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Abstract 

 

This paper introduces the generalized additive mixed model (GAMM) and the quantile 

generalized additive mixed model (QGAMM) through reanalyses of bilinguals’ lexical decision 

data from Dijkstra et al. (2010) and Miwa et al. (2014). We illustrate how regression splines can 

be used to test for nonlinear effects of cross-language similarity in form as well as for controlling 

experimental trial effects. We further illustrate the tensor product smooth for a nonlinear 

interaction between cross-language semantic similarity and word frequency. Finally, we show 

how the QGAMM helps clarify whether the effect of a particular predictor is constant across 

distributions of RTs. 
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Nonlinearities in bilingual visual word recognition:  

An introduction to generalized additive modeling 

 

In bilingual visual word recognition research, a central question has been whether readers 

activate two languages automatically when reading in one language. To address this question, 

researchers have investigated whether and, if so, how cross-language similarities in orthography, 

phonology, and semantics co-determine word processing speed. Significant contributions of 

cross-language similarity measures to response times provides evidence that both languages are 

automatically co-activated in reading. 

 Up until a decade ago, cross-language similarities were typically coded as categorical 

predictors and tested with by-participant (F1) and by-item (F2) ANOVAs (e.g., high vs. low 

cross-language orthographic similarity, as in Dijkstra, Grainger, & van Heuven, 1999). More 

recently, linear mixed-effects modeling (LMM, Baayen, Davidson, & Bates, 2008) replaced the 

classical ANOVA, with the advantage that a single statistical model can now include both 

participants and items as (crossed) random effects. The LMM also enabled researchers to move 

away from unnecessary dichotomization of continuous predictors (for orthographic similarity as 

a continuous rather than a factorial predictor, see Dijkstra, Miwa, Brummelhuis, Sappeli, & 

Baayen, 2010) and further allowed them to include covariates in the regression model, as 

opposed to seeking to match items a priori on all dimensions that might potentially be 

confounded with the factorial manipulation of interest (see, e.g., Baayen, 2010). In this tutorial 

introduction, we outline more recent mathematical models that offer further precision for 

understanding experimental data in psycholinguistics: the generalized additive mixed model 

(GAMM) and the quantile generalized additive mixed model (QGAMM). Whereas the LMM 

provided a step forward compared to the classical ANOVA, it is restricted in the sense that it 

assumes that the effects of continuous regressors are linear.  
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The GAMM relaxes this linearity assumption and offers researchers further flexibility to 

detect nonlinear trends in their data. As will be shown, nonlinearity is ubiquitous in language 

studies. The GAMM is capable of handling an interaction between a nonlinear predictor and a 

factor, as well as an interaction between two nonlinear predictors. The QGAMM is a recent 

extension of the GAMM that enables constructing models for any desired quantile of the 

response variable’s distribution. 

 Throughout this paper, familiarity with the LMM and basic knowledge in R are assumed 

(see Pinheiro & Bates, 2000 and Baayen, Davidson, & Bates, 2008 for introduction of the LMM 

with R). In what follows, we make use of treatment coding for factors. We first demonstrate how 

the GAMM can be applied in bilingual processing research, reanalyzing lexical decision data 

from Dijkstra et al. (2010, Experiment 1) and Miwa, Dijkstra, Bolger, and Baayen (2014, 

Experiments 1 and 2). The former study tested 21 Dutch-English bilinguals reading 194 English 

words and 194 nonwords in a lexical decision experiment. We reanalyzed data for 189 target 

words. The latter study tested 19 Japanese-English bilinguals and 19 English monolinguals 

reading English words in a lexical decision experiment with 250 words and 200 nonwords. This 

time we reanalyzed data for 228 target words unless otherwise noted. All numerical predictors 

were standardized. R code for the analyses presented below is available in the supplementary 

material (https://osf.io/g5ax4/). 

 

Nonlinearity in cross-language form similarity effects 

 

In the LMM analysis of Dijkstra et al. (2010), a rated orthographic similarity (rated on a 

7-point Likert scale, henceforth OS) between target English words and their Dutch translation 

equivalents (e.g., tomate – tomaat) was included as a covariate, together with a factor (Ident) 

coding for whether an English word had an identical cognate in Dutch. Identical cognates 

revealed substantial facilitation on top of a facilitatory effect of OS, as shown in Figure 1, Panel 
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A. From a modeling perspective, the factor Ident is somewhat awkward, as it marks the 

maximum value of OS. Within the context of the LMM, the effect of OS can be modeled as 

nonlinear by regressing the response on powers of OS (e.g., OS squared, cubed etc.). Panel B of 

Figure 1 shows the effect of OS when its functional form is given by a second-degree 

polynomial. In this model, Ident is not included as predictor. Model comparison clarifies that the 

polynomial model lacks precision when pitted against the model with a linear effect of OS in 

combination with Ident; the substantial facilitation for Ident is no longer visible. 

 

< Insert Figure 1 around here > 

 

The generalized additive mixed model (GAMM) offers a toolkit for building a more 

precise statistical model for the present dataset. In what follows, we make use of the mgcv 

package (Wood, 2017). An introduction to the main concepts underlying GAMMs is available in 

Baayen, Vasishth, Kliegl, and Bates (2017). Central to GAMMs is the concept of a spline, a 

function that approximates a wiggly curve by means of a weighted sum of simple nonlinear 

functions known as basis functions. The more wiggly a curve is, the more basis functions are 

required to approximate it. In order to avoid overfitting, GAMMs implement a penalty for 

wiggliness, the assumption being that the truth is more likely to be simple (less wiggly) than 

complex (highly wiggly). Penalization reduces the weights of the basis functions. When the 

weight of a basis function is reduced to zero, it no longer contributes to the model. Often, 

penalized weights are substantially reduced, but not zero, compared to unpenalized weights, 

which would provide the closest fit to the data, but at the price of overfitting. The effective 

degrees of freedom (edf) of a spline function, which is used to evaluate significance, will be 

larger when more basis functions are required and when these basis functions have larger 

weights. When the edf of a spline is close to 1, the functional shape of the spline will be very 

similar to a straight line. Importantly, the penalization method implemented in GAMMs ensures 
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that when the functional relation between a response and a predictor is in fact linear, the model 

will detect linearity and will eliminate all wiggly basis functions by driving their weights to zero. 

 Like the LMM, the GAMM allows researchers to include participants and items as 

crossed random effects. Within the context of the LMM, one can allow a regression line to have 

intercepts and slopes that differ by subject (or item) by setting up a population intercept and 

slope, and adding by participant (or by-item) adjustments for both intercept and slope. Within the 

context of the GAMM, it is possible to set up the nonlinear equivalent of random intercepts and 

random slopes by means of special splines known as factor smooths. Factor smooths implement 

shrinkage for wiggly curves, just as the LMM implements shrinkage for random intercepts and 

random slopes.  

 As a first illustration, we fit a GAMM to the data of Dijkstra et al. (2010). We set the 

model up in such a way that the effects of OS and word frequency (here, we use the standardized 

log English subtitle frequency of Brysbaert & New (2009), henceforth Frequency) can be 

nonlinear. If it turns out that these effects are actually linear, the edf values for these parameters 

should become 1. As participants often show nonlinear trends over experimental time, we set up 

a by-participant factor smooth for trial number (Trial), in order to incorporate ups and downs in 

attention and motivation as the experiment unfolds (see Baayen et al., 2017 for further 

discussion)1.This factor smooth also estimates the “intercepts” (the points where the wiggly 

curves cross the Y-axis), so it is not necessary to request separate by-subject random intercepts. 

We do request by-word random intercepts. The R code for this model,  

 

> dijkstra.gam = bam(invRT  ~  s(OS) + 

s(Frequency) + 

s(Trial, Participant, bs="fs", m=1) +  

s(Word, bs="re"),  

data = dijkstra, discrete = TRUE) 
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requests regression splines with the s() directive. For factor smooths, additional arguments are 

required: in addition to the continuous variable (Trial), we specify the grouping factor 

(Participant), ask for a factor smooth with bs=“fs”, and request shrinkage with m=1. By word 

random intercepts are also set up with the s() directive, with the basis function parameter set to 

“re”. The directive “discrete = TRUE” requests an algorithm that can substantially reduce 

computation time with hardly any loss of accuracy. The model summary, obtained with 

summary(dijkstra.gam), is presented in Table 1.  

 

< Insert Table 1 around here > 

 

Unlike the LMM, a GAMM summary has two parts: a parametric part for linear terms 

and a nonparametric part for smooth terms. Note that random effects are listed together with 

fixed effects. An F-test (detailed in Wood, 2013) is reported that clarifies whether a smooth term 

provides a noteworthy contribution to the model fit. Comparison of models with and without a 

given smooth term typically leads to the same conclusions as this F-test. For this model, the only 

parametric parameter is the intercept, estimated at -1.88. In the non-parametric part of the 

summary, we see that the effective degrees of freedom (edf) for the two covariates, OS and 

Frequency, are close to 3, indicating some wiggliness. To interpret the smooth terms of the 

model visualization is essential. Figure 1, Panel C presents the effect of OS. Where the 

confidence interval does not include zero (the red line), the effect is significant. Thus, for the 

smallest values of orthographic similarity, we find longer RTs, for most of the range of OS, there 

is no effect, and then for the higher values of OS, we find shorter RTs. The effect shown is the 

partial effect of the predictor. Panel D visualizes the effect of word frequency, which is strong in 

the middle range of log frequency, and tapers off at both tails of the distribution. Panel E 

presents the by-participant random curves for Trial. The main difference between participants 
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that strikes the eye is their intercept, which differentiates between slower and faster subjects. But 

there is considerable variability between participants, with some showing stable behavior, with 

other showing nearly linear trends up or down, and some others showing undulating patterns 

suggestive of fluctuations in attention. Finally, Panel E presents a quantile-quantile plot for the 

model residuals, which roughly follow a normal distribution, as required.2 

 Model fit can be improved by including random slopes for OS and Frequency. The effect 

of these random slopes is that they will tilt, somewhat differently for each subject, the orientation 

of the regression curve. The terms to add to the model specified above for by-subject random 

slopes for frequency and OS are, respectively,  

  

 s(Participant, Frequency, bs = "re") 

and 

s(Participant, OS, bs = "re") 

 

Addition of these two terms decreases the fREML scores of the model from 1064 to 1056, which 

is a substantial improvement, as indicated by model comparison using the compareML() 

function from the itsadug package (van Rij et al., 2019). Like the anova() function for the 

LMM, compareML() is used to compare nested GAMMs. 

 It is noteworthy that once the factor Ident is taken in to account, the effect of OS becomes 

linear, with a substantially increased p-value. Since model comparison, using compareML(), 

indicates that the inclusion of Ident provides only a modest  improvement in goodness of fit (the 

ML score of the model decreased from 1049 to 1045), we are still left with two theoretical 

possibilities for future research. The first possibility is that Ident is not necessary as predictor, as 

it is confounded with the endpoint of the scale of orthographic similarity. In this case, we let the 

spline function do the work for us, with the implication that cognates that are spelled almost but 

not completely the same also have a processing advantage, albeit a smaller one than that of 
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identical cognates. The second possibility is that Ident is a theoretically important predictor, the 

idea being that under identity there is substantial facilitation for cognates, the conclusion reached 

by Dijkstra et al. (2010). Statistics cannot decide which possibility is to be preferred.  

Using Miwa et al.’s (2014) data obtained from Japanese-English bilinguals, we similarly 

fitted a GAMM to RTs to investigate an effect of cross-language phonological similarity. There 

was no sign of nonlinearity (see the supplementary material). 

 

Nonlinearity in responses to words and nonwords 

 

With the GAMM, it is possible to test for an interaction between a nonlinear predictor 

and a factor. In this example, using the miwacomp dataset (Miwa et al. 2014, 19 Japanese in 

Experiment 1 and 19 English monolinguals in Experiment 2, 250 words, 200 nonwords), we 

examined how response patterns changed throughout the experiment for words and nonwords. 

To understand how participants responded to words and nonwords throughout the experiment in 

detail, we tested how RTs changed as the experiment went by (Trial) for different levels of the 

factor StimulusType (levels: Word, Nonword). This was achieved with the by-directive within 

the s() function, which requests two wiggly curves, one for each factor level. The main effect 

of StimulusType should be included so that two wiggly curves can be set at appropriate places on 

the y-axis. 

 

> jpn.gam1 = bam(invRT ~  StimulusType  + 

                        s(Trial, by = StimulusType) +  

                        s(Trial, Participant, bs = "fs", m = 1) +  

                        s(Word, bs = "re"),  

           data = miwacomp[miwacomp$FirstLanguage == "Japanese", ], 

           discrete=TRUE) 
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A comparison of the model with and without the interaction indicated that the two different 

wiggly curves for Word and Nonword were indeed necessary. In addition to RTs to words being 

overall shorter than to nonwords, participants showed different learning effects for words and 

nonwords throughout the experiment: nonlinear for words and linear for nonwords (Figure 2, 

Panels A and B, see also Table 2). To see how the two curves differ, we compute a difference 

curve for Word and Nonword (see the supplementary material for the procedure). Panel C 

indicates that the bilingual participants’ RTs to Word and Nonword were equally slow at the 

beginning.  RTs to words became rapidly shorter until about a third into the experiment. After 

that, the RTs to words remained faster than RTs to nonwords, but with the difference staying the 

same, until the end of the experiment. Possibly, bilingual participants initially made either-word-

or-nonword decisions and then optimized their response criteria to make if-not-word-then-

nonword decisions.  

Using the same procedure, we computed the difference curve for monolingual 

participants (Panel D). They clearly distinguished words from nonwords from the very beginning 

— the difference curve is situated well above the zero-line across the whole experiment — likely 

because the processing of real words was highly automatized.  

 

< Insert Figure 2 around here > 

< Insert Table 2 around here > 

 

Nonlinear interaction involving cross-language similarity 

 

With GAMMs, we can model interactions between two nonlinear predictors. Under the 

assumption that languages have semantic representations in common (see, e.g., Bilingual 

Interactive Activation (BIA+) model, a localist-connectionist model of bilingual visual word 
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recognition with orthographic, phonological, and semantic representations, Dijkstra & van 

Heuven, 2002), cross-language semantic similarity (henceforth SS) is expected to facilitate word 

recognition. Furthermore, because bottom-up processing to the semantic level should proceed 

faster for higher frequency words, there may be more opportunity for SS to contribute for these 

words. Testing for an interaction of SS by Frequency requires a tensor product smooth with the 

te() function. Since SS is a meaningful measure only for bilinguals, we investigate a three-way 

interaction by requesting two wiggly regression surfaces, one for each of the two levels of 

FirstLanguage. The main effect of FirstLanguage should be included so that two wiggly 

surfaces can be set at appropriate places on the y-axis. 

 

> miwa.gam3 = bam(invRT ~  FirstLanguage +  

                   te(SS, Frequency, by = FirstLanguage) +  

                   s(Trial, by=FirstLanguage) + 

                   s(Trial, Participant, bs = "fs", m=1) +  

                   s(Participant, Frequency, bs = "re") +  

                  s(Word, bs = "re"),  

    data = miwa, discrete=TRUE) 

 

Both wiggly surfaces were evaluated as significant, and are visualized in Figure 3, Panel A for 

monolinguals and Panel B for bilinguals. These figures should be interpreted like a topographic 

contour map, with colder colors indicating shorter RTs. Unexpectedly, monolingual participants 

were also sensitive to some aspect of SS, possibly because when words share semantics across 

languages, they have more prototypical meanings. Here, we focus on how bilinguals made use of 

SS and Frequency, with monolinguals as the baseline of comparison. We therefore created a 

difference surface by subtracting the monolinguals’ surface from the bilinguals’ (see the 

supplementary material for the procedure). The difference surface was significant and is 
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visualized in Panel C in Figure 3. For bilingual participants, as can be seen in the right half of the 

difference surface, SS afforded more facilitation compared to monolinguals, specifically for 

high-frequency words. 

 

 

< Insert Figure 3 around here > 

 

Response times observed through the additive quantile regression 

 

 Just like LMMs, GAMMs estimate the mean, or more precisely, the expectation of the 

mean of the response. However, effects of predictors are not necessarily uniform across the 

distribution of response times. Effects may primarily affect early reaction times, or conversely, 

play a role primarily during late decision stages (see, e.g., Ratcliff, 1979; Schmidtke et al., 2017). 

Quantile regression makes it possible to predict any desired quantile of a response distribution. 

Thus, at the 0.1 decile, one can study early effects, at the median one can study the central 

tendency, and at the 0.9 decile, late effects. When fitting a model for a specific quantile, all 

datapoints in the distribution are taken into account, but datapoints far away from a given 

quantile are given less weight. By drawing multiple regression curves at different quantiles of the 

dependent variable, the effects of a predictor across the distribution of RTs can be gauged. 

In the following example, we illustrate QGAMMs (Fasiolo, Goude, Nedellec, & Wood, 

2017). Importantly, QGAMMs do not make any distributional assumptions about the residuals. 

Thus, no transformations of the response are required. The following model, fitted with 

mqgam() function of the qgam package (Fasiolo et al., 2017) predicts the specified quantiles of 

the RT distribution of the experiment reported by Dijkstra et al. (2010). For details on how to 

summarize and plot the resulting mqgam object, see the supplementary materials.  
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>  qntls = seq(0.1, 0.9, by = 0.2) 

> ldt.qgam = mqgam(RT ~ s(OS, k = 5)+ 

                       s(Frequency) + 

                       s(Trial) + 

                       s(Participant, bs = "re") , 

                 data = ldt, qu = qntls) 

 

The effect of OS is visualized in Figure 4. From left to right, the panels show the effect of OS at 

the 1st, 3rd, 5th, 7th, and 9th deciles. Its effect is present across all deciles. The nonlinear effect 

observed in the GAMM analysis (Figure 1, Panel C) is well-replicated at lower deciles (note that 

a QGAMM does not assess the difference between the quantiles statistically). From this analysis, 

we can infer that OS indeed contributes already at the earliest stages of word recognition.  

A QGAMM can also be used to track the time-course of an interactive effect of two (or 

more) predictors (for the interaction between OS and Frequency, see the supplementary 

material). 

 

 

< Insert Figure 4 around here > 

 

 

Conclusion 

 

 GAMMs and QGAMMs provide the analyst with tools that improve substantially on 

what the LMM makes available. Regression splines allowed us to address in more detail whether 

the facilitation for identical cognates reported by Dijkstra e al. (2010) is indeed substantial, or 

can instead be understood as the endpoint of a nonlinear trend. A reanalysis of Miwa et al.’s 
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(2014) data clarified that bilinguals and monolinguals responded differently to words and 

nonwords in the course of the experiment. We also illustrated the tensor product smooth for the 

nonlinear interaction of semantic similarity and word frequency, resulting in a wiggly regression 

surface. Using the QGAMM, we illustrated nonlinear orthographic similarity effects for both 

short and long response times. 

 GAMMs and QGAMMs are designed in such a way that if the true effect is linear, the 

model will discover this and report the effect as such. However, many effects in lexical 

processing turn out to be nonlinear, including not only the effect of word frequency, but also 

subject-specific effects of learning, fatigue, or fluctuations in attention, which can be modeled 

using factor smooths. The examples presented in this introduction cover only a small part of 

what is possible, and these statistical techniques are undergoing rapid further development. For 

interested readers, there are various other applications of GAMMs in language studies (see 

Chuang, Fon, Papakyritsis, & Baayen, 2020; Hendrix, Bolger, & Baayen, 2017; Murakami, 

2016; van Rij, Hendriks, van Rijn, Baayen, & Wood, 2019; Wieling, 2018). For understanding 

the quantitative structure of experiment datasets and how a response variable is shaped by both 

linguistic predictors, participant properties, and the experimental task, GAMMs and QGAMMs 

have much to offer for bilingualism research.  
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Footnotes 

 

1 Factor smooths for participant by trial typically account for a large part of trial-to-trial 

dependencies in reaction time experiments. Further control over these dependencies can be 

gained by incorporating in the model an AR(1) process in the residual error, see Baayen, 

Vasishth et al. (2017) and Baayen, van Rij, de Cat, Wood (2018). 

2 GAMs, as implemented in the mgcv package, provide many tools for dealing with 

datasets that violate the iid assumptions of the standard Gaussian modeling framework. When the 

data are not homoskedastic, the gaulss family argument enables fitting a model in which not only 

the mean, but also the variance, varies (potentially nonlinearly) with a predictor.  When residuals 

follow a t-distribution rather than a normal distribution, this can be accommodated with the scat 

family argument. Autocorrelations in the residuals can be modeled to some extent by positing an 

AR(1) process in the errors. For examples, see Chuang et al. (2020) for worked examples. 
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Table 1   

Summary of the GAMM fitted to lexical decision RTs of Dijkstra et al. (2010). Note: s(OS): 

spline for OS, s(Frequency): spline for Frequency, s(Trial, Participant): factor smooths for Trial 

by Participant, s(Word): by-word random intercepts. 

 
Parametric terms Estimate SE t-value p-value 
(Intercept) -1.88 0.06 -32.60 < .001 

     
Smooth terms edf Ref.df F p-value 
s(OS) 2.75 2.94 11.63 < .001 
s(Frequency) 3.17 3.44 23.24 < .001 
s(Trial, Participant) 65.67 189.00 12.76 < .001 
s(Word) 113.60 175.00 2.19 < .001 
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Table 2 

Summary of the GAMM fitted to lexical decision RTs of Miwa et al. (2014) 

 
Parametric terms Estimate SE t-value p-value 
(Intercept) -1.27 0.04 -29.63 < .001 
StimulusType Word -0.16 0.01 -11.39 < .001 
     
Smooth terms edf Ref.df F p-value 
s(Trial):StimulusType Nonword 1.00 1.00 30.48 < .001 
s(Trial):StimulusType Word 5.93 6.96 13.94 < .001 
s(Trial, Participant) 114.92 170.00 25.65 < .001 
s(Word) 374.28 448.00 5.06 < .001 
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Figure legends 

 

Figure 1. LMMs and a GAMM fitted to Dutch-English bilinguals’ RTs. (A) the effects of OS 

and Ident (red circle) in a LMM, (B) the quadratic effect of OS in a LMM, (C) the 

nonlinear effect of OS in a GAMM, (D) the nonlinear effect of Frequency in a 

GAMM, (E) by-Participant random wiggly curves for Trials in a GAMM, (F) the 

distribution of the random intercepts. Note that all the predictors are standardized and 

that the presented effects are partial effects (i.e., the contribution of the predictor to the 

fitted values, independently of the contributions of the other predictors in the model) 

 

Figure 2. Trial effects for words and nonwords observed through GAMMs. (A) the nonlinear 

trial effect seen in Japanese participants’ responses to words, (B) the linear trial effect 

seen in Japanese participants’ responses to nonwords, (C) the difference curve 

computed between the panels A and B, (D) the difference curve computed for non-

native speakers of Japanese. Note that Trial is standardized and that the presented 

effects are partial effects (i.e., the contribution of the predictor to the fitted values, 

independently of the contributions of the other predictors in the model) 

 

Figure 3. Nonlinear interactions between semantic similarity and target word frequency observed 

through GAMMs. (A) the nonlinear interaction between SS and Frequency for non-

native speakers of Japanese, (B) the nonlinear interaction between SS and Frequency 

for native speakers of Japanese, (C) the difference surface computed between the 

panels A and B. Note: colder color indicates shorter RTs. 

 

Figure 4. Effects of orthographic similarity at different deciles of the RT distribution obtained 

with QGAMMs.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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