-out 19 2.4 24
Negative
en 17.1 (35) 18.1 (3.3) 12.4 (2.9)
not en 81.7 (3.5) 795 (3.5) 86.4 (3.1)
self-corr 19 1.9 3.1
time-out 12 24 12

Note. Left and Right Bias split up into the experimental conditions (Posi-
tive, Neutral, and Negative). en: -en- responses; not en: not -en- responses,
self-corr: self-corrections; time-out: time-out errors. Standard deviations by
items in parentheses.
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FIG. 1. Interaction plots for the observed and expected counts and response latencies of the linking
element -en- and the other two linking elements -s- and -O- (= not -en-) with the left constituent bias
on the horizontal axis and the right constituent bias indicated by line type (solid line: negative bias;
dashed line: neutral bias; dotted line: positive bias).

the basis of the Bias. Overall, more than haf of the choices were -en- responses
(1981 of 3671, or 54%), leaving 46% for the other two linking elements. Even though
the experiment was designed to elicit an equal number of responses for both push
buttons, the E/EN button response represents two linking elements instead of one.
Over the course of the experiment, participants may have become sensitive to -en-
as being the most likely response. A similar response bias for -en- was present in
the off-line cloze task reported by Krott et a. (2001). An additional factor in the
present on-line experiment may be that participants pressed the -en- push button
always with their dominant hand.

A by-item logit analysis of the time-out errors revealed no effect, not of the Bias
in the Left Position [F(2, 4) = 3.7, p = .124] nor of the Bias in the Right Position
[F(2, 4) = .8, p = .515].

A by-item logit analysis of the self-corrections, on the other hand, revealed areli-
able effect of the Bias in the Left Position [F(2, 4) = 11.2, p = .023], but no effect
of the Bias in the Right Position [F(2, 4) = 3.7, p = .123]. Participants correct their
choices more often if the left constituent has a bias against -en- than if it has a bias
for -en-. This result becomes even more interesting when we take the direction of
the self-correction into account, i.e., corrections from -en- to not -en- or vice versa.
Self-corrections occur almost exclusively when a participant has responded against
the bias. A by-itemlogit analysis of the self-corrections from -en- to not -en- revealed
areliable effect of the Biasin the Left Position [F(2, 4) = 14.2, p = .015], but again
no effect of the Bias in the Right Position [F(2, 4) = 3.2, p = .150]. A stepwise by-
item logit analysis of the self-corrections from not -en- to -en- also revealed areliable
effect of the Bias in the Left Position only [F(2, 6) = 5.8, p = .039].
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TABLE 2
Mean Response Latencies for Varying Left
and Right Bias for -en-

Right position

Left position Positive Neutral Negative
Positive
RT en 1209 (130) 1188 (122) 1248 (129)
RT not en 1419 (611) 1509 (799) 1512 (310)
Neutral
RT en 1267 (124) 1286 (145) 1299 (149)
RT not en 1422 (458) 1371 (179) 1354 (152)
Negative
RT en 1382 (592) 1408 (491) 1429 (672)
RT not en 1322 (176) 1291 (177) 1260 (159)

Note. Left and Right Bias split up into the experimental conditions (Posi-
tive, Neutral, and Negative). Standard deviations by items are in parentheses.

Table 2 shows the mean response latencies (calculated for the valid responses) for
the nine experimental conditions. An analysis of variance of the -en- and not -en-
responses revealed a main effect of the Bias in the Left Position [-en- responses:
F1(2, 180) = 15.2, p < .001; F2(2, 180) = 16.3, p < .001; not -en- responses. F1(2,
180) = 10.7, p < .001; F2(2, 180) = 10.8, p < .001], but no effect of the Biasin
the Right Position [-en- responses. F1(2, 180) = .7, p = .519; F2(2, 180) = .8,
p = .462; not -en- responses. F1(2, 180) = 1.5, p = .237; F2(2, 180) = .9, p =
.915]. Apparently, the Right Bias does have influence on the choice of the linking
element, but not on the response latency. The upper two right panels of Fig. 1 show
the effect of the Left Bias on the reaction latencies for both -en- and not -en- re-
sponses. Participants react faster when the response follows the bias than when the
response conflicts with the bias.

We also tested whether the Left and Right Bias of the preceding experimental trial
and the choice made for that trial had an influence on the choice, in addition to the
effects of the Left and Right Bias. A logit analysis that included the preceding L eft
and Right Bias and the preceding choice aong with the Left and Right Bias them-
selvesrevealed a significant effect only for the Left and Right Bias, both with respect
to the choices and with respect to the response latencies.

Summing up, we replicated the finding that linking elements in novel Dutch com-
pounds are chosen on the basis of analogy. As in Krott et al. (2001), both the bias
of the left constituent family and the right constituent family show a main effect on
the choice. The left constituent family also plays acrucial role for the response laten-
cies. Responsesthat follow the bias require less processing time. The right constituent
family, however, which has been shown to have aweaker effect on the choices, does
not predict the response latencies.

What kind of cognitive processes might account for these findings? In order to
explain the absence of an effect on the reaction times of the right constituent family,
we propose to distinguish between an early selection process and a series of pro-
cessing stages during which activation accumulates up to response initiation. In the
early selection process, a linking element is chosen based on maximum likelihood,
i.e., on the distribution of linking elements in both the left and right constituent fami-
lies. Along the lines of the interactive activation model that has been outlined in
Krott et a. (2001), we hypothesize that the lemma representations of the constituents
of the novel compound activate the corresponding left and right constituent families.
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The compounds in these families then activate the linking elements they contain.
Sincethe left constituent family has a stronger effect than the right constituent family,
we assume that the members of the left constituent family areinitially higher activated
than the members of the right constituent family. The higher activation of the left
constituent family implies that the linking elements receive more activation from
members of theleft constituent family. After theinitial activation of linking elements,
the activation flows back and forth between the linking elements and the constituent
families. The activation accumulates until the selected linking element has become
sufficiently activated to reach an awareness threshold, which initiates the response.
We hypothesize that the alternating activation flow between the constituent families
and the linking elements leads to an exponentia increase of the activation of the
already more highly activated members of the left constituent family and a compara-
bly slow increase of activation of the member of the right constituent family. This
results in response latencies that appear to be based solely on the bias in the left
constituent family, with the relatively weak contribution of the right constituent fam-
ily being masked.

AN INTERACTIVE ACTIVATION MODEL
Introduction

In previous studies, we used AML (Skousen, 1989) and TiMBL (Daelemanset al.,
2000) as analogical toolsto model the choice of linking elementsin novel compounds
(Krott et a., 2001, in press). The selection of a linking element can be understood
as a classification problem, and both these models are very much suited to this task.
However, they arerestricted in that they are not designed to model response latencies.
We therefore decided to develop a symbolic activation model that incorporates, in
part, aspects of TIMBL.

Figure 2 illustrates the connectivity structure for a simple lexicon with 10 com-
pounds for the situation in which the novel compound schaap-?-o0og (*‘ sheep’seye’’)
has been conceptualized, with schaap in the modifier position (LerT) and oog in the
head position (RiGHT). As outlined in the previous section, initially, activation flows
from the lemma representation of schaap to the word forms (the lexemes according
to Levelt, 1989) with which it is connected and modified by the (identical) weights
w; (model parameter: |G-weight left constituent, yv;). Similarly, activation flows from
the lemma representation of oog to the word forms of the compounds in which oog
is the head and modified by the (identical) weights w, (model parameter: |G-weight
right constituent, y;). The weight w; is larger than the weight w,, in accordance with
the empirical finding that the left constituent family has greater analogical force than
the right constituent family. Only members of the two constituent families are acti-
vated. Therefore, compounds such as the members of the left constituent family of
lam (see Fig. 2) are not activated. From the activated word forms, activation flows
further to the linking elements. The word forms with the linking element -en- support
the linking element -en-; similarly, the word forms with the linking elements -s- and
-0- support the linking elements -s- and 0, respectively. The linking element that
receives the highest activation from the word forms is the linking element that is
most likely to be selected. Following selection, activation flows back from the linking
elements to the word forms and from the word forms to the lemma representations.
The forward activation flow from the lemmas to the linking elements and the back-
ward activation flow from the linking elements to the lemmas jointly constitute one
resonance cycle. Generally, a series of resonance cycles, the time steps of the model,
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LEMMAS WORDFORMS LINKING ELEMENTS
wl] schaap+en+bout (leg of mutton)
wl
LEPFT schaap+heerder (shepherd)
- en -
SHEEP wl
schaap+s+kooi (sheep fold)
wl
schaap+en+vlees (mutton)
lam+s+bout (leg of lamb) —o-
lam+s+vliees (lamb)
lam+s+gehakt (minced lamb)
w2 paard+en+oog (horse eye) -s-
RIGHT
w2 .
EYE koei+en+toog (cow’s eye)
w2
varken+s+oog (pig’s eye)

FIG. 2. Connectivity of a simple lexicon: lemmas (left), word form representations [lexemes ac-
cording to Levelt (1989), middle], and linking elements (right).

are required for a selected linking element to become sufficiently activated to reach
the level of awareness required for response execution.

Apart from the weights for the left and right constituents, the model contains some
other parameters. The general decay & determines the activation decay of nodes in
the network. The resonance weight p specifies the strength of the activation reso-
nance, while the activation is only passed on from compounds whose activation ex-
ceeds a similarity threshold 9. The overal bias for -en- that has been observed in
the experiment can be adjusted by changing the parameter 3. The strength of the
biasincreasesif the parameter & has avalue above zero. Furthermore, one can specify
whether the frequency of the compounds should affect the activation increase. A
linking element reaches awareness once its activation reaches a threshold 6. In order
to guarantee that the model terminates, the number of maximal time steps has to be
set. In the following subsection, we explain the model’ s details. The reader may skip
that part without losing the main thread of the argument.

Technical Details

The connectivity structure of the model is defined formally by means of two matri-
ces, C and E. Let C denote the connectivity matrix of n,, word forms and n feature—
value pairs as follows;
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In the present working example (Fig. 2), n, = 10 and n; = 2. The relevant features
are the left and right constituent positions (modifier and head); the values of these
features are the lemma representations of schaap and oog, respectively. Similarly,
let E denote the connectivity matrix of the n, words with the n, exponents (the three
linking elements studied here) as follows:
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These two matrices completely define the connectivity in the model. For the present
example, these two matrices have the following form:
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Note that the connectivity matrix C differsfor each pair of left and right target constit-
uents. For every such pair, we consider only that section of the lexical connectivity
that is relevant for precisely this pair of constituents.

The forward activation flow from the lemmas to the linking elements is codeter-
mined by the weights on the connections between the lemmas and the word forms
aswell as by the frequencies of these word forms. Let v denote the vector of feature
information gain weights according to Daelemans et al. (2000) as follows:

Y1
Y2
Y= E : (6)
Yo
with
Y = wi = H(g) — Hi(e). (7)

To understand this equation, let F; O % denote the ith feature, and let this feature
assumevauesF, j = 1,2, ..., c(F), with ¢(F;) the cardinality of the set of values
that F; can assume. In the present working example, ¢(F,) = 5 as there are five
different left constituents in the lexicon and ¢(f,) = 6. Furthermore, let e O g, i =
1,2,...,c(g), with c(¢) the cardindity of €, denote the ith exponent. In our working
example, we have three exponents, hence c(e) = 3. The entropy of € equals the
following:

=)

)

He) = = > P(e)log:P(e), ®

i=1

with P(e) the relative frequency of the ith linking element among the word forms.
The entropy of € is reduced by introducing knowledge of the value of feature F,.
The weighted entropy of € given knowledge of the value of F; is as follows:

c(Fij)

Hi(e) = > P(F)H(elFy), ©)

j=1

with P(F;) the relative frequency of the jth value of F; among al the values that
feature F; assumes, and with H(e|F;) the entropy calculated over those exponents
that are linked with word forms sharing the j th value of feature F;. Thus, the informa-
tion gain weight of feature i can be understood as the reduction in entropy achieved
by introducing knowledge of the value of feature F,. Note that all connections from
the modifier position share the same weight, the information gain weight of the left
constituent, and that likewise the connections from the head position share the same
information gain weight. All information gain weights are easily estimated on the
basis of the word forms in the lexicon. The model requires no further training.

In addition to the connection weights, the model makes use of a vector ¢ of word
frequency weights as follows:
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© = E . (20

The frequency weight ¢; is a function ¢ of the CELEX frequency f; of word form
w; as follows:

1.0

A = 10+ log(t)

(11)

Inverse frequency weighting favors the analogical contribution of the lower fre-
guency words, the words that most clearly express the regularities in the lexicon (cf.
Baayen & Sproat, 1996). It is in symmetric contrast with the noninverse frequency
effect that arises when word forms directly feed articulation (Jescheniak & Levelt,
1994).

The pattern of activation values of the word forms after the first forward pass of
activation is as follows:

S

S
s=(Cy) e = g (12)

Shu

and is a vector of by-word-form similarity scores. Each similarity score specifies
how much activation a given word form will pass on to the exponent with which it
is connected. By applying athresholding function ®, we obtain the equivaent of the
standard k-NN distance sets, but now defined in terms of similarities instead of dis-
tances as follows:

oS, 9) = {S Ts=9 (13)

0 otherwise,

with 9 representing a similarity threshold. In the present simulation, the value of 9
is set to zero. In other words, we have allowed even distant neighbors to codetermine
the selection of the linking elements. But by choosing an appropriate value for 9,
only those words that are sufficiently similar to the target input affect the activation
of the linking elements.

The activation of the word forms is passed on to the exponents. The vector of
activations of the exponents e after the first forward pass of activation has run its
course equals the following:
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e=E"lk= E (14)

The probability of selecting the ith linking element is as follows:

Pi) = 2. (15)

Ne

=1

When no frequency weighting is used, the resulting probabilities of the linking ele-
ments are identical to those obtained by applying the k-NN nearest neighbor algo-
rithm with information gain weighting as developed in TIMBL.

Maximum likelihood sel ection according to Eq. (15) allows usto model the choices
of the linking elements, but not the time required for executing an actual response.
As the constituent family of the right constituent affected the choice of the linking
elements but not the response latencies, we need a mechanism that introduces noise
in such a way that the strongest factor, the left constituent family, masks the effect
of the weaker factor, the right constituent family. In the present model, thisis accom-
plished by means of resonance in the network. We assume that this resonance leaves
activation traces, either in the connections, or in the activation levels of the word
forms. As the word forms themselves are not the forms to be produced, we prefer to
view the activation traces as accumulating in the connections. However, the following
formal definition is neutral with respect to these interpretations.

We assume that the activation received by the wordforms from the lemmas during
the initial forward pass of activation leaves an activation trace in the network of
connections between the lemma layer and the wordforms, proportiona to what we
call the forward activation matrix F:

F=(1+9 OC. (16)

Following maximum likelihood selection of alinking element, activation flows back
from the exponents to the lemmalayer, again increasing the activation in this network
of connections, thistime proportional to what we call the backward activation matrix
B, indexed here for the initial time step t = 1 as follows:

B, = (E Oe) OIC. (17)

Let A, denote the activation pattern at timestept,t =0, 1, 2, ..., with A, = C.
For t = 1, the first resonance cycle, we define the following:

A; = 0(A, + p(F + By)), (18)

with & a general activation decay and p a resonance weight, a parameter allowing
us to specify the granularity of the resonance. The state of the model at an arbitrary
time step t is, in summary form:
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s = (A y) Oe

el =e1+E [k

B, = (E &) OC

A, = 8A., + p(F + BY)

O(Aca + p(([1 + s + [E Cet]) OC))

e =¢€ +b. (19)

The last line specifies that the activation of the linking elements is modified by the
vector b. This vector allows us to implement the observed response bias for the -en-
linking element as follows:

€en BE!
e=|e|[+]0 | (20)
e, 0

with 3 > 0 and £ = 1. Note that this bias for -en- increases during the resonance
cycleswhen & > 1. In other words, we assume that the response bias is atask factor
that is itself external to the connectivity in the lexica network.

A selected linking element reaches awareness once its activation has reached a
present threshold value 6. The time step at which this threshold is reached is taken
to represent the model’ s response latency. Model times exceeding a preset time limit
are not taken into account, just as response latencies exceeding the time-out limit
are not taken into account.

Smulation Results

A reasonable fit of this model to the present experimental data was obtained with
the following parameter values. |G-weight left constituent: v, = 1.12; 1G-weight right
constituent: y, = 0.10; general decay: & = 0.97; resonance weight: p = 0.05; activa-
tion threshold: 8 = 100.0; and -en- bias parameters. 3 = 2.5and & = 1.2, with time-
out after 25 time steps, with frequency weighting and no similarity threshold (8 =
0). Figure 1 presents a visual summary of the goodness of fit, and Table 3 shows

TABLE 3
Goodness-of-Fit Statistics: A Logit Analysis of the Observed and Expected Counts and
Analyses of Variance for the Reaction Times Corresponding to the -en- and the not -en-
Responses

Observed Expected
Logit analysis of counts
Left Bias F(2, 180) = 156.6 p < .001 F(2, 180) = 902.99 p < .001
Right Bias F(2,180) = 82 p < .001 F(2,180) = 1211 p < .001
Interaction F(4,180) = 0.37 p = .829 F(2,180) = 276 p = .029
Analysis of variance of log RT for -en-
Left Bias F(2,169) = 16.3 p < .001 F(2, 180) = 177.89 p < .001
Right Bias F(2,169) = 08 p = .462 F(2,180) = 0.68 p = .510
Interaction F(4,169) = 01 p = .969 F(2,180) = 019 p = .943
Analysis of variance of log RT for not -en-
Left Bias F(2, 166) = 10.8 p < .001 F(2, 147) = 165.14 p < .001
Right Bias F(2,166) = 09 p = .915 F(2,147) = 0.02 p = .978
Interaction F(4,166) = 04 p = 437 F(2,147) = 090 p = .468
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that the same main effects that can be observed for the experimental data also emerge
in the simulation. The same holdsfor theinteraction term for left and right constituent
bias, except for the logit analysis of the observed and expected counts. The model
suggests a minor interaction that does not receive clear support from the empirical
data. However, given that the model has no sources of variation other than those
provided by the constituent families, this smal interaction, that qualitatively is of
the same kind as the nonreliable interaction visible in the empirical results, is not a
source of serious concern. We conclude that our morphological resonance model
provides a reasonable first approximation of the role of analogical cognition in the
production of Dutch houn—noun compounds.

GENERAL DISCUSSION

In this study we addressed three related questions. First, does the distribution of
linking elements in the right and left constituent families predict the choice of the
linking elements in novel compounds not only in an off-line cloze task but also in
a speeded decision task? Second, does this distribution also predict the speed with
which these decisions are made? Third, isit possible to model the processesinvolved
in the on-line experiment in a psycholinguistically plausible way?

The on-line experiment that we presented in this study showed that indeed the
effect of the left and right constituent families on the choice of linking elements in
Dutch noun—noun compounds aso occurs under time pressure. This effect is not
restricted to the choices made by the participants—it also emerges in their response
latencies. We observed an asymmetry between the choice pattern and the reaction
time pattern, however. Both the left and the right constituent families play arole in
the choices, while for the response latenciesit is only the left constituent family that
is a predictor.

We interpreted these results in terms of a two-stage cognitive process. In the first
stage, a linking element is selected on the basis of a maximum likelihood selection
following initial activation spreading from the left and right constituent families to
the linking elements. In the second stage, the activation of the selected linking ele-
ment increases until it reaches an awareness threshold, after which the selected re-
sponse can be initiated. We assume that in this process the relatively weak effect of
the right constituent is masked by the additional variability of this second processing
stage.

We have made this explanation more explicit by means of a computational sim-
ulation model. In this model, the first processing stage is captured by a spreading
activation mechanism that is mathematically equivalent to a k-NN nearest neighbor
classifier as used in computerized approaches to natural language processing (e.g.,
Daelemans et a., 2000). The second processing stage is captured by allowing activa-
tion to resonate in the lexical network.

A simulation study of the results of our experiment showed that our model can
account for the analogical effects on both the choices and the response latencies. An
advantage of the present psycholinguistic model compared to linguistic models of
analogy such as AML and TiMBL is that it captures, within a spreading activation
framework, the patterns in the data not only with respect to the choices, but also with
respect to the reaction times.

The results that we have obtained are difficult to account for within a traditional
approach based on symbolic rules. As mentioned in the introduction, the rules that
have been formulated for the linking elements in Dutch have insufficient predictive
power (Krott et al., in press). Given the syntagmatic nature of rules, this lack of
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predictive power isnot so surprising. By definition, symbolic rules do not have access
to constituent families. They may be sensitive to particular properties of left and right
congtituents, for instance, to whether the first constituent ends in a vowel. In order
to capture generalizations, rules can only be sensitive to properties of words and not
to specific words.

Interestingly, the phenomenon that we have studied here is not syntactic in nature,
but paradigmatic. The left and right constituent families both constitute positional
paradigms. In fact, each such paradigm constitutes its own domain of markedness.
A positive hias for -en- as linking element indicates that this linking element is the
locally unmarked form.

The notion of local markedness as introduced by Tiersma (1982) concerns the fact
that some marked forms may behave as unmarked forms. For instance, noun plurals
denoting objects that naturally occur in pairs or groups (e.g., ‘‘eyes’ and ‘‘sheep’’)
may serve as attractors in language change, a role that is normally reserved for the
unmarked singular forms of words such as ‘‘nose”” and ‘‘nightingale.”” Not surpris-
ingly, locally unmarked plurals are much more frequent than their corresponding
singulars than marked plurals, which tend to be less frequent than their singulars.
They are also conceptually more central than their singulars. Although linking ele-
ments lack this conceptual aspect, they share the property of being locally unmarked
with plural forms such as ‘‘eyes.”’ Just as ‘‘eyes’ occurs, for the domain of the
lemma evE, more often than the singular *‘eye,”’ alocally unmarked linking element
with alarge positive biasin the relevant constituent family occurs more often than the
other linking possibilities. For the local domains of constituent families, the formally
unmarked linking element -0-, which also occurs in the majority (69%) of Dutch
compounds, may be rare and, if so, locally marked. Furthermore, markedness and
the constituent family bias have in common that they are both graded in nature.

Finally, markedness theory claims that unmarked forms are easier to process than
marked forms (Dressler, Mayerthaer, Panagl, & Wurzel, 1987). Given that the left
constituent families constitute independent markedness domains, the shorter response
latencies of the locally unmarked linking elements, the dominant linking elements
in their own local markedness domains, are exactly as expected. From a methodol ogi-
cal point of view, it is interesting to find that classic structuralist notions such as
markedness and paradigmatics can help to understand a graded analogical phenome-
non such as the redlization of linking elements in Dutch noun—noun compounds.
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