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Tübingen, Germany

Email: yuxin.lu@uni-tuebingen.de
2 Department of Taiwan Culture, Languages and Literature,

National Taiwan Normal University, Taipei, Taiwan
Email: yuying.chuang@ntnu.edu.tw

3 Quantitative Linguistics, Eberhard Karls Universität Tübingen,
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Tonal realization in disyllabic words in spoken Taiwan Mandarin

Abstract

A growing body of literature has demonstrated that semantics can co-determine fine
phonetic detail. However, the complex interplay between phonetic realization and se-
mantics remains understudied, particularly in pitch realization. The current study in-
vestigates the tonal realization of Mandarin disyllabic words with all 20 possible com-
binations of two tones, as found in a corpus of Taiwan Mandarin spontaneous speech.
We made use of Generalized Additive Mixed Models (GAMs) to model f0 contours as
a function of a series of predictors, including gender, tonal context, tone pattern, speech
rate, word position, bigram probability, speaker and word. In the GAM analysis, word
and sense emerged as crucial predictors of f0 contours, with effect sizes that exceed
those of tone pattern. For each word token in our dataset, we then obtained a contex-
tualized embedding by applying the GPT-2 large language model to the context of that
token in the corpus. We show that the pitch contours of word tokens can be predicted to
a considerable extent from these contextualized embeddings, which approximate token-
specific meanings in contexts of use. The results of our corpus study show that meaning
in context and phonetic realization are far more entangled than standard linguistic the-
ory predicts.

Keywords: contextualized embeddings; Discriminative Lexicon Model (DLM); Generalized Ad-
ditive Models (GAMs); Mandarin tones; spontaneous speech; word-specific tonal realization
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1 Introduction
Mandarin Chinese is a tone language with four lexical tones: a high level tone (T1), a rising tone
(T2), a low falling-rising tone known as a dipping tone (T3), and a falling tone (T4). Mandarin
Chinese also has a so-called neutral or floating tone (T0), which is often described as unstressed,
weaker in intensity, and shorter in duration (Chao, 1968). The present study reports the results of an
investigation of the realization of the Mandarin tones in a corpus of Taiwan Mandarin spontanenous
speech. We first present our corpus based findings, and then present a theory-driven explanation of
our findings using the Discriminative Lexicon Model (Baayen et al., 2019; Heitmeier et al., 2025).

The corpus that we made use of was compiled by Fon (2004), originally with the aim of clarifying
the influence of Southern Min on Mandarin Chinese as spoken in Taiwan. In what follows, we refer
to this corpus as the Corpus of Spontaneous Taiwan Mandarin. The focus of our study is on the
realization in this corpus of the tones in words consisting of two syllables. The tonal realization of
disyllabic words has been studied before in laboratory speech. Xu (1997) examined the pitch contours
of the 16 combinations of the 4 standard tones realized on the two-syllables /ma-ma/, embedded in
carrier sentences, and produced by male speakers of Beijing Mandarin. Factors that are known to
co-determine the realization of tones, such as speaking rate and the tones on adjacent words, were
carefully controlled for. This study showed that in laboratory speech, the tones of the single-syllable
constituents are often somewhat different. For instance, a rising tone followed by a falling tone
(T2-T4) was observed to be realized as a fall, followed by a rise, and concluded with a fall.

To our knowledge, there currently are no studies that address the tonal realizations of all tonal
combination for disyllabic words in spontaneous conversation. It is well-known that spontaneous
speech can differ markedly from formal speech. Given that in spontaneous speech, words are of-
ten realized with various reduced forms (see, e.g., Ernestus, 2000; Johnson, 2004; Chung, 2006, for
Dutch, English, and Mandarin Chinese, respectively), it is an open question to what extent the canon-
ical four tones of Mandarin are preserved in spontaneous speech. This is one reason why we carried
out a detailed investigation of the realization of tone in disyllabic words as found in the Corpus of
Spontaneous Taiwan Mandarin. Importantly, we considered not only the 16 combinations of tones
studied by Xu (1997), but also the 4 combinations of a standard tone followed by a neutral tone
(T1-T0, T2-T0, T3-T0, and T4-T0).

The second reason we carried out this corpus survey is that previous corpus-based research pro-
vides strong evidence for the realization of words’ tones, as represented by their f0 (pitch) contours,
is only in part determined by the canonical tones of the constituent syllables, and that, surprisingly,
words’ meanings play a much more important role (Chuang et al., 2023, 2024; Lu et al., 2024; Jin
et al., 2024) in shaping how the tones are actually realized. In section 2 we provide further details
on these findings, and also point to several other studies indicating that meaning and phonetic form
are far more entangled than is generally assumed. Here, we note that if indeed fine semantic detail is
reflected in fine phonetic detail, this challenges influential axioms of linguistic theory, such as the ar-
bitrariness of the linguistic sign (De Saussure, 1966) and the dual articulation of language (Martinet,
1965).

A recent theory of the lexicon and lexical processing that rejects these axioms is the Discrim-
inative Lexicon Model (Baayen et al., 2019; Heitmeier et al., 2025). This model represents both
words’ forms and their meanings as high-dimensional numeric vectors, and posits functions that map
form vectors onto meaning vectors for comprehension, and meaning vectors onto form vectors (pro-
duction). In the present study, we zoom in on only a small part of the production process, and ask
whether it is possible to start out with a word’s meaning vector (using context-specific embeddings
from distributional semantics and Large Language Models) and to predict that word’s pitch contour
using a general mapping from semantic vectors to pitch contours. In section 4, we show that this is
indeed possible with an accuracy that is surprisingly far above chance level. We will also show that
the canonical tone pattern of a two-syllable word can be predicted from the centroid of the embed-
dings of the words sharing that canonical tone pattern. Our results raise many questions, for which,
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as will become clear in the general discussion, we only have tentative answers.
The remainder of this paper is structured as follows. Section 2 introduces the many factors

that co-determine how tones are realized, and also provides an overview of previous research on
isomorphies between semantics and phonetic realization. Section 3 introduces the corpus that we
investigated, and provides details on data pre-processing and the statistical method that we used to
analyze the corpus data. Section 3.4 reports our results: across all 20 tone patterns, words’ meanings
provide a surprisingly good window on their pitch contours. Section 4 presents our theory-driven
computational modeling study, showing that token-specific pitch contours can be predicted from
token-specific embeddings calculated based on their discourse context. Finally, Section 5 presents
our thoughts on the implications of our findings.

2 Semantics and phonetic realization

2.1 Spoken duration and articulation
Evidence is accumulating that subtle differences in meaning can be reflected in the fine phonetic
details of how words are actually realized in corpora of natural speech, including aspects such as
spoken word (Gahl and Baayen, 2024) duration, segment duration (Plag et al., 2017), and tongue
position (Saito, 2024).

Heterographic homophones are words with the same pronunciation but different spellings and
meanings, such as time and thyme. For a long time, homophones were thought to sound identical (see,
e.g., Jescheniak and Levelt, 1994). However, Gahl (2008), using the Switchboard corpus (Godfrey
et al., 1992) reported that heterographic homophones such as time and thyme have different acoustic
durations, with more frequent homophones (time) being pronounced with shorter durations than their
less frequent homophonic counterparts (thyme). Lohmann (2018) similarly observed that the duration
of words such as cut depends on whether they are used as nouns or verbs. Both studies explain these
effects in terms of how frequency of use affects lexical access in speech production. However, Gahl
and Baayen (2024) reported that computational modeling with the Discriminative Lexicon Model
provided strong evidence that the meanings of English homophones (represented by embeddings)
are strong co-determinants of their spoken word duration, even when word frequency is controlled
for. They argued that a powerful predictor of a homophone’s spoken word duration is the degree
of support it receives from the semantics, such that greater semantic support predicts longer spoken
word duration.

In addition to durational differences at the word level, durational differences have also been ob-
served at the phonemic level in corpus studies, particularly for the realization of word-final /s/ or
/z/ (henceforth referred to as S) in English. In the Buckeye corpus (Pitt et al., 2005), word-final S
has been found to vary in duration depending on its morphological function: non-morphemic S is
pronounced longer than plural S, which, in turn, is pronounced longer than clitic S (Plag et al., 2017;
Tomaschek et al., 2021; Zimmermann et al., 2016). Furthermore, Plag et al. (2020) found that gen-
itive plural S showed significantly longer durations than plural S. Schmitz (2022) utilized a pseudo-
word paradigm to demonstrate that the morphological category of word-final S (non-morphemic >
plural > clitics) influences its phonetic realization.

The relationship between semantics and phonetic realization has also been demonstrated beyond
durational differences. Drager (2011) found that the pronunciation of the English word like varies ac-
cording to its discourse or grammatical meanings, not only in the duration of the consonants but also
in the degree of diphthongization of the vowel. Furthermore, in line with Gahl and Baayen (2024),
Saito (2024) and Saito et al. (2024) reported for the KEC corpus of German spontaneous speech
(Arnold and Tomaschek, 2016), which also registers tongue movements using electromagnetic ar-
ticulography, greater semantic support leads to a lower position of the tongue tip for the vowel /a/,
indicating hyperarticulation.
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2.2 Tone in Mandarin Chinese
The preceding section reviewed recent evidence that semantics and phonetic realization are entangled
to a greater extent than has often been assumed. In this section, we zoom in on how word meaning
affects the realization of tone. To do so, we first need to provide some further background on the
factors that have already been reported to co-determine the realization of tone.

It is well known that the way in which tones are realized in connected speech differs from their
canonical realization. How tones are realized has been described as depending on the properties of
the segments in the syllable that carries a given tone (Ho, 1976b; Ohala and Eukel, 1976; Xu and
Xu, 2003). Tonal variation in connected speech has also been reported to be shaped by the tones of
adjacent words (tonal coarticulation Xu, 1997), by speaking rate (Xu and Sun, 2002), by sentence
intonation (Ho, 1976b; Wu et al., 2020) and by a speaker’s individual speaking style (Stanford, 2016).

At the socio-geographic level, cross-dialectal research has reported that different varieties of
Mandarin exhibit varying tone inventories (Chang, 2010; Zhao, 2023). For the present study, we note
that in Standard Mandarin, the realization of a neutral tone following a given lexical tone has been
reported to be largely determined by this preceding tone. Furthermore, the f0 contour of a neutral
tone has been claimed to approach a low pitch target by the end of the carrying syllable (Xu, 2024).
However, in Taiwan Mandarin, the behavior of the the neutral tone has been reported to be different.
It can either be indistinguishable from one of the four canonical lexical tones, or it can be realized as
a static mid-low pitch target (Huang, 2018).

From the above overview, it will be clear that the realization of tone is co-determined by a mul-
titude of different factors. A newcomer in this arena is word meaning. Chuang et al. (2024) studied
the pitch contours of di-syllabic words with an initial rising tone followed by a falling tone (hence-
forth the T2-T4 tone pattern). This study used a generalized additive model (GAM Wood, 2017) to
decompose an observed pitch contour into separate pitch contours, capturing the effects over time
of predictors such as speech rate, neighboring tones, and segmental properties. What Chuang et al.
(2024) report is that the GAMs provide strong support for word-specific pitch contour components,
while controlling for other variables such as segments, gender, speaker, speech rate, and the tones
of adjacent words. They also show that the statistical evidence is even stronger for sense-specific
pitch contours, which suggests that these effects are semantic in nature. The importance of words’
meanings has been replicated for Mandarin disyllabic words with T2-T3 and T3-T3 tone pattern by
Lu et al. (2024), and for monosyllabic Mandarin words by Jin et al. (2024). For di-syllabic words
with T2-T3 and T3-T3 tone pattern, the variable importance of words’ meanings was on a par of that
of tonal context (tone sandhi), the other most important predictor of words’ pitch contours.

To illustrate the challenges that an analysis of tones in natural speech has to face, consider Fig-
ure 1, which displays the f0 contours of a selection of tokens of word types with a falling tone fol-
lowed by a rising tone (the T4-T2 tone pattern) in the Corpus of Spontaneous Taiwan Mandarin (Fon,
2004). In the left panel, the pitch contours of six tokens from different word types are presented. All
words have the same canonical tone pattern: T4-T2. Token XMC GY 4119 不能 (bu4neng2, ‘can-
not’) (indicated by light blue) shows an initial sharp f0 rise, followed by a fall, and then a shallow
rise. Token XMC GY 8107 問題 (wen4ti2, ‘problem’) (indicated by purple) has a much lower initial
f0 than the other tokens. The initial f0 of token XMC GY 1025 後來 (hou4lai2, ‘later’) (indicated
by red) is unavailable due to the unvoiced initial /h/. In the right panel of Figure 1, we present four
tokens of the same word type幸福 (xing4fu2, ‘happiness’). One of its tokens is also presented in the
left panel (indicated by yellow). The four tokens of幸福 also exhibit considerable variability in their
f0 contours.

In what follows, we take on the challenge of modeling the realization of tone, taking into account
the many factors reported to co-determine pitch contours, such as gender, speaker, neighboring tones,
speech rate, word position, and bigram probability. Following up on earlier work (Chuang et al.,
2024; Jin et al., 2024; Lu et al., 2024), the ‘pitch signatures’ of individual words are of primary
interest. Two hypotheses guide our research.
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(a) (b)

Figure 1: A selection of tokens in spoken Taiwan Mandarin. Left panel: six tokens rep-
resenting six different word types, all sharing the tone pattern T4-T2 (a falling tone fol-
lowed by a rising tone). The tokens are 後來 (hou4lai2, ‘later’), 幸福 (xing4fu2, ‘happi-
ness’),去年 (qu4nian2,‘last year’),不能 (bu4neng2,‘cannot’),自然 (zi4ran2,‘nature’),問
題 (wen4ti2,‘problem’). Right panel: four tokens representing the word type幸福 (xing4fu2,
‘happiness’). All f0 contours shown here are produced by the same speaker.

1. The meanings of words co-determine the phonetic details of how the tones of these words are
produced.

2. The pitch contours of word tokens as found in spontaneous Mandarin conversations can be pre-
dicted from token-specific meaning vectors with above-chance accuracy using computational
modeling.

In the next section, we describe the data that we collected from the Corpus of Spontaneous Taiwan
Mandarin, and present our statistical analyses. Section 4 complements this exploratory part of our
study with theory-driven computational modeling.

3 Data collection and statistical analysis

3.1 The corpus
The data used in the present study come from the Taiwan Mandarin Spontaneous Conversation Cor-
pus (Fon, 2004). This corpus contains 30 hours of speech from 55 native speakers of Taiwan Man-
darin, with 31 females and 24 males (aged between 20 and 60 years old). In unstructured interviews,
participants were encouraged to speak freely, instead of being guided by a standardized set of ques-
tions. As a result, this corpus consists of naturally occurring speech with a diverse and varied set of
words across speakers.

The corpus was transcribed in traditional Chinese characters at the word level. The speech data
were segmented at both the syllable and word levels. Forced alignment was first performed, and
the results were later manually reviewed by native Taiwan Mandarin speakers with a background
in phonetics. In the current study, we followed the transcriptions and segmentation provided in the
corpus.
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3.2 Data selection
Disyllabic words with the 20 tone patterns were extracted for analysis (see column 1 in Table A.1).
The original dataset comprises 93,701 tokens, representing 7,526 unique word types. Table A.1
presents the counts of tokens and word types associated with each tone pattern. Among these, the
T4-T4 pattern is the most frequent in disyllabic words, both token-wise and type-wise. The four
tone patterns featuring a neutral tone in the second syllable (T1-T0, T2-T0, T3-T0, and T4-T0) are
represented by the lowest numbers of types. There are also relatively few words with T3 (see Wu
et al., 2021, for similar observations for journalistic speech).

Table 1: Number of tokens and words grouped by tone pattern in the conversational Taiwan
Mandarin corpus.

Tone pattern Tokens Word types Examples
1 T1-T1 3501 459 應該 (ying1gai1, ‘should’)
2 T1-T2 3725 458 當然 (dang1ran2, ‘of course’)
3 T1-T3 2313 333 根本 (gen1ben3, ‘at all’)
4 T1-T4 7524 706 接觸 (jie1chu4, ‘to touch’)
5 T1-T0 3034 83 他們 (ta1men0, ‘they’)
6 T2-T1 2763 286 其他 (qi2ta1, ‘others’)
7 T2-T2 3043 369 同學 (tong2xue2, ‘classmate’)
8 T2-T3 4539 249 結果 (jie2guo3, ‘result’)
9 T2-T4 9237 687 學校 (xue2xiao4, ‘school’)

10 T2-T0 7010 64 什麼 (shen2me0, ‘what’)
11 T3-T1 2655 252 老師 (lao3shi1, ‘teacher’)
12 T3-T2 3465 289 感覺 (gan3jue2, ‘feeling’)
13 T3-T3 3896 276 了解 (liao3jie3, ‘to know’)
14 T3-T4 7256 595 可是 (ke3shi4, ‘but’)
15 T3-T0 3295 50 我們 (wo3men0, ‘we’)
16 T4-T1 3007 400 那些 (na4xie1, ‘those’)
17 T4-T2 3978 451 後來 (hou4lai2, ‘later’)
18 T4-T3 3302 419 父母 (fu4mu3, ‘parents’)
19 T4-T4 13174 989 社會 (she4hui4, ‘society’)
20 T4-T0 2984 111 爸爸 (ba4ba0, ‘daddy’)

Total 93701 7526

Subsequently, we extracted the sound files of these disyllabic words and measured their f0 values
using the To Pitch (cc) command in Praat (Boersma and Weenink, 2020). For female speakers, the
pitch floor was set at 75 Hz and the pitch ceiling at 400 Hz. For male speakers, the pitch floor was
set at 50 Hz and the pitch ceiling at 300 Hz. The time step was set to 0.001 seconds, and a Gaussian
window was used for optimal F0 estimation. The To PointProcess command was then applied to
identify the time points of glottal pulses in the voiced sections, from which the corresponding F0
values were extracted. No f0 values were returned when there was no vocal fold vibration due to the
presence of voiceless plosives or fricatives, or when creaky voice occurred.

Words with fewer than six tokens were excluded from our dataset, to ensure that each word type
had a sufficient number of tokens for analysis. For high-frequency words with more than 200 tokens,
we randomly sampled 200 tokens, to prevent model predictions from being biased towards high-
frequency words. Furthermore, words contributed by only female speakers or only by male speakers
were excluded. This ensured that the tokens of a given word type were contributed by at least two
speakers, preventing bias from one speaker’s specific way of speaking.
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Lastly, tokens with f0 extraction errors were excluded from analysis. These errors typically
resulted from pitch halving or doubling. We calculated, for each token, the standard deviation of the
differences between consecutive measurements. A large standard deviation indicated high likelihood
of discontinuous f0 measurements with abrupt fluctuations. Tokens with a standard deviation greater
than the 9th decile of the distribution were considered outliers.

3.3 Predictors
The response variable of interest is f0. We log-transformed f0 to obtain a response variable that
approximately follows a Gaussian distribution. As our interest is in production rather than compre-
hension, we did not make use of modifications of the logarithmic transformation such as the MEL or
BARK scales, which are optimized for human perception. The predictors for log f0 are as follows.

normalized t For each token, time was normalized between 0 and 1, enabling the modeling of
tokens with varying durations on a common scale. Since f0 values were measured every 15
ms, tokens with longer durations have more measurements and, consequently, more data
points within the [0,1] interval of normalized time.

gender A categorical variable with two levels—female and male. Due to physiological differ-
ences, female speakers generally produce speech at a higher pitch than male speakers.
gender is included as a control variable.

speaker A factor with anonymized speaker identifiers as levels, required for fine-tuning differences
in speakers’ height of voice.

tone pattern The tonal pattern of the token, as listed in the tone pattern column in Table A.1.

tonal context preceding tone is the tone of the syllable immediately preceding a token.
following tone is the tone of the syllable immediately following a token. If a pause oc-
curs immediately before or after the token, it is coded as PAUSE. Thus, both preceding tone

and following tone include six possible values: 1, 2, 3, 4, 0, and PAUSE. To represent
the different tonal contexts in which the token may appear, we define tonal context as
the interaction of preceding tone and following tone, resulting in a factor with 36
levels.

speech rate Local speech rate, defined as the number of syllables per second for a given token,
is calculated over a window extending four characters to the left and four characters to the
right of the token. This measurement of speech rate is included as a covariate to control
for potential effects of durational differences. To avoid concurvity, duration is therefore
not included alongside speech rate as a predictor, as the two variables are moderately
correlated r =−0.55.

norm utt pos Normalized position in the utterance represents the relative position of a word within
its utterance. It is calculated by dividing the word’s position by the total number of sylla-
bles in the utterance, resulting in a value normalized on a scale from 0 to 1. Higher values
indicate that the token occurs closer to the end of the utterance. For single-word utterances,
the position is coded as 1. Previous research has shown that utterance-final words tend to
exhibit a rising pitch (Shih, 2000).

bg prob prev Bigram probability quantifies how predictable a word is in its context. This measure
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of contextual predictability is based on the relative frequency of the word’s co-occurrence
with surrounding words. A higher bigram probability indicates that the target word is more
predictable within its given context. In general, higher predictability is associated with
shorter word durations and greater spectral reduction (Arnon and Priva, 2014; Tang and
Bennett, 2018). There is also some evidence showing that contextual predictability influ-
ences f0 production, as observed in English (Turnbull, 2017), Taiwan Mandarin (Hsieh,
2013), and Taiwan Southern Min (Wang, 2024). In the present study, following Gahl
(2008), bg prob prev is calculated as the probability of the occurrence of the target word
given the preceding word.

bg prob fol This measure represents the bigram probability of the following word, calculated as
the probability of the occurrence of the target word given the following word.

word A factor with orthographic words, as available in the corpus, as levels. For instance, the token
XMC GY 8107 問題 is coded as 問題 using traditional Chinese characters. The dataset
contains 313 unique words, so there are 313 corresponding levels for word.

sense type A word can have multiple senses, which are identified based on the contexts in which
the word occurs. We used a word sense identification system, described in Hsieh et al.
(2024), that utilizes BERT in combination with the Chinese WordNet (Huang et al., 2010).

Of the above list of predictors, the factor tonal context poses a special challenge for the anal-
ysis. tonal context provides information about the preceding and following tones. Due to the
pervasiveness of tonal co-articulation, it is highly probable that the effect of tonal context varies
with the tone pattern of the target word. For example, a preceding high tone will have an effect on
a word-initial dipping tone that differs from its effect on a word-initial rising tone. Accounting for
such co-articulation is essential for modeling f0 in connected speech. In principle, one could intro-
duce a variable that represents the interaction between tonal context and tone pattern (cf. Jin
et al., 2024). However, for our dataset, this would result in a variable with 720 levels that is strongly
confounded with word and sense type.

Therefore, we opted to fit separate regression models for f0 across four different most frequent
tonal contexts in our dataset, excluding any contexts that involved a “pause” in the preceding or
following tone, i.e., the contexts 4.4, 3.4, 4.1, and 4.0 (cf. Table 2). We chose not to include
tonal contexts involving a “pause”, for two reasons. First, when a tone is preceded or followed by a
pause, several context-related variables, such as norm utt pos, bg prob prev, and bg prob fol,
are missing, leading to data loss. Second, pauses in speech often signal utterance boundaries, hesita-
tions, or breaths, making the “pause” category inherently heterogeneous.

As shown in Table 2, the final dataset contains 4,283 tokens representing 313 unique word types.
The minimum number of tokens per word type is 5, and the maximum is 56. On average, each word
type was produced by 9.37 different speakers (range: 2 to 30). Additionally, each speaker contributed
an average of 53.31 different word types (range: 4 to 119). For each tonal context, all 20 tone patterns
are represented.

3.4 Statistical analysis
3.4.1 Models with word as predictor

The Generalized Additive Model (GAM, Wood, 2017) was used for the statistical analyses, with the
bam() function from mgcv package (Wood, 2017) implemented in R (Team, 2020). Four GAMs
were fitted to each of the four datasets, using the same model specification:
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Table 2: Overview of the four sub-datasets grouped by the four tonal contexts.

Tonal context Number of tokens Number of word types Number of tone patterns
4.4 1,794 288 20
3.4 888 240 20
4.1 874 250 20
4.0 727 210 20

Total 4,283 313 20

logf0 ∼ gender +
s(normalized t, by=gender,k=4) +

s(speaker, bs=‘re’) +

s(normalized t, tone pattern, bs=‘fs’, m=1)+

s(normalized t, word, bs=‘fs’, m=1) +
s(speech rate, by=gender, k=4) +

ti(normalized t, speech rate, k=c(4,4)) +

s(norm utt pos, k=4) +

ti(normalized t, norm utt pos, k=c(4,4)) +

s(bg prob prev, k=4)+

ti(normalized t, bg prob prev, k=c(4,4))+

s(bg prob fol, k=4)+

ti(normalized t, bg prob fol, k=c(4,4))

To account for differences in average pitch height between genders, we included gender as a
fixed effect. We added a by-gender thin plate regression smooth of normalized t, which allows us
to capture differing relationships between normalized time and f0 across genders. Other continuous
variables, including speech rate, norm utt pos, bg prob prev, and bg prob fol were likewise
modeled with thin plate regression splines. Interactions of covariates with normalized time were
modeled with tensor product smooths, using the ti() function.

Furthermore, random intercepts were requested for speaker to account for individual variabil-
ity in pitch height by speaker. Other discrete variables, including tone pattern and word, were
modeled using factor smooths (nonlinear random effects).

We implemented an AR(1) process (first-order auto-regressive model) in the residuals to take into
account the auto-correlations in the time series of pitch measurements. The inclusion of the AR(1)
process with an auto-correlation coefficient of rho = 0.95 effectively removed nearly all autocorrela-
tion from the residuals. Summaries of the four models are provided in the Appendix.

Akaike’s Information Criterion (AIC) was used to assess variable importance. Figure 2 shows the
increase in AIC (indicating a lower-quality fit to the data) resulting from withholding individual pre-
dictors from the model specification. A greater increase in AIC when a predictor is excluded suggests
a higher importance of that predictor in the model. As shown in Figure 2, across all tonal contexts,
withholding the predictor word leads to a substantial increase in AIC scores, ranging from 7430.30
to 12320.26. The increase in AIC when word is omitted from the model specification substantially
exceeds the corresponding change observed for any other predictor.

Surprisingly, withholding tone pattern has a small impact on the model fit with increases in
AIC of around 22.66 units (22.66 units for 4.4, 7.33 units for 3.4, 6.34 units for 4.1, and 16.9
units for 4.0). One possible explanation is that word is nested within tone pattern. When word

is removed from the best-fit GAM, withholding tone pattern results in a larger AIC increase by
7354.08 units for 4.4, 4069.89 units for 3.4, 3026.09 units for 4.1 and 3451.28 units for 4.0. This
suggests that tone pattern still contributes to the model fit, though not as strongly as word. When
word is included in the model, the effect of tone pattern is overshadowed by the stronger effect of
word.
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Figure 2: The increase in AIC scores when a predictor is withheld from the best-fit model.
The AIC increase when word or tone pattern is withheld is shown in red, and the increase
for other predictors is shown in blue. Panels 1 to 4 represent four GAMs with tonal contexts
4.4, 3.4, 4.1, and 4.0, respectively.
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Concurvity, analogous to collinearity in linear regression, measures how much a predictor’s effect
can be explained by other predictors in the model. Concurvity scores range from 0 to 1, with lower
values indicating that the contribution of a predictor is less confounded with the contributions of
other predictors. As shown in Figure 3, concurvity scores follow a similar pattern for all four GAMs,
with the lowest concurvity scores for word. speaker also has relatively low concurvity.

Figure 3: Concurvity scores for selected terms in the four GAMs. The concurvity scores for
word and tone pattern are shown in red, and those for other predictors are shown in blue.
From left to right, it presents tonal context 3.4, 4.0, 4.1, and 4.4 respectively. Concurvity
scores were calculated based on the best-fit GAMs with all predictors included.

By contrast, the predictor tone pattern exhibits extremely high concurvity, ranging from 0.998
to 1. This is due to tone pattern being fully predictable given the word. When word is excluded from
the model, the concurvity of tone pattern drops substantially to 0.09. This indicates that word
captures information about the word’s tone pattern, so when word is included in the model, the
tone pattern is also included implicitly. However, if only tone pattern is specified, word-specific
information is not available. This results in a substantially worse fit, which aligns with the AIC
change discussed in preceding subsection.

Finally, we note that the by-gender smooths for time (normalized t:female and normalized
t:male) show very high concurvity — unsurprisingly, as the tonal contours for both genders are

highly similar (see Figure 4). Without accounting for other effects, these general contours primarily
reflect the pure influence of time on pitch, illustrating how pitch contours change over time. The
overall curves exhibit falling contours, which suggests a general declination trend in pitch contours
for disyllabic words.

Figure 4: The partial effect of general smooth for the normalized time for female and
male speakers, in different tone contexts. The orange curves indicate the general contours
for female speakers, and the blue curves indicate the general contours for male speakers.
Vertical grey dashed lines indicate the average syllable boundary, and the horizontal grey
dashed line represents the y=0 reference line.

Figure 5 illustrates the partial effects of the 20 tonal patterns across the four tonal contexts under
investigation, using color coding to distinguish between the tonal contexts. Within each panel, the
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various blue curves represent specific tone patterns associated with different tonal contexts. For
example, the lightest blue curve in the upper-left panel represents the T4-T0 tone pattern in the 3.4
tonal context. In other words, it represents a tonal sequence T3-T4-T0-T4, as in the phrase有這麼重
(you3zhe4me0zhong4, ‘...is this heavy’). The red curves were obtained from averaging the four blue
curves representing tone patterns under different tonal contexts. The deviations of the blue curves
from the corresponding red curves highlight how the actual realizations of a tonal pattern in context
differ from the expected effect of tone pattern, irrespective of context.

Figure 5: The effect of tone pattern. The blue curves represent the partial effects of the
factor smooth for tone pattern, combined with the general smooth of normalized t for
female speakers, based on the best-fit models that include the word effect. There is one
GAM for each tonal context, resulting in four blue curves representing, in a given panel, the
four tonal contexts. The red curves present the mean f0 contours of a tone pattern, calculated
by averaging the four f0 contours across the tonal contexts. Thus, the blue curves in each
panel illustrate how the tonal context modulates the general curve shown in red. Vertical
grey dashed lines indicate the average syllable boundary, and the horizontal grey dashed
line represents the y=0 reference line.

For most of the tone patterns, the effects of the neighboring tones on the pitch contour are rel-
atively modest, with as glaring exceptions the T2-T0 tone patterns in the 4.0 tonal context. This
tonal sequence T4-T2-T0-T0 (e.g.,對孩子的, dui4hai2zi0de0, “for children’s . . . ”) shows an unex-
pectedly low f0. This is probably due to the fact that this tonal sequence is underrepresented in the
dataset, with only 9 tokens representing 4 unique word types (cf. Table A.1 in Appendix 1. ).
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However, the effects of tonal context are less pronounced in tone patterns featuring the neutral
tone. For tone patterns T1-T0, T2-T0, T3-T0, and T4-T0, the general trend appears to approach a
similar mid-low pitch target at the end of the syllable, regardless of the following tone.

For the 3.4 tonal context, 14 of the tonal patterns begin with the lowest f0. This may be a
straightforward consequence of Tone 3 being often realized as a low tone in Taiwan Mandarin (Fon
and Chiang, 1999). For the 4.0 tonal context, by the end of the word, the f0 tends to be the lowest
across all panels. This is probably due to the general curve of female speakers in 4.0 tonal context.
The female curve of 4.0 tonal context has a particularly salient falling trend (cf. Figure 4). Appar-
ently, the following neutral tone is magnifying the final downward inclination observed in the vast
majority of tone patterns.

Figure 6 displays a selection of predicted pitch contours estimated by the factor smooth for word,
combined with the partial effects of the factor smooth for tone pattern. All words presented here
follow the T4-T2 tone pattern in the 4.4 tonal context (i.e., a tonal sequence T4-T4-T2-T4). For in-
stance, this sequence occurs in the phrase就變成興趣 (jiu4bian4cheng2xing4qu4, ‘then become an
interest’). These partial effects exclude the general intercept and do not account for pitch differences
between female and male speakers.

The red dashed curves represent the partial effect of the factor smooth for tone pattern only,
without incorporating the word-specific pitch contours, and are shown to provide a reference for
assessing the word-specific effects.

It can be observed that the pitch contours of 後來 (hou4lai2, ‘later’), 不然 (bu4ran2, ‘other-
wise’), and 不能 (bu4neng2, ‘cannot’) closely align with the predicted tone pattern but are overall
shifted upward. Similarly, the pitch contour of認為 (ren4wei2, ‘to believe’) also follows a similar
shape but is shifted downward. However, other words, such as幹嘛 (gan4ma2, ‘What for?’),目前
(mu4qian2, ‘at present’), and 化學 (hua4xue2, ‘chemistry’), largely deviate from the general tone
pattern. Two words beginning with不 (bu4, expressing negation),不然 (bu4ran2, ‘otherwise’) and
不能 (bu4neng2, ‘cannot’), have very similar contours that run parallel to the contour of the T4-T2
pattern. However,不行 (bu4xing2, ‘not okay’), displays a steeper fall.

The deviation of the blue curves from the red dashed curves reflects the differences between the
predicted pitch contours and the general tone pattern. The word-specific tonal realizations observed
here are similar to those reported for Mandarin disyllabic words with T2-T4 tone patterns (Chuang
et al., 2024), as well as words with the T2-T3 and T3-T3 tone patterns (Lu et al., 2024).

3.5 Sense-specific tonal realization
In the preceding section, we documented that the tonal realization of Mandarin di-syllabic words
varies systematically by word. It is possible that words’ segmental make-up is the crucial factor.
Alternatively, it is theoretically possible that it is words’ meanings that shape their pitch contours,
just as in English, the duration of homophones is to a considerable extent co-determined by their
meanings (Gahl and Baayen, 2024). If this hypothesis is on the right track, then word sense should
be a more precise predictor than word identity. In the following analysis, we explore whether we can
replicate previous studies in which sense emerged as an even better predictor of disyllabic words’
pitch contours than the word itself (Chuang et al., 2024; Lu et al., 2024). If we can show that a word
with different meanings exhibits varying pitch realizations, this will provide further evidence that
words’ meanings co-determine tonal realization.

In order to explore the value of this hypothesis, we make use of the fact that our data are taken
from a corpus, and not a word list. As a consequence, we can estimate a word token’s most likely
sense in the exact context in which it was used. To determine these most likely senses in context,
we made use of the sense identification system proposed by Hsieh et al. (2024), which uses BERT
in combination with the Chinese WordNet (Huang et al., 2010). For example, this system identifies
the word 先生 (xian1sheng1, ‘husband, sir’) as ‘a woman’s spouse in a marital relationship’ in
sentences such as我先生認為 (wo3xian1sheng1ren4wei2, ‘My husband thinks . . . ’) or我先生去睡
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Figure 6: A selection of predicted f0 contours for words with the T4-T2 tone pattern. These
contours are estimated by combining the partial effects of the factor smooth for word and the
corresponding factor smooth for tone pattern (T4-T2). The dashed red curve represents
the partial effect of the T4-T2 tone pattern alone, which is identical across all panels. Vertical
grey dashed lines indicate the average syllable boundary, while the horizontal grey dashed
line represents the y=0 reference line.

覺 (wo3xian1sheng1qu4shui4jiao4,‘My husband went to sleep . . . ’). It assigns先生 (xian1sheng1,
‘husband, sir’) the sense ‘a man addressed in a social context’ to when it appears in the phrase那位
先生 (na4wei4xian1sheng1, ‘That gentleman over there . . . ’).

Since not all words in the dataset could be assigned a sense, we excluded words for which no
sense type was identified. Second, we removed sense types represented by fewer than six tokens
to ensure that each sense type had sufficient data for meaningful analysis. To prevent the model’s
predictions from being biased toward high-frequency sense types, we limited the maximum number
of tokens per sense type. Specifically, for any sense type represented by more than 50 tokens, we
randomly sampled 50 tokens from all tokens. We then grouped the dataset by tonal context, as in the
previous analysis, resulting in four sub-datasets (see Table 3). The final dataset consists of 3,525
tokens representing 290 unique sense types. After the trimming process, 252 unique word types
remain from the initial 313. All 20 tone patterns are present for each tonal context. The distribution
of sense types, and word types follow the similar pattern as in the dataset shown in Table A.1.

Table 3: Overview of trimmed datasets grouped by the four tonal contexts, for the sense
analysis.

Tonal context Tokens Sense types Word types Tone patterns
4.4 1512 266 233 20
3.4 740 220 195 20
4.1 716 228 200 20
4.0 557 171 157 20
Total 3525 290 252 20

For the sense analysis, we replaced the factor smooth for word with a factor smooth for sense type,
while keeping all other predictors from the previous analysis.
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logf0 ∼ gender +
s(normalized t, by=gender,k=4) +

s(speaker, bs=’re’) +

s(normalized t, tone pattern, bs=‘fs’, m=1)+

s(normalized t, sense type, bs=‘fs’, m=1) +
s(speech rate, by=gender, k=4) +

ti(normalized t, speech rate, k=c(4,4)) +

s(norm utt pos, k=4) +

ti(normalized t, norm utt pos, k=c(4,4)) +

s(bg prob prev, k=4)+

ti(normalized t, bg prob prev, k=c(4,4))+

s(bg prob fol, k=4)+

ti(normalized t, bg prob fol, k=c(4,4))

An AR(1) process in the errors was also included to account for the autocorrelation in the pitch time
series. The model summary is available in the Appendix.

To assess the relative importance of sense type, word, and tone pattern, we compared three
additional models with different predictor structures: (1) a model with sense type + tone pattern,
(2) a model with word + tone pattern, and (3) a model sense type by itself. Table 4 presents the
AIC differences resulting from changing or withholding the given variable, relative to the (sense type

+ tone pattern) model.
First consider the GAMs where sense type was replaced by word. In the case of the 4.4

tonal context, replacing sense type with word (comparing row 1 and row 2) led to a substantial
AIC increase of 457.28 units. This suggests that sense type is a stronger predictor than word for
modeling f0 contours.

Second, comparing row 1 and row 3, removing tone pattern while retaining sense type led
to a smaller AIC increase of 28.08 units. This indicates that tone pattern contributes to the model
fit, albeit with a relatively minor effect when sense type is included. A similar AIC pattern across
the 3.4, 4.1, and 4.0 tonal contexts further reinforces the stronger influence of sense type over
word in modeling f0 contours.

Table 4: AIC scores for models with different structures of word, sense type, and
tone pattern, fitted separately to datasets for the four tonal contexts.

Tonal Context Model AIC AIC Difference
4.4 all other predictors + sense type + tone pattern -226847.29 –
4.4 all other predictors + word + tone pattern -226390.01 457.28
4.4 all other predictors + sense type -226824.40 22.89
3.4 all other predictors + sense type + tone pattern -117518.90 –
3.4 all other predictors + word + tone pattern -116923.04 595.85
3.4 all other predictors + sense type -117515.43 3.47
4.1 all other predictors + sense type + tone pattern -113771.84 –
4.1 all other predictors + word + tone pattern -113177.81 594.03
4.1 all other predictors + sense type -113765.18 6.66
4.0 all other predictors + sense type + tone pattern -93868.50 –
4.0 all other predictors + word + tone pattern -93650.04 218.46
4.0 all other predictors + sense type -93861.31 7.20

Figure 7 displays the predicted tonal contours for different sense types of 另外(ling4wai4, ’in
addition’), calculated by combining the partial effects of sense type and tone pattern. Similar
to the red dashed curves in Figure 6, the red dashed curves in Figure 7 again represent the general
tone pattern, which is T4-T4 in this case. The three sense types of另外(ling4wai4, ‘in addition’) are:
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‘others’ (sense1), ‘totally different’ (sense2), ‘in addition to’ (sense3). The word另外 (ling4wai4, ‘in
addition’) exhibits clear variations across the three sense types compared to the general tone pattern.
The pitch contours of sense 1 (shown in purple) are generally shifted below the general tone pattern,
while those of sense 2 (shown in blue) are shifted above it. The pitch contour of sense 3 (shown in
yellow) displays two rises, as in the general tone pattern, but is shifted upwards.

Figure 7: A selection of the predicted f0 contours for different sense type of 另外
(ling4wai4, ‘in addition’) across tonal contexts. The predicted pitch contours represent the
partial effect of the factor smooth for sense type, combined with the corresponding factor
smooth for tone pattern (T4-T4 in this case). The red dashed curves represent the partial
effect of T4-T4 tone pattern alone, averaged across four tonal contexts, so the red dashed
curve is the same across all panels. Vertical dashed lines indicate the average syllable bound-
ary, and the horizontal grey dashed line represents the y=0 reference line.

3.6 Summary
This section addressed our first hypothesis, namely, that the meanings of words co-determine the
phonetic details of how the tones of these words are produced. Our results show that word emerged
as a more powerful predictor than all other predictors. Surprisingly, the variable importance of word
was substantially greater than that of tone pattern. The strong effect of word that we observed is
line with the results of Jin et al. (2024) and Lu et al. (2024). Jin et al. (2024) also observed, albeit
for monosyllabic words, that word was a stronger predictor than tone pattern. In the study by Lu
et al. (2024), however, the variable importance of word was similar to that of tone pattern.

A further analysis clarified that sense type is an even better predictor of pitch contours than
word. The substantial improvement in model fit contributed by sense type provides further support
for the hypothesis that it is words’ meanings that co-determine the fine detail of their pitch contours,
replicating the findings of earlier studies (Chuang et al., 2024; Jin et al., 2024; Lu et al., 2024).

4 Theory-driven computational modeling
In this section, we turn to our second hypothesis, exploring whether the tonal realization of a given
token can be predicted with reasonable accuracy based on its context-specific meaning using compu-
tational modeling. To do so, we make use of the general conceptual framework of the Discriminative
Lexicon Model (DLM Heitmeier et al., 2025), a computationally implemented theory that was de-
veloped independently of the present data, but that turns out to provide exactly the right approach to
predict tonal realization from semantics.

In the introduction, we already explained that the DLM seeks to predict words’ forms from their
meanings. Both forms and meanings are represented by numeric vectors, and in the simplest possible
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set-up, a linear mapping transforms a meaning vector into a form vector (for mappings using deep
neural networks, see Heitmeier et al., 2025). For the present study, we are not interested in predicting
full word forms, but rather words’ pitch contours. What we need, then, are numerical representations
of the present Mandarin word tokens’ pitch contours on the one hand, and their meanings on the
other hand. Following Chuang et al. (2024), we represent words’ forms using fixed-length vectors
representing pitch contours, and we represent words’ meanings using contextualized embeddings
obtained with the GPT-2 transformer technology. Importantly, both the pitch vectors and the semantic
vectors are context-specific, and thus vary from word token to word token. Chuang et al. (2024)
demonstrated that the tonal contours of a given token with T2-T4 tone pattern can be predicted from
its context-specific meaning with above-chance accuracy using a linear mapping. In what follows,
we consider whether this result generalizes to all 20 tone patterns attested for two-syllable words. As
a first step, we explain how we obtained fixed-length pitch vectors.

4.1 Fixed-length pitch vectors
To implement a linear mapping within the DLM framework, given n words, we need an n× p matrix
CCC to represent words’ pitch contours, and an n×q matrix SSS for words’ meanings. Consider the form
matrix CCC, and recall that the tokens in our dataset have unequal numbers of pitch measurement points
because tokens with longer durations contain more measurement points. Furthermore, the raw data
include missing values due to gaps in the pitch contours. However, the row vectors of CCC need to have
the same fixed length p. To achieve this, we used GAMs to obtain pitch contours represented by
p = 100-dimensional vectors in normalized time. There are several ways in which such fixed-length
vectors can be generated, of which we explored three.

Method I The first method fitted separate GAMs to the f0 contours of each of the individual tokens,
i.e., 4283 independent gam models, and then extracted the predicted contours. This method
generates pitch contours that stay as close as possible to the empirical pitch measurements.
However, this method inevitably includes by-token measurement noise in the estimation of
the contours. In the case of simple univariate linear regression, the predicted value for a data
point (on the regression line) will deviate from the observed value for that data point; taking
the observed data point as gold standard is at odds with statistical modeling. Similarly, for
the present dataset of time-series of measurements, the observed curves are not the given gold
standard. There are several sources of noise: articulatory stochastic noise in the articulation,
noise in the audio recordings, and noise in the pitch measurements. Method I incorporates
the combined noise originating from these sources. Therefore, Method I serves as a baseline
that we expect to yield the least precise results. Methods II and III implement two ways of
reducing this by-observed pitch contour measure noise.

Method II The second method fitted a GAM to the f0 contours of all the tokens of words with a
given tone pattern, extracting the smooth for time and the word-specific smooth, and combin-
ing these to obtain word-type-specific smooths. This method abstracts away from the influ-
ences of contextual factors on the realization of pitch. The resulting pitch vectors are identical
for all the tokens of a given word type. We anticipated that this would be the optimal situation
for learning, as within-type variation is eliminated. This method also has a theoretical motiva-
tion, namely, that it is unlikely that the contextualized embeddings generated by an AI model
will capture the full richness of the thought of human speakers engaged in real, 30-minute long
conversations.

Method III The third method, following Chuang et al. (2024), obtains token-specific pitch vectors
predicted by GAMs with all contextual factors included. For our data, we used the four GAMs
fitted to the four tonal contexts, as reported above in Section 3. This method has the advantage,
compared to Method I, of removing by-observation noise. Furthermore, compared to Method
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II, it has the advantage of having pitch vectors that vary from token to token. Thus, this method
is optimal for detecting the extent to which by-token semantics and by-token phonetics are
aligned. The more the contextualized embeddings diverge from the true semantic intentions
of the speakers, the less well this method will perform.

After obtaining the estimated pitch vectors from the GAMs, we applied by-token normalization by
centering and scaling each predicted pitch vector. By doing so, the mapping from meaning to form
is forced to learn to predict the shape of pitch contours rather than the absolute pitch values of each
token, which vary substantially across word types and speakers.

4.2 Contextualized embeddings
We made use of Contextualized Embeddings (CEs) to represent words’ meanings. Word embeddings
(semantic vectors) represent meanings in a distributed manner, building on the hypothesis that similar
words occur in similar contexts (Harris, 1954; Landauer and Dumais, 1997; Mikolov et al., 2013).
The first generation of semantic embeddings, such as fastText (Bojanowski et al., 2017), is fully
determined by words’ orthographic forms. However, a single orthographic form can express dif-
ferent meanings (e.g., English ‘bank’), or different senses (e.g., Mandarin水平 (shui3ping2, ‘level
or horizontal position’ or ‘skill or proficiency’)). Typically, the context in which a word is used
provides disambiguating information. Contextualized Embeddings (CEs) were developed to provide
token-specific, context-sensitive embeddings that capture the subtle differences in what a word may
actually mean in context.

The CEs used in the current study were derived from a pre-trained unidirectional language model
based on the GPT-2 architecture, developed by CKIP, Academia Sinica. Each token in our dataset
was assigned a 768-dimensional vector representing its contextualized embedding.

To inspect the quality of the contextualized embedding space, we reduced the 768-dimensional
semantic space to two dimensions using t-SNE (Van der Maaten and Hinton, 2008). Figure 8 displays
embeddings in the resulting 2-D plane, with convex hulls highlighting clusters of tokens correspond-
ing to different word types. Tokens clearly cluster by word, as expected. Furthermore, some seman-
tically related words have clusters that are close to each other. For instance, in the middle-right of the
Figure, the tokens of大學 (da4xue2, ‘university’), 學校 (xue2xiao4, ‘school’), 國中 (guo2zhong1,
‘middle school’ ), and高中 (gao1zhong1, ‘high school’) occur closely together, which makes sense
as they are all semantically related to educational institutions. Other school-related words such as學
生 (xue2sheng1, ’students’) and老師 (lao3shi1, ’teacher’) also appear near these words. Some word
clusters contain outliers. For instance, in the center of the figure,上面 (shang4mian4, ’above’) has
an outlier positioned near以後 (yi3hou4, ’in the future’), and後來 (hou4lai2, ’afterwards’) has an
outlier near之後 (zhi1hou4, ’after’).

4.3 Method
Modeling was conducted using the same dataset that we used above for the word-type-based analysis
(see Table 2), which contains 4,283 tokens. This dataset, comprising all four tonal contexts, was split
into a training dataset (80.39%) and a testing dataset (19.61%). Every word type was represented in
both the training and testing data, with tokens per word being split roughly proportionally with 80%
in the training dataset and 20% in the testing dataset.

Using the training data, we computed a linear mapping GGG from a 3443×768 semantic matrix SSS
to a 3443×100 form matrix CCC by solving SSSGGG =CCC (for technical details, see Gahl and Baayen, 2024;
Heitmeier et al., 2025). We then evaluated the quality of the mapping for both the training and the
testing dataset.

The accuracy of a predicted pitch vector ĉcc was evaluated as follows. For a given ĉcc, we calculated
its Euclidean distance to all gold-standard pitch vectors in CCC. We then identified its closest form
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Figure 8: Contextualized embeddings, obtained from a pre-trained Chinese GPT-2 model,
are shown in a two-dimensional plane obtained with t-SNE. Convex hulls (grey polygons)
highlight the clusters of word types.
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neighbor of ĉcc. If this nearest neighbor was a token of the same word type as the target token, the
predicted form vector was assessed as correct; otherwise, it was considered incorrect.

4.4 Results
We estimated three linear mappings from the same semantic matrix SSS with CEs to three different
form matrices CCC, one for each of the three kinds of smoothed pitch contours introduced above.

The mean accuracy of method I was 2.8% on the training dataset and 1.4% on the testing dataset.
The mean accuracy of method II was 23.5% on the training dataset and 15.1% on the testing dataset.
The mean accuracy of method III was 12.3% on the training dataset and 7.7% on the testing dataset.
All accuracies were above a permutation baseline of 0.4% and a majority baseline 1.3%, albeit by
only a small margin for method I. That method I has the lowest accuracy is unsurprising, fitting
GAMs to individual pitch contours unavoidably comes with overfitting and a loss of generalizability.
Methods II and III gain strength from other tokens and incorporate less by-item observation noise.
For these two methods, the mapping from meaning to pitch contours is substantially more accurate
than would be expected under chance conditions. The best-performing method is method II, which
abstracts away from the influences of contextual factors on the realization of pitch. This suggests that
some abstraction away from the immediate context is helpful, possibly because the contextualized
embeddings are not precise enough. After all, these embeddings come from a general large lan-
guage model trained on large volumes of data that most likely diverge considerably for the language
experience of the speakers interviewed for the Corpus of Spoken Taiwan Mandarin.

The results obtained with especially methods II and III clarify that there appears to be consid-
erable isomorphy between the contextualized embedding space and the pitch space of word tokens.
This isomorphy implies that if we take the most typical embedding for a given tone pattern and map it
into the pitch space, the resulting predicted pitch contours should closely resemble the pitch contours
identified by the GAM for that tone pattern. Figure 9 shows that this prediction is on the right track.
The pitch contours shown in black are the contours predicted by the GAMs for the different tone pat-
terns. They represent the best de-noised estimates of the average tone-pattern-specific pitch contours,
and serve as our gold-standard pitch contours. These GAM-based pitch contours were obtained by
first extracting the tone-pattern specific pitch contours for each of the four tonal contexts, and then
averaging these. (These GAM-based contours were shown above in red in Figure 5 before). An
alternative method, that results in nearly indistinguishable pitch contours, combines the data for all
four contexts, and adds the tone-pattern specific contours to the general contour for female speakers.

We now consider how well these average pitch contours can be predicted from words’ contex-
tualized embeddings. The most typical embedding for a given tone pattern can be approximated
by calculating the centroid of the contextualized embeddings of the tokens with this particular tone
pattern. The centroid is simply the mean of the semantic vectors. When we think of embeddings as
points in a high-dimensional space, the centroid is located at the center of these points. To obtain
the centroid of a given tone pattern, we first obtained the centroid of every relevant word type by
averaging the CEs of its tokens. We then obtained the centroid of the tone pattern by averaging the
centroids of the word types associated with that tone pattern. In this way, every word type is given
equal weight when determining the centroids for the tone patterns.

In order to get a sense of the semantics represented by these centroid vectors, we calculated,
for each tone pattern, which contextualized embeddings are closest to the corresponding centroids.
Table 5 lists, for each tone pattern, the two word types with embeddings that are closest to the cen-
troids. These two word types provide an indication of the prototypical meaning of a tone pattern. For
example,她們 (ta1men0, ‘they, female’) and他們 (ta1men0, ‘they, male’) are the most prototypical
word types for T1-T0 tone pattern. The tone pattern T2-T0 appears to have兒子(er2zi0, ‘son’) and
孩子 (hai2zi0, ‘child’) as prototypical members. Most tone patterns, however, are characterized by
function words.

To obtain the pitch contours predicted for the tone patterns, we provided the centroids of the
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Table 5: The top two word types which have contextualized embeddings that are closest
to the centroid embedding of the 20 tone patterns. Proximity is evaluated using Euclidean
distance.

Tone pattern Top one closest word type Top two closest word type
T1-T0 她們 (ta1men0, ‘they’) 他們 (ta1men0, ‘they’)
T1-T1 一些 (yi1xie1, ‘some’) 一般 (yi1ban1, ‘general’)
T1-T2 當然 (dang1ran2, ‘of course’) 之前 (zhi1qian2, ‘before’)
T1-T3 剛好 (gang1hao3, ‘just right’) 一起 (yi1qi3, ‘together’)
T1-T4 之後 (zhi1hou4, ‘afterwards’) 之類 (zhi1lei4, ‘and so on’)
T2-T0 兒子 (er2zi0, ‘son’) 孩子 (hai2zi0, ‘child’)
T2-T1 人家 (ren2jia1, ‘others’) 國中 (guo2zhong1, ‘middle school’)
T2-T2 其實 (qi2shi2, ‘actually’) 別人 (bie2ren0, ‘others’)
T2-T3 還有 (hai2you3, ‘also’) 還好 (hai2hao3, ‘it’s okay’)
T2-T4 然後 (ran2hou4, ‘then’) 一樣 (yi2yang4, ‘the same’)
T3-T0 你們 (ni3men0, ‘you all’) 我們 (wo3men0, ‘we’)
T3-T1 很多 (hen3duo1, ‘many’) 女生 (nv3sheng1, ‘girls’)
T3-T2 起來 (qi3lai2, ‘get up’) 以前 (yi3qian2, ‘before’)
T3-T3 只有 (zhi3you3, ‘only’) 有點 (you3dian3, ‘a bit’)
T3-T4 以後 (yi3hou4, ‘afterwards’) 好像 (hao3xiang4, ‘seems like’)
T4-T0 這麼 (zhe4me0, ‘so’) 那麼 (na4me0, ‘that’)
T4-T1 那些 (na4xie1, ‘those’) 那邊 (na4bian1, ‘over there’)
T4-T2 個人 (ge4ren2, ‘individual’) 不然 (bu4ran2, ‘otherwise’)
T4-T3 到底 (dao4di3, ‘after all’) 那裡 (na4li3, ‘there’)
T4-T4 算是 (suan4shi4, ‘considered as’) 上面 (shang4mian4, ‘above’)
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20 tone patterns as input to the three linear mappings defined above. The resulting predicted pitch
contours are shown in Figure 9. Each panel in this trellis graph presents the estimates for a given
tone pattern. The gold-standard pitch contours (obtained with our GAM models as described above)
are presented in black, and the contours predicted by the three DLM mappings are color-coded. The
contours obtained with method I are shown in blue, those obtained with method II in green, and those
obtained with method III in red. For all three methods, the resulting predicted contours are similar,
and often remarkably similar, to the gold-standard contours.

Figure 9: Pitch contours of 20 tone patterns in selected four tonal contexts. The black curves
present pitch contours identified by GAM, estimated by the partial effect for tone pattern,
combined with a general contours of time female speakers (shown as the red curves in Fig-
ure 5, which is reproduced here). The blue, green, and red curves represent pitch contours
predicted from the centroid of the contextualized embeddings using the three methods, re-
spectively. For the blue curves, form vectors were obtained with GAM smooths fitted to
individual word tokens. For the green curves, form vectors were obtained from a GAM
fitted to the tokens of all words with a given tone pattern. For the red curves, form vectors
were obtained with GAM smooths that included all contextual factors.

To assess the similarity between the gold-standard pitch contours and the pitch contours predicted
using the meaning-to-pitch mappings, we first calculated the cosine similarity, averaged across the
20 tone patterns, between the gold-standard contours and each of the three DLM pitch contours. The
contours from method II show a closer fit (cosine similarity 0.81) compared to the contours from
method I (cosine similarity 0.59) and III (cosine similarity 0.66). The mean correlation between
GAM-predicted pitch contours and three DLM-derived contours is 0.69, 0.82, and 0.78, respectively.
However, when using Euclidean distance to evaluate similarity, method II scores slightly worse than
the other two (1.48, 1.57, and 1.43, respectively). Figure 10 presents the distributions of these three
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measures for the three methods, using boxplots. Regardless of how exactly the precision of the
predictions is evaluated at the level of centroids, the three methods appear to perform with compara-
ble accuracy, with a slight advantage for Method II when evaluated with the correlation and cosine
similarity measures.

Figure 10: Boxplot showing the correlation, cosine similarity, and Euclidean distance be-
tween GAM-predicted pitch contours and DLM-derived pitch contours across 20 tone pat-
terns.

4.5 Summary
In this section, we have shown that a simple linear mapping can predict the realization of token-
specific pitch contours from its token-specific meaning in context with above-chance accuracy. This
finding extends the earlier results of Chuang et al. (2024), which focused on disyllabic words with
one specific tone pattern only (the rise-fall tone pattern T2-T4). Mapping accuracy for all 20 tone
patterns is unsurprisingly somewhat lower that that observed by Chuang et al. (2024) for the T2-T4
tone pattern (30%–40% for training data and 27%–35% for testing data). Nevertheless, even for the
present more varied dataset, accuracy is substantially above the majority baseline. This result is sur-
prising in the light of the measurement noise that is inevitably present in both our pitch measurements
and in the contextualized embeddings. The contextualized embeddings represent the knowledge of
an artificial intelligence, trained on vast amounts of texts. The embeddings it generates must diverge
from the meanings that the individual speakers had in mind. Nevertheless, the contextualized embed-
dings are sufficiently precise to enable far above chance prediction accuracy for word tokens’ pitch
contours. Interestingly, the 20 canonical tone patterns are surprisingly well approximated by pro-
jecting the centroids of the contextualized embeddings of the words with these tone patterns into the
f0 space. In other words, the average pitch contours identified by the GAMs correspond to average
contextualized embeddings in semantic space.

5 General discussion
The current study investigated the realization of pitch contours of disyllabic words in a corpus of
spontaneous spoken Taiwan Mandarin. We first made use of the Generalized Additive Models to
decompose f0 contours into a series of nonlinear functions of normalized time, with each function
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representing the way in which a predictor modulates the pitch contour over time. A range of predic-
tors was taken into account, including normalized time, gender, tonal context, tone pattern, speech
rate, word position, bigram probability, and speaker. Surprisingly, the GAMs provided strong sup-
port for word-specific modulations of the pitch contours. Replacing word by word sense further
improved model fit, which suggests that the effect of word may be semantic in nature. If so, the
theory of the Discriminative Lexicon Model predicts that it should be possible to well approximate
the token-specific pitch contours observed in the corpus with predicted token-specific pitch contours
obtained with mappings taking the contextualized embeddings of the words in the corpus as input,
and producing the corresponding pitch contours as output. We found that indeed a mapping from
GPT-2 generated contextualized embeddings to 100-dimensional fixed-length pitch vectors predicts
words’ pitch contours with accuracies that are far above a majority choice baseline. Thus, our study
successfully extends the meaning-to-pitch mapping from the T2-T4 tone pattern studied by (Chuang
et al., 2024) to all tone patterns in Taiwan Mandarin. Our study also dovetails well with the evidence
for the importance of word and sense as co-determinants of pitch contours reported by Lu et al.
(2024) and Jin et al. (2024).

A remarkable finding is that words and their meanings co-determine the realization of the f0
contours in disyllabic words with effect sizes that considerably exceed those of tone pattern. This
finding for disyllabic words aligns with previous research on Mandarin monosyllabic words (Jin
et al., 2024), which reported that while the effect of tone pattern on pitch contours is modest, the
effect of word is substantial. For disyllabic words, the stronger effect of word largely overshadows
the effect of tone pattern.

Our results suggest that there are not only remarkable similarities, but also some clear differ-
ences, between tonal realization in laboratory speech and tonal realization in the Corpus of Spoken
Taiwan Mandarin. Xu (1997) analyzed the pitch contours of 16 bi-tonal combinations using the /ma-
ma/ sequence. Among these combinations, only ma1ma1 corresponds to a real word in Mandarin,
(ma1ma1, “mother”); all the others are nonsensical combinations that are unnatural for native speak-
ers. In their study, the f0 contours were carefully controlled, accounting for factors such as gender
and speaking rate. Although laboratory speech and spontaneous speech differ in many ways, it is
still informative to compare the two registers. We therefore reproduced Figure 3 from Xu (1997)
(blue curves) and overlaid it with the DLM-derived f0 contours from Figure 9 (orange curves). In
Figure 11, the pitch contours from Xu (1997) and our predicted contours are remarkably similar for
several tone patterns, including T4-T4, T2-T3, and T2-T4. However, some tone patterns, such as T1-
T1 and T1-T2, exhibit noticeable differences in pitch contours. These differences can be attributed to
dialect differences, differences between spontaneous speech and laboratory speech, and differences
between meaningful and meaningless words.

At this point, it might be objected that in this approach to Mandarin tone, it is unclear how tone
sandhi could be accounted for. How would it be possible that, if indeed every word has its own pitch
contour, all words with the T3-T3 tone pattern undergo the same phonological process, such that they
become indistinguishable from words with the T2-T3 tone pattern? Our answer to this question has
an empirical part and a theoretical part.

On the empirical side, in conversational Taiwan Mandarin, the two tone patterns are basically
identical. For instance, in Figure 9, the tone patterns for T2-T3 and T3-T3 are quite similar. A
detailed study of this tone sandhi (Lu et al., 2024) supports complete neutralization for Taiwan Man-
darin. In other words, the words with the T3-T3 tone pattern can simply be re-classified as words
with the T2-T3 tone pattern. There is no need to call on a rule of tone sandhi. In fact, even for stan-
dard Mandarin, as gauged by Xu (1997), the differences between T3-T3 and T2-T3 are hardly visible
to the eye. However, T3-T3 tone sandhi has been reported to be incomplete for standard Mandarin
(Yuan and Chen, 2014).

This brings us to the theoretical aspect of the question raised above, namely, how to account
for tone sandhi processes in general. Within the framework of the Discriminative Lexicon model,
as a model for highly automatized lexical processing, it is impossible to derive forms from forms,
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Figure 11: The f0 contours for 16 tone patterns from the current study, based on the Corpus
of Spoken Taiwan Mandarin, are compared with f0 contours from a previous study (Xu,
1997) on carefully controlled laboratory speech. The blue curves represent the f0 contours
for 16 tone patterns from the controlled laboratory speech, reproduced from Figure 3 in
Xu (1997). The orange curves correspond to the three LDL-predicted pitch contours from
Method I, II, and III, as shown in Figure 9, and are reproduced here. These f0 contours are
overlaid for comparison. Since the neutral tone (T0) was not included in Xu (1997), only 16
bi-tonal combinations are presented here.
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a method widely used in educational settings. Forms are predicted from meanings. Importantly,
Figures 9 and 11 show that the tone contours associated with tone patterns emerge straightforwardly
from the meaning-to-form mapping, without the model ever being informed about tone patterns. In
other words, a ‘word and paradigm’ approach (Blevins, 2016) to tonal realization appears to be quite
feasible.

A question for further research is how to interpret the present findings for tone patterns with the
neutral tone. As can be seen in Figure 9, for three of the four tone patterns, the overall pitch contour
appears to be an almost linearly descending pitch contour. This could be viewed as another instance
of tone sandhi in classical phonology, whereas within the DLM, this patterning would follow from
words’ contextual meanings. We leave this question for further research.

The results obtained in the present study have several theoretical implications. First, we have
documented that the mapping from context-sensitive meaning to pitch contours is machine-learnable.
It remains an open question whether human learners also generate pitch contours from semantics.
The finding that just a linear mapping (from a statistical prespective, a straightforward multivariate
multiple regression model) is all that is needed suggests that human speakers should also be able to
learn this simple mapping between meaning and form. Importantly, our results are based on patterns
of usage in a corpus of unscripted spontaneous speech, and the mere existence of these patterns
indicates that language users must be absorbing community norms for tonal realization, albeit most
likely subliminally.

Second, our findings challenge the axioms of the arbitrariness of the sign and the dual articulation
of language. If the relation between form and meaning would be truly and fundamentally arbitrary,
this would imply learning words and their meanings is extremely difficult, and would not allow any
generalization. All that can be done is learn by heart that a form x is associated with a meaning y.
However, our simple linear mapping generalizes to held-out data. This falsifies the axiom that the
relation between form and meaning (here, pitch and meaning) is completely arbitrary.

Third, preliminary results, reported in Chuang et al. (2023), suggest that English two-syllable
words with left stress also have pitch contours that have strong word-specific pitch components. The
study by Schmitz et al. (2025) reports similar findings for English three-constituent compounds. The
accumulating evidence poses a new challenge for linguistics: understanding why these isomorphies
between form and meaning exist, irrespective of whether a language is a tone language or a stress
language.
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Appendix 1: dataset and model summary

Table A.1: Overview of the four sub-datasets grouped by the four tonal contexts, with the
number of word types for each tone pattern.

Tone Pattern Tonal Context

4.4 3.4 4.1 4.0

T1-T0 4 4 4 2
T1-T1 15 15 12 12
T1-T2 18 15 17 11
T1-T3 8 8 6 6
T1-T4 23 19 18 22
T2-T0 7 6 6 4
T2-T1 11 9 9 11
T2-T2 14 9 11 8
T2-T3 14 12 13 12
T2-T4 23 19 22 12
T3-T0 4 3 4 4
T3-T1 10 8 6 7
T3-T2 16 12 11 12
T3-T3 11 10 9 8
T3-T4 18 15 17 11
T4-T0 3 4 3 1
T4-T1 10 9 12 11
T4-T2 24 20 17 15
T4-T3 9 8 8 5
T4-T4 46 35 45 36

Total 288 240 250 210
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Table A.2: Summary of the model fitted with word for the 4.4 tonal context dataset

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 5.2965 0.0251 210.6574 < 0.0001
gendermale -0.5283 0.0343 -15.3930 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(normalized t):genderfemale 1.0020 1.0025 24.4870 < 0.0001
s(normalized t):gendermale 2.6783 2.9183 7.6161 < 0.0001
s(speaker) 51.0328 53.0000 72.0201 < 0.0001
s(normalized t,word) 1832.2415 2592.0000 6.9980 < 0.0001
s(normalized t,tone pattern) 111.9037 179.0000 2.3357 < 0.0001
s(speech rate):genderfemale 2.1305 2.5343 3.8114 0.0126
s(speech rate):gendermale 2.3418 2.7025 9.7111 < 0.0001
ti(normalized t,speech rate) 2.9792 3.0132 30.9735 < 0.0001
s(norm utt pos) 1.7416 2.1134 101.1452 < 0.0001
ti(normalized t,norm utt pos) 6.6304 7.9364 6.7134 < 0.0001
s(bg prob prev) 2.8803 2.9825 32.2276 < 0.0001
ti(normalized t,bg prob prev) 4.9995 6.2443 2.3813 0.0252
s(bg prob fol) 1.0072 1.0139 4.8743 0.0265
ti(normalized t,bg prob fol) 7.8925 8.6541 9.2356 < 0.0001

Table A.3: Summary of the model fitted with word for the 3.4 tonal context dataset

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 5.3009 0.0239 222.0659 < 0.0001
gendermale -0.5151 0.0309 -16.6894 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(normalized t):genderfemale 2.8018 2.9407 11.3801 < 0.0001
s(normalized t):gendermale 1.0026 1.0035 0.6147 0.4328
s(speaker) 49.9064 54.0000 24.2216 < 0.0001
s(normalized t,word) 1430.9843 2160.0000 5.8479 < 0.0001
s(normalized t,tone pattern) 92.8198 179.0000 1.3530 < 0.0001
s(speech rate):genderfemale 2.3721 2.7269 9.3361 < 0.0001
s(speech rate):gendermale 2.1719 2.5746 3.4047 0.0351
ti(normalized t,speech rate) 6.7124 7.9532 4.9905 < 0.0001
s(norm utt pos) 1.0004 1.0009 144.2261 < 0.0001
ti(normalized t,norm utt pos) 6.4372 7.6506 4.8472 < 0.0001
s(bg prob prev) 2.4885 2.7657 15.9136 < 0.0001
ti(normalized t,bg prob prev) 8.5179 8.8649 26.3242 < 0.0001
s(bg prob fol) 1.0023 1.0044 8.8528 0.0029
ti(normalized t,bg prob fol) 2.3852 2.7236 3.6728 0.0093

29



Tonal realization in disyllabic words in spoken Taiwan Mandarin

Table A.4: Summary of the model fitted with word for the 4.1 tonal context dataset

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 5.2709 0.0251 210.1867 < 0.0001
gendermale -0.4851 0.0331 -14.6522 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(normalized t):genderfemale 1.0003 1.0004 14.3424 0.0002
s(normalized t):gendermale 2.4742 2.7866 3.8965 0.0197
s(speaker) 50.3703 54.0000 28.1287 < 0.0001
s(normalized t,word) 1520.9285 2250.0000 5.5411 < 0.0001
s(normalized t,tone pattern) 88.4589 179.0000 1.2859 < 0.0001
s(speech rate):genderfemale 1.0005 1.0010 5.3846 0.0203
s(speech rate):gendermale 1.9702 2.3439 2.9261 0.0393
ti(normalized t,speech rate) 6.2226 7.4529 14.0239 < 0.0001
s(norm utt pos) 1.0006 1.0011 28.5619 < 0.0001
ti(normalized t,norm utt pos) 7.3974 8.3940 2.4661 0.0054
s(bg prob prev) 2.0687 2.4374 12.4622 < 0.0001
ti(normalized t,bg prob prev) 3.6914 4.7848 2.8590 0.0170
s(bg prob fol) 2.4158 2.7373 2.3562 0.0475
ti(normalized t,bg prob fol) 7.8947 8.6462 7.8430 < 0.0001

Table A.5: Summary of the model fitted with word for the 4.0 tonal context dataset

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 5.2497 0.0312 168.0817 < 0.0001
gendermale -0.4725 0.0407 -11.6043 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(normalized t):genderfemale 2.9192 2.9806 29.4234 < 0.0001
s(normalized t):gendermale 1.0003 1.0005 5.0343 0.0248
s(speaker) 49.0454 52.0000 30.1430 < 0.0001
s(normalized t,word) 1251.5978 1890.0000 6.4034 < 0.0001
s(normalized t,tone pattern) 93.3188 179.0000 1.4397 < 0.0001
s(speech rate):genderfemale 2.6175 2.8809 8.3676 0.0001
s(speech rate):gendermale 2.7772 2.9508 8.2388 0.0001
ti(normalized t,speech rate) 6.8744 7.9913 6.6015 < 0.0001
s(norm utt pos) 2.0931 2.4575 41.5639 < 0.0001
ti(normalized t,norm utt pos) 7.0265 8.0821 12.4450 < 0.0001
s(bg prob prev) 1.9451 2.3101 12.5304 < 0.0001
ti(normalized t,bg prob prev) 5.9749 7.1845 4.1940 0.0001
s(bg prob fol) 1.0006 1.0010 8.6352 0.0033
ti(normalized t,bg prob fol) 5.6756 6.9167 3.1157 0.0029
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Table A.6: Summary of the model with sense type for the 4.4 tonal context dataset

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 5.2990 0.0255 207.7527 < 0.0001
gendermale -0.5276 0.0345 -15.2859 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(normalized t):genderfemale 1.0037 1.0046 22.3822 < 0.0001
s(normalized t):gendermale 2.6128 2.8854 7.3128 0.0001
s(speaker) 50.7591 53.0000 59.8792 < 0.0001
s(normalized t,sense type) 1645.3569 2394.0000 6.1036 < 0.0001
s(normalized t,tone pattern) 115.1964 179.0000 2.3487 < 0.0001
s(speech rate):genderfemale 2.2619 2.6469 3.5374 0.0310
s(speech rate):gendermale 2.2986 2.6760 8.0901 0.0001
ti(normalized t,speech rate) 3.9985 4.7382 15.5029 < 0.0001
s(norm utt pos) 2.3278 2.6858 57.3866 < 0.0001
ti(normalized t,norm utt pos) 5.6890 7.1236 4.8475 < 0.0001
s(bg prob prev) 2.8814 2.9813 24.2073 < 0.0001
ti(normalized t,bg prob prev) 5.3450 6.5906 2.7958 0.0083
s(bg prob fol) 1.1588 1.2896 7.5202 0.0028
ti(normalized t,bg prob fol) 7.8741 8.6372 11.9355 < 0.0001

Table A.7: Summary of the model with sense type for the 3.4 tonal context dataset

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 5.3190 0.0245 217.3049 < 0.0001
gendermale -0.5279 0.0322 -16.4049 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(normalized t):genderfemale 2.7782 2.9300 11.8593 < 0.0001
s(normalized t):gendermale 1.0016 1.0022 0.7333 0.3918
s(speaker) 49.3383 53.0000 23.1424 < 0.0001
s(normalized t,sense type) 1311.3647 1980.0000 5.6701 < 0.0001
s(normalized t,tone pattern) 90.0576 179.0000 1.2569 < 0.0001
s(speech rate):genderfemale 2.8229 2.9667 15.2549 < 0.0001
s(speech rate):gendermale 2.7810 2.9558 3.5426 0.0186
ti(normalized t,speech rate) 7.5150 8.4879 7.7827 < 0.0001
s(norm utt pos) 2.5743 2.8458 47.1183 < 0.0001
ti(normalized t,norm utt pos) 7.0027 8.0972 5.2953 < 0.0001
s(bg prob prev) 2.4559 2.7397 11.7554 < 0.0001
ti(normalized t,bg prob prev) 8.5396 8.8648 32.3655 < 0.0001
s(bg prob fol) 1.0011 1.0022 8.6211 0.0033
ti(normalized t,bg prob fol) 2.3724 2.7114 3.1644 0.0175
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Table A.8: Summary of the model with sense type for the 4.1 tonal context dataset

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 5.2785 0.0258 204.6860 < 0.0001
gendermale -0.4733 0.0330 -14.3633 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(normalized t):genderfemale 1.0006 1.0008 10.6364 0.0011
s(normalized t):gendermale 2.2744 2.6385 4.7004 0.0076
s(speaker) 49.3758 53.0000 25.2692 < 0.0001
s(normalized t,sense type) 1390.6999 2052.0000 5.2771 < 0.0001
s(normalized t,tone pattern) 89.6240 179.0000 1.2507 < 0.0001
s(speech rate):genderfemale 1.0012 1.0023 0.8458 0.3574
s(speech rate):gendermale 1.0900 1.1655 8.0534 0.0043
ti(normalized t,speech rate) 6.2987 7.3658 11.8930 < 0.0001
s(norm utt pos) 1.0007 1.0014 20.7997 < 0.0001
ti(normalized t,norm utt pos) 4.4585 5.9266 1.7014 0.1187
s(bg prob prev) 2.3038 2.6419 4.8417 0.0042
ti(normalized t,bg prob prev) 5.4972 6.7456 3.7973 0.0005
s(bg prob fol) 2.6706 2.8966 4.2319 0.0049
ti(normalized t,bg prob fol) 7.3670 8.3279 3.9638 0.0001

Table A.9: Summary of the model with sense type for the 4.0 tonal context dataset

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 5.2524 0.0327 160.7046 < 0.0001
gendermale -0.4743 0.0414 -11.4693 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(normalized t):genderfemale 2.9426 2.9856 31.6209 < 0.0001
s(normalized t):gendermale 1.0016 1.0023 7.1126 0.0076
s(speaker) 48.0016 53.0000 23.1946 < 0.0001
s(normalized t,sense type) 994.9116 1539.0000 5.5151 < 0.0001
s(normalized t,tone pattern) 85.9056 179.0000 1.1669 < 0.0001
s(speech rate):genderfemale 2.0016 2.3892 2.3245 0.1149
s(speech rate):gendermale 2.1820 2.5488 4.7352 0.0061
ti(normalized t,speech rate) 7.1264 8.2127 7.6463 < 0.0001
s(norm utt pos) 1.8211 2.1735 46.3419 < 0.0001
ti(normalized t,norm utt pos) 6.9596 8.0649 10.2243 < 0.0001
s(bg prob prev) 2.1932 2.5430 13.3047 < 0.0001
ti(normalized t,bg prob prev) 6.8339 7.8695 6.2328 < 0.0001
s(bg prob fol) 1.0194 1.0344 7.0325 0.0073
ti(normalized t,bg prob fol) 1.9840 2.6243 0.4195 0.7027
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Appendix 2: the effects of segments and frequency
Our findings demonstrate that the word itself is a strong predictor of pitch contours in disyllabic
words. However, one might question whether this robust effect is at least partially influenced by
segmental properties, given existing evidence on the impact of vowel height and onset consonants on
Mandarin tones (Ho, 1976a; Ladd and Silverman, 1984; Ohala and Eukel, 1976; Whalen and Levitt,
1995). Additionally, lexical frequency has long been recognized as a factor influencing f0 contours,
with lower-frequency words being produced with higher pitch (Zhao and Jurafsky, 2007). To address
these concerns, this additional analysis clarifies the effects of word’s segmental composition and
lexical frequency on pitch contours.

Following Chuang et al. (2024), for our disyllabic words, we coded four predictors for seg-
ments. vowel1 height and vowel2 height are the vowel height of the first syllable and the sec-
ond syllable, respectively. Each has five levels: ‘high’, mid’, and low’, low-high’ and mid-high’.
onset1 type and onset2 type are the type of the onset consonant of the first syllable and the sec-
ond syllable, respectively. Each has seven levels: ‘aspirated-affricate’, ‘aspirated-stop’, ‘unaspirated-
affricate’, ‘unaspirated-stop’, ‘voiceless-fricative’, ‘voiced’, and ‘null’. frequency represents the
log-transformed count of occurrences of a word type in entire spoken corpus of Taiwan Mandarin.

We built up a baseline model that includes gender, tonal context, tone pattern, speaking rate,
speaker, word position, bigram probability, but excludes word. To simplify the analysis, this model
was based on an omnibus dataset that integrates all four tonal contexts.

To examine the effects of segments, four factor smooth terms for vowel1 height, vowel2 height,
vowel1 type, and vowel2 type were added to the baseline model together.

baseline + s(normalized t, vowel1 height, bs=‘fs’, m=1)+
s(normalized t, vowel2 height, bs=‘fs’, m=1)+
s(normalized t, onset1 type, bs=‘fs’, m=1)+
s(normalized t, onset2 type, bs=‘fs’, m=1)

To examine the effect of frequency, we added the smooth term for frequency, in combination
with its interaction with normalized t, to the baseline model.

baseline + s(frequency, k=4)+

ti(normalized t, frequency, k=c(4,4))

Table A.10 presents the improvement of model fit compared with the baseline model, as evalu-
ated by AIC change. The inclusion of the four segmental predictors combined improves the model fit
by 5,267.08 units, while the inclusion of word leads to a more substantial improvement of 21,532.92
units. Moreover, in Chuang et al. (2024), with only around 50 word types, the segment-related con-
trols were highly confounded with one another, as indicated by the high concurvity scores of around
0.75. However, in our dataset that contains a greatly larger number of word types, these effects can
be better disentangled. For the baseline + four segmental predictors model, the concurvity
scores are much lower than those reported in Chuang et al. (2024): 0.42 for s(normalized t,vowel1

height), 0.40 for s(normalized t,vowel2 height), 0.35 for s(normalized t,onset1 type),
and 0.35 for s(normalized t,onset2 type). In the baseline + word model, the concurvity score
for word is also low (0.12). Additionally, although baseline + four segmental predictors

+ word has the lowest AIC, concurvity of four segmental predictors is all 1, and that of word is 0.21,
suggesting that segmental predictors are highly colinear with word when they are both present.

Similarly, the inclusion of word (21532.92 AIC units) resulted in a more substantial AIC decrease
than frequency (205.76 AIC units). Besides, we added frequency on top of the baseline +

word model, which resulted in a further AIC decrease of 10.01 units. However, in this model,
concurvity was very high for frequency (0.99) and low for word (0.13).
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Table A.10: Improvement of model fit gauged by AIC change

Model AIC AIC difference
baseline 279.70 -637646.74 -

baseline + frequency 291.03 -637852.51 -205.76
baseline + four segmental predictors 447.63 -642913.82 -5267.08

baseline + word 2475.79 -659179.66 -21532.92
baseline + frequency + word 2475.54 -659189.68 -21542.93

baseline + four segmental predictors 2444.84 -659198.24 -21551.50

Overall, word by itself contributes more to the model fit than the four segmental predictors com-
bined, as well as lexical frequency. In line with Chuang et al. (2024), the effect of word cannot be
simply reduced to the effect of segments. Besides, word is a better predictor of pitch contours than
lexical frequency.
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