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ABSTRACT
This paper presents a novel approach for automatic prediction of
risk of ADHD in schoolchildren based on touch interaction data.
We performed a study with 129 fourth-grade students solving math
problems on a multiple-choice interface to obtain a large dataset of
touch trajectories. Using Support Vector Machines, we analyzed the
predictive power of such data for ADHD scales. For regression of
overall ADHD scores, we achieve a mean squared error of 0.0962 on
a four-point scale (R2 = 0.5667). Classification accuracy for increased
ADHD risk (upper vs. lower third of collected scores) is 91.1%.
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•Human-centered computing→Usermodels;Touch screens;
User studies;
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1 INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is one of the most
commonly diagnosed psychiatric disorders for children. In recent
decades, a number of sources have reported an increase in pre-
scribed ADHDmedications, as well as ADHD diagnosis – especially
for young school children (e.g., [3, 24]).
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Core symptoms of ADHD are inattention, hyperactivity, and
impulsivity. The fact that these symptoms are non-specific and only
present in certain situations complicates a correct diagnosis.

Before the disorder is clinically diagnosed, screenings are per-
formed to evaluate a person’s risk of ADHD. For this, self-reporting
scales (such as ADHD Rating Scale-IV [7]), which assess behavioral
patterns that are considered ADHD risk factors, are calculated us-
ing short questionnaires (aimed either at the parents, teachers, or
at the children themselves).1

An often criticized problem of self-reporting questionnaires is
that they are not directly linked to the specific situational context
that is most relevant for a diagnosis. The questionnaires describe
situations for which participants need to predict or evaluate their
own behavior. This can be problematic, because individuals may
not be aware of how they react in certain situations, may have
difficulties in evaluating oneself objectively, or may differ in their
ability for introspection. The problem of context dependence can
be aggravated when different external raters (e.g., teachers and/or
parents) are involved. In this line of argumentation, it has been
suggested that additional behavioral data could allow for more
objective measures [17, 23].

In this paper, we propose an alternative approach to subjective
ADHD scales that makes use of touch interaction data combined
with pattern recognition techniques. We recorded a rich set of
data from 129 fourth-grade students during one-hour sessions with
a multiple-choice interface on a touch screen device. Instead of
using touch interactions as a supplement for a touch-enabled self-
reporting questionnaire, we use data recorded directly from an
academic setting to train our prediction models. Traditional pen-
and-paper questionnaires serve as labels for that data. While this
allows us to obtain more ‘natural’ touch interactions, using math
tasks for the data acquisition process furthermore enables us to
induce cognitive workload and monitor potential behavioral differ-
ences that changes in task difficulty might evoke.

The main contribution of this paper is a detailed analysis of an
objective ADHD prediction approach based on models trained from
features acquired using a multiple-choice touch interface. In the

1In practice, such self-reporting questionnaires are not only used for screening, but
also during the diagnostic process or for the evaluation of treatments.
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following, we describe the data collection and feature selection
process, and assess whether a student’s risk of ADHD as estimated
with a self-reporting questionnaire can be predicted using super-
vised machine-learning techniques. We also discuss limitations of
our analyses and how the presented approach could be put into
practice.

2 RELATEDWORK
As stated above, the most commonly practiced form of ADHD
screenings are subjective self-reporting questionnaires. Typically,
these self-ratings consist of 18 to 20 questions and take about five
minutes to finish. Good test-retest reliability, criterion-related va-
lidity, and internal consistency have been demonstrated [6, 7, 14].

Another standardized test for ADHD is a so-called continuous
performance test (CPT). A CPT typically uses software to present
stimuli in rapid succession and measure attention and impulsivity
bymeans of reaction times and error rates. Young et al. implemented
such a test within a smartphone application, which also captures
accelerometer and gyroscope data [27].

As for technology-assisted automatic prediction approaches, neu-
roimaging techniques have been well researched for their potential
to help understand the disorder, but also for their predictive power.
In recent years, technologies such as EEG, fMRI or fNIRS have
successfully been used to identify patterns associated with ADHD
using machine-learning techniques such as Support Vector Ma-
chines (SVMs) or Gaussian processes classifiers (e.g., [13, 19, 21]).
Another well-established approach is to assess ADHD using char-
acteristic patterns of eye movements [2]. For example, Fried et al.
found that adult ADHD patients were unable to suppress eye blinks
and microsaccades while performing a test of variables of atten-
tion [8]. Other approaches that aim at assessing ADHD symptoms
objectively rely on motion tracking hardware: For example, iner-
tia measurement units were used to classify children diagnosed
with ADHD with an accuracy of above 95% [22]. Infrared motion-
tracking systems have been applied to identify higher motor activi-
ties of ADHD patients [18].

A limitation of the above technology-assisted prediction ap-
proaches is the requirement of dedicated hardware, limiting their
application for rapid assessment of the disorder for a larger popula-
tion of students. With the recent increase of distribution of tablets
in schools, we consider touch technology to be a promising plat-
form for quick and efficient tests within the classrooms. After all,
modern touch sensors provide a rich set of interaction data that can
be obtained on most consumer devices without additional hardware
or modifications.

To the best of our knowledge, touch interaction data has not been
used to model personality traits or mental disorders as of yet. How-
ever, the potential of such data was demonstrated for classification
of age groups and mental states. Vatavu et al. used touch distance
offsets and tap times to distinguish small children from adults with
an accuracy of 86.5% after a single touch point [25]. Gao et al. used
touch trajectories from a smartphone gaming app labeled with self-
reporting questionnaires to train classification models for affective
states [9]. Classification accuracies for four emotions (excited, frus-
trated, relaxed and bored) were between 69% and 77%. In our own
prior work, we recorded touch data with a multiple-choice setup

and used SVM classifiers to distinguish between different levels of
cognitive workload [20]. Average classification accuracy of easy
vs. hard addition problems was 90.67%. The results furthermore
revealed that the individual classifiers and feature distributions
varied considerably between participants. This paper investigates
whether such behavioral differences as empirically observable from
recorded touch interactions can be used as a basis for cross-person
classification and regression models.

3 STUDY DESIGN AND METHODOLOGY
3.1 Study Description
We tested 129 students of seven local primary schools. All of them
attended the fourth grade and were between nine and twelve years
old (40.83%male).We did not perform a preselection of subjects with
regard to risk of ADHD. All participants filled out self-reporting
questionnaires in group sessions and completed a set of multiple-
choice math tasks on multi-touch devices (two students at a time).
The study was approved by the local ethics committee and by the
school board. All measures and procedures had to be sent in and
the responsible persons at both institutions reviewed data privacy
of our participants. With regard to the actual data collection, the
participating children invented a code that we used to match their
data and were instructed to not write their names on any of the ma-
terials. As stated above, this paper mainly focuses on the assessment
of the interaction data collected during the individual multi-touch
sessions. The self-reporting questionnaires were used to obtain
ADHD scores for all participants, which serve as ground truth for
the evaluation of our prediction models. The questionnaires con-
tained the German ADHD Symptom Checklist (FBB-ADHS) which
assesses the diagnostic criteria for ADHD (DSM–IV criteria and
ICD–10 for hyperkinetic disorders). The self-ratings consist of 20
items with a four-point rating scale ranging from “1 = not at all" to
“4 = very much" each. Nine of the items assess inattention (e.g., “I
find it hard to concentrate."), seven items assess hyperactivity (e.g.,
“I often wiggle my hands and feet or fidget in my seat.") and four
items assess impulsivity (e.g., “I often interrupt or disturb other
people."). The scales were proven to be internally consistent (alpha
scores between 0.69 and 0.75 for the subscales and 0.87 for the
overall symptom scale). Döpfner et al. demonstrated a construct
validity of 0.69 [6].

The used multiple-choice interface (as depicted in Fig. 1) looks
as follows: For each task, four possible answer boxes appear in each
of the four corners of the screen. The answer boxes can be selected
using an interactive crosshair-cursor element that appears in the
center of the screen at the beginning of each trial. Initially, the only
visible element is the crosshair-cursor. When the cursor is touched,
the current task instructions and four empty answer boxes appear.
The contents of the answer boxes only become visible, when the
cursor is dragged over them. When the cursor is released, it snaps
back either to the center (no answer box selected) or to the answer
box beneath it. A continue button allows to immediately go to the
next trial. No feedback is given on the correctness of an answer. The
applied interface is not optimized for efficiency but rather designed
to evoke drag gestures with high amounts of variance, which can
be exploited using machine-learning models.
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Figure 1: Themultiple-choice interface showing an addition
problem with low problem size that requires a carry oper-
ation (medium difficulty). The answer box at the top right
shows an incorrect probe.

Each participant completed a set of 96 math tasks. The tasks
were split into two sessions with a short break before the second
session. Task difficulty was balanced across sessions. As in prior
work [20], we used addition problems with a sum below 99 and
with varying difficulty levels, defined by the so called problem size
(sum > 40) and carry effect (sum of unit digits > 10). Both effects
have been identified to induce increased response latencies and/or
error rates for multi-digit addition problems (e.g., [1, 15]). Since our
participants correctly answered 89.34% of the easiest and 61.34%
of the hardest tasks, we are confident that the task difficulty levels
were a robust modulation of induced cognitive workload for the
tested population. Using such a set of addition problems has two
major advantages for the presented ADHD prediction approach:
first, it allows us to directly compare our methods and data with our
own prior results for cognitive workload prediction. Second, using
tasks, which robustly induce varying levels of cognitive workload,
is just as valuable for the prediction of ADHD scores, since ADHD
is linked to deficits in executive functions (e.g., [4, 26]). Using a
set of tasks with varying difficulty allows us to capture potentially
resulting behavioral differences and utilize them for prediction pur-
poses. This paper consequently includes a comparative evaluation
of cognitive workload classification accuracies with a special fo-
cus on differences in performances with regard to lower or higher
ADHD scores of our study participants.

Problem size and carry-over were manipulated orthogonally in
a factorial 2x2 design and problem size was matched between carry
and non-carry problems. The three incorrect answer probes (each
deviating from the correct answer by 2 or 10 to avoid parity based
solution strategies) were randomly but equally distributed across
the four answer boxes together with the correct answer.

The multiple-choice study was conducted on a Samsung SUR40
touch table using only a part of the screen space which corresponds
to the size of a regular iPad. We used a custom finger tracking

application, which allowed us to record all of the occurring touch
information. The test persons completed the tasks standing in front
of the table. The study was conducted within the schools and stu-
dents were successively fetched from their regular classrooms to
participate in the multiple-choice session, which lasted for about
an hour each. After a short introduction and an opportunity to
familiarize with the system, each subject completed two sessions
with 48 math trials each. Each block of six consecutive trials had the
same difficulty level and was concluded with a subjective difficulty
rating on a four-point scale (from ‘easy’ to ‘difficult’).

3.2 Data Basis
For each trial, we calculate a set of 70 features as suggested in [20]:

• 8 features that are not specific to multi-touch devices (correct
answer given, trial duration, time until login, idle time, time
until first touch / first movement / first box reached / correct
answer reached)

• 19 features that describe finger trajectories (number of strokes
(i.e., continuous movement without lifting the finger), num-
ber of stroke segments (segmented for every halt of the
movement, e.g., for a change of direction), travel distance,
average, minimum and maximum segment length and speed

• 3 features that describemovement in relation to the UI (travel
distance after first box / correct answer, number of boxes
revealed after correct answer)

• 40 features that are extracted from low-level touch sensor
data (pixel intensity range, shape descriptors, downscaled
4x4 sensor image and an approximation of applied pres-
sure). These features are specific to optical touch devices
and cannot be collected on a capacitive touch screen, as of
now. Please note that the used touch sensing technique is
susceptible to ambient light. Since our study was performed
directly within the school buildings and not under controlled
lighting conditions, the ambient light levels vary and thus
make the data impractical for models relying on data from
multiple sessions and persons.

We performed a comparative classification of cognitive workload,
in order to validate our data and methods and to assess coherences
between ADHD and cognitive workload (compare 4.1). For this, we
applied the above 70 features from the easiest and hardest trials
for training and evaluation of individual classification models. The
resulting two-class classificationmodels (low vs. high task difficulty)
each use trials from a single subject as samples.

For ADHD prediction, we generated models based on data from
multiple persons (cross-subject). Consequently, the ADHD score
regression and two-class classification models (low vs. high ADHD
score) use the subjects as data points. The 40 features extracted from
low-level sensor data are not reliable for this case of application,
because of changing lighting conditions between sessions. In order
to avoid overfitting, we do not apply data from all trials per user
as separate features, but use feature averages of the remaining 30
features across all 96 trials instead. Aside from that, we calculate
variation measures (variance and standard deviation), which make
for another 60 features. The differences between sessions one and
two were included as additional features, in order to account for
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behavioral changes during the course of the experiment. That way,
we obtain a set of 180 features for each subject.

The scores of the ADHD self-ratings are used as labels for the
touch interaction data. The resulting four constructs that we mod-
elled by means of touch interaction data are: overall ADHD symp-
tom mean score, as well as the subscales inattention, hyperactivity
and impulsivity. 20 of the 129 subjects did not complete a sub-
stantial number of items of the self-rating questionnaire. Since no
ADHD score labels are available for these subjects, they could not
be included in the ADHD prediction models.

3.3 Machine-Learning Methods
As stated above, the main contribution of this work is our assess-
ment of possibilities to predict ADHD symptom scores automati-
cally by means of touch interaction data. The questionnaire-based
ADHD screening, which we use to label the touch data, gives a
continuous score between one and four. Consequently, the most
natural way to implement ADHD score prediction is to treat it as a
regression problem, that is, learning the mapping function from a
dataset of known test persons to their corresponding ADHD scores.

In practice, ADHD screenings are used to identify individuals
who show strong symptoms of the disorder in order to decide
whether further tests and medical treatment might be appropriate.
This selection process requires to apply a threshold to the continu-
ous scale, which corresponds to a classification problem, where a
discrete class label (in this case ‘increased risk of ADHD’) is learned
from the data. Since we have successfully applied SVMs for classifi-
cation of cognitive workload from comparable data before [20], we
use SVM classifiers and Support Vector Regression (SVR) to create
our ADHD prediction models.

We evaluated the following models: regression of overall ADHD
scores and the three subscales for inattention, hyperactivity, and
impulsivity, as well as SVM classification for the same constructs.
We use RBF kernel functions in both cases. The model parameters
were optimized using a grid search approach and we used ten-fold
cross-validation for all evaluations.

As for feature selection, we evaluated the approach suggested
in [20] for learning of individual cognitive workload models using
F-Scores and compared it with two more computationally intensive
methods. The three tested conditions were Individual F-Scores (IF ),
Forward Selection (FS) and Backward Elimination (BE). IF uses F-
Scores to estimate the discrimination of the two sets for each of
the 70 touch features. The features are selected according to the
F-Score threshold, which gives the best classification accuracy.

FS starts with only one feature and incrementally adds additional
features according to best model performance until classification
accuracy can no longer be improved. BE starts with the complete set
of features and incrementally eliminates those features, which con-
tribute least to or harm the overall model performance. FS typically
finds smaller feature sets compared to BE [16]. However, there is
no guarantee that the optimal feature set will be found with either
technique [10].

We used a two-step evaluation procedure for both FS and BE:
Initially, a rough hyper-parameter grid search is included in a nested
ten-fold cross validation which selects the best / worst feature per
iteration for each fold. After this procedure has determined the

feature set with best overall performance, the hyper-parameters are
optimizedwith amore refined grid search (intervals fromC−6 toC16

andγ−14 toγ 8). For BE, we used a preselection according to sorted F-
Scores in order to avoid that potentially important features become
eliminated early in the process. This greatly increased robustness
of the selected feature sets and hyper-parameters across multiple
runs.

4 RESULTS
4.1 Cognitive Workload and ADHD
Our decision to work with data from an academic setting with tasks
of varying difficulty was influenced by the oft-asserted hypothesis
that ADHD reflects an executive function deficit [4]. For the purpose
of automatic ADHD prediction, it is thus particularly interesting
to also measure the impact of varying ADHD levels on automatic
prediction of cognitive workload. In this respect, we present our
results for cognitive workload prediction (both for the whole popu-
lation and separately for groups with lower and higher ADHD risk)
in the following section. The comparative evaluation also serves
the purpose of assessing the suitability of different feature selection
approaches. In this line, we trained individual cognitive workload
classification models for each of our 129 participants using three
different feature selection techniques (IF, FS, and BE). In the fol-
lowing, we discuss the classification results and implications for
ADHD prediction that result therefrom.

Cognitive workload classification accuracies with different fea-
ture selection techniques averaged across the whole population
are illustrated in Fig. 2. For IF, average classification accuracy is
89.61% (SD = 7.43) with individual accuracies between 52.67% and
100%. For FS and BE, average classification accuracies are 94.6%
and 94.62% (SD = 5.95 and 5.68). Minimum accuracies are 60.67%
and 64.68% and maximum accuracies are 100% in both cases. A
repeated-measures ANOVA with classifiers based on IF, FS and BE
as the three measures reveals significant differences between the
measures (F2,256 = 76.05; p < 0.001). Bonferroni adjusted post hoc
tests reveal that FS and BE perform significantly better than IF (p <

Figure 2: Comparison of cognitive workload classification
accuracies for different feature selection techniques. Both
FS and BE (blue bars) outperform feature selection based on
individual F-Scores (depicted in orange).
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0.001 in both cases). There is no significant difference between the
performances of FS and BE (p = 1.000).

As for the resulting feature sets, the number of used features per
classifier ranged from 1 to 48 (� = 12.63, SD = 11.77) for IF, from
1 to 48 (� = 6.94, SD = 8.71) for FS, and from 2 to 19 (� = 6.83, SD
= 4.08) for BE. Both FS and BE have a lower average number of
used features compared to IF. We deduce from these statistics that
a good number of noisy features is removed by both approaches.
Our observation that FS occasionally leads to bigger feature sets
can be explained by the fact that we still added features to the set
when they did not have an effect on classification accuracy. That
way, it is more likely to preserve potential feature interactions in
the final set without harming overall accuracy. However, it leads to
the inclusion of a number of irrelevant features.

Themean classification accuracies for subjects with higher ADHD
scores do not differ significantly from those for lower scoring sub-
jects: We achieve a mean accuracy of 93.57% for the upper third
of subjects regarding ADHD scores and 95.57% for the lower third
(compare Fig. 5). However, minimum classification accuracy is lower
and standard deviation is higher for the higher third (minimum
accuracy: 64.67% vs. 86% and SD: 7.21 vs. 3.70). We found some struc-
tural differences in the selected feature sets of these two groups:
number of boxes revealed after the correct answer is selected more
frequently for the higher third of ADHD scores, while trial dura-
tion, time until first touch, and time until first movement are selected
more frequently for the lower third. Average feature set sizes are
relatively constant (6.67 and 7.23 respectively). When looking at the
discriminating potential of single features estimated with F-Scores,
trial duration shows the most apparent differences between the two
groups (mean F-Scores 0.44 for the higher and 0.58 for the lower
third with SD = 0.41 and SD = 0.58 respectively). Besides, standard
deviation of F-Scores for correctness of the answer and time until
correct box was lower for the higher third (differences of -0.28 and
-0.37 respectively). Both features have weak negative correlations
with mean ADHD score (r = -0.2 and -0.18).

In sum, the above results confirm that our previous results for
classification of task difficulties [20] hold for a larger population
of students. We moreover found that computationally expensive
feature selection techniques, such as FS and BE, can further improve
prediction results compared to the established approach. Both were
selected for ADHD score prediction accordingly. Examining the
results of subjects with higher ADHD risk separately, we could
observe individual differences in behavior when working on tasks
of higher difficulty. However, the classification results only differ
in details. We did not observe any substantial differences regarding
classifier performance and selected feature sets.

4.2 Regression Models for ADHD Scores
As explained above, we trained regression and classification models
for ADHD scores and the three subscales using data from all 109
participants, who completed both the touch trials and the ADHD
screening questionnaires.

As for regression, we trained models using FS and BE with all
180 features (mean (�), standard deviation (σ ), and variance (σ 2)
of the 30 basic features, as well as differences in between sessions
one and two (indicated with a ∆ in front of the feature name)). We

Figure 3: Mean squared error of ADHD regression models
with different feature sets (lower is better). Reduced Set in-
cludes no information about timing and correctness of the
answer (only touch and UI related features). The baseline
(orange bar) uses only trial duration and correctness of the
answer.

compared these models to a baseline, which only uses trial duration
and correctness of the answer (�, σ , σ 2, and ∆ each). In order to
evaluate the features extracted from the swipe gestures in isolation,
we also included a reduced set of features in our analysis, which
only uses touch andUI related features and no timing information or
correctness. ν-Support Vector Regression (ν-SVR) with grid search
optimization and ten-fold cross validation was used for all models.
Mean squared error of the baseline model is 0.1766 with SD = 0.1854
(compare MSE values in Fig. 3). For FS and BE, mean squared error
of the best model is 0.1343 or rather 0.0962 with SD values of 0.3617
or rather 0.5667. The best reduced set model has a mean squared
error of 0.1421 (SD = 0.3425). Generally, BE clearly outperformed
the other models both regarding mean squared error and goodness-
of-fit. All models however performed better than the baseline.

Interestingly, the feature set found by FS only includes nine
features: trial duration (σ ),minimum divergence from the direct path
(� and σ 2), minimum curvature (σ ), ∆ number of stroke segments
(�), ∆ average curvature (� and σ 2), ∆ time until first touch (�),
and ∆ maximum divergence from the direct path to the right (σ 2).
Average curvature C of a stroke segment is calculated as the sum
of changes in direction ∆di along the trajectory:

C =
1

n − 4

n−2∑
i=3

1
2
∆di (pi−1,pi+1) +

1
2
∆di (pi+2,pi−2)

where n is the number of measurements collected for a segment.
It should be noted that C is negative for curvatures to the left, thus
minimum curvature should be read as ‘highest curvature to the left’.
Average divergence D is calculated as the average distance of all n
measured points on a trajectory from P1 to P2 to the direct path:

D =
1
n

n∑
i=1

dist(p1,p2, (x0,y0))

BE, on the other hand, finds a set of 30 features, including variabil-
ity measures (σ , σ 2, and ∆) for the number of strokes and segments,
segment length, divergence to the right, average, minimum, and max-
imum curvature, idle time, maximum speed, and travel distance after
the correct answer was revealed. A direct conclusion from this is
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that the recorded touch features contain interdependencies, which
a feature selection approach that starts with all available features
(such as BE) can exploit. Due to the above results, we only report
the results of BE feature selection for the three subscales: The best
model for inattention with a total number of 20 features has a
cross-validated mean squared error of 0.0942 (SD = 0.6544). For
hyperactivity, a model with 15 features achieves a mean squared
error of 0.1508 (SD = 0.4803). The best impulsivity model has a
mean squared error of 0.1829 (SD = 0.5280).

It is interesting to note that the feature sets for the three subscales
do not overlap heavily. While features derived from average or
minimum curvature, minimum segment length and some type of
timing information (most timing features are highly correlated, so it
is to be expected that different features will be selected for different
models) are used for all three, other features seem to be beneficial
for only one or two of the scales. A more detailed description of
which features carry the most weight for each of the scales is given
later in this paper.

4.3 Classification Models for ADHD Scores
In practice, automatic ADHD screening from interaction data as
proposed in this paper could be applied to identify students with
particularly high risk and invite them for further testing. As illus-
trated in Fig. 4, our data basis does not include a large body of
high scoring students. For classification purposes, using only the
highest scores (e.g., 2.5+) for the ‘high ADHD’ class would lead to
a highly imbalanced classification problem that would be prone
to overfitting the few high scoring participants. Consequently, we
were looking for a partition of the data, which includes a maximum
number of subjects while still maintaining disjoint ADHD scores
and a balanced number of samples per class. We therefore split the
dataset into thirds and used the upper vs. the lower third of par-
ticipants regarding their ADHD scores as classes for our two-class
classification problem. In the following, we use ‘high ADHD’ and
‘low ADHD’ as class labels to refer to the upper and lower third of
collected ADHD scores (rather than absolute values).

The low-scoring third has a maximum score of 1.52 and the high-
scoring third has a minimum score of 1.75. Although we would
adjust this threshold upwards when data from a clinical study with
larger quantities of high ADHD scores becomes available, this par-
tition of the data ensures a balanced distribution of samples across
the two classes. While certain interaction patterns might be more
pronounced for students with very high ADHD risk, the resulting
models for this classification problem can still help us identify pat-
terns that emerge for increasing ADHD scores and validate whether
automatic ADHD screening by means of touch interaction data is
practically feasible.

Again, we trained a model that only uses trial duration and
correctness of the answer (�, σ , σ 2, and ∆ each) as a baseline for
classification of mean ADHD scores. However, a model with all
eight baseline features performed significantly worse than a model
selected with backward elimination from the subset (60% vs. 70%
cross-validated classification accuracy). We consequently only de-
pict this improved baseline model in Fig. 5. It is worth noting that
ADHD baseline only uses variability measures derived from trial
duration – i.e., correctness of the answer is not included.

Figure 4: Histogram of ADHD scores. We used the upper
third vs. lower third of the subjects for two-class classifica-
tion.

Using the full set of features and BE, we achieve a classification
accuracy of 91.1%. Without timing information or correctness of
the answer included in the feature set (ADHD Reduced in Fig. 5),
classification accuracy drops to 85.56%. As for the subscales, classifi-
cation accuracies for inattention, hyperactivity and impulsivity are
81.1%, 88.9%, and 86.7% respectively. Again, all of these accuracies
were achieved using BE for feature selection. Misclassifications are
mostly balanced across the two classes, with generally more false
positives than false negatives. False positive to false negative ratios
vary between 2:1 to 1:1.

As with the regression models, feature sets for the different
scales are relatively heterogeneous. This has to be expected, because
some of the features are highly correlated and can thus be selected
interchangeably. Still, there are certain noteworthy differences. In
particular, correctness of the answer and minimum segment speed
(�) are used for overall ADHD score classification, but for none
of the subscales. Overall, the best feature sets for hyperactivity
and impulsivity are more similar to each other compared to the

Figure 5: Classification accuracies for ADHD scores and the
three subscales (green bars). ADHD Baseline (orange bar)
only uses trial duration and correctness of the answer as a
starting set for feature selection. ADHD Reduced only uses
touch and UI related features. Chance level for two-class
classification is 50%.
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best set for inattention. The former two each contain multiple
features related to the shape of the touch trajectories (segment
length, curvature, and divergence from the direct path) with a total
number of 25 and 29 respectively, whereas only seven features
are used in the model for inattention. Despite these differences,
all models contain at least one feature from each of the feature
groups derived from trial duration, divergence from the direct path
and curvature.

In order to estimate the isolated importance of each feature, we
also evaluated all of the features in separation. For classification of
overall ADHD score, 29 single-feature models achieved a classifi-
cation accuracy of above 60%. The list includes 22 features related
to touch trajectories. The best isolated performance was achieved
with maximum divergence from the direct path to the left (σ : 74.4%,
σ 2: 72.2%), and ∆ maximum curvature (σ 2: 70%). Other measures
for curvature and divergence from the direct path, correctness of the
answer and trial duration are also among the strongest isolated
features. For the baseline features correctness of the answer and
trial duration, session differences show the highest discriminative
potential (between 67.8% and 61.1%). Overall, session differences
make for 18 of the 29 strongest isolated features.

The impact of single features can also be assessed with a leave-
one-out approach using the best performing feature set for each
of the scales as a starting point. Table 1 shows the five features
that make for the highest decrease in classification accuracy when
removed from the respective best model for each scale.

Overall, features related to variability of behavior (i.e., σ , σ 2,
and/or ∆ features) have a major impact on classification results.
Only few absolute measures are among the strongest features ac-
cording to the above analyses (5 of 29 features with highest isolated
performance, and 3 of 20 features with highest accuracy when re-
moved from the best model as depicted in Table 1). Furthermore,
our results highlight the importance of features that describe the
shape of touch trajectories (curvature and length of segments, as
well as divergence from the direct path) for ADHD prediction.

5 DISCUSSION
Primarily, the above results confirm our hypothesis that ADHD
scores obtained with self-reporting questionnaires can successfully
be predicted by means of touch interaction data. Both the presented
regression models (with a mean error of 0.31 on a four-point scale
and SD = 0.5667), and the classification models (with 91.1% accuracy
for classification of the upper vs. lower thirds of ADHD scores)
have shown convincing performances. Our results furthermore
demonstrate that touch trajectories contain a substantive amount
of information for ADHD score prediction, since regression and
classification models that exclusively rely on such data outperform
the respective baseline models.

In the following, we have a closer look into how these results
can be interpreted and discuss the plausibility of our findings with
regard to the features that have been identified to have the strongest
impact on automated prediction of ADHD risk. While an exhaus-
tive interpretation of the single features and their relevance for
ADHD prediction with a detailed embedding in ADHD theory is
out of the scope of this paper, we still believe that some details on

Table 1: Features with the highest decrease in classification
accuracy for each scale when removed from the best model.

Overall ADHD score

∆ minimum segment length (σ 2)
∆ average curvature (�)
∆ correctness of the answer
∆ minimum curvature (�)
minimum curvature (σ )

Inattention

∆ minimum divergence to the right (�)
∆ average segment speed (σ )
trial duration (σ 2)
minimum divergence to the right (σ )
number of boxes revealed after correct answer (σ 2)

Hyperactivity

∆ number of strokes (σ )
maximum overall speed (�)
average divergence to the left (σ )
maximum divergence to the right (σ 2)
average curvature (σ )

Impulsivity

trial duration (σ )
travel distance after first answer is revealed (�)
average segment speed (�)
∆ number of stroke segments (σ )
∆ maximum curvature (σ )

the relationships of features and the used scales are important to
understand the behavioral patterns which our models are based on.

As expected (compare [5]), students with higher ADHD scores
showed more variability regarding the trial completion times (cor-
relation coefficients of 0.19 < r < 0.31 for σ and σ 2 of trial duration
with ADHD scores). Correctness of the answer is correlated with
overall score and inattention (r = -0.2 and -0.27), but only has minor
importance for prediction accuracy.

In general, features that describe the shape of touch trajectories,
particularly divergence from the direct path and curvature of the
trajectories, have proven to be of major significance – especially
for the prediction of hyperactivity and impulsivity subscales. More
precisely, variability measures (σ , σ 2, and ∆) of divergence and cur-
vature contributed greatly to overall prediction accuracy. While
some of these features are not or only weakly correlated with the
four scales, others show weak to moderate correlations with at
least one of the scales (compare Table 2 for correlation coefficients
of selected features). Notably, minimum and maximum curvature
(σ and σ 2) are positively correlated with overall ADHD score and
inattention (0.2 < r < 0.29), whereas average curvature (σ 2) shows
the strongest correlation with hyperactivity (r = 0.22). Change of
variability of average curvature between sessions is, however, nega-
tively correlated with overall score, inattention, and hyperactivity
(-0.28 < r < -0.2). In summary, we observed more variability in the
shape of touch trajectories of students with higher ADHD scores,
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Table 2: Pearson correlation coefficients for selected fea-
tures (some feature names have been abbreviated) with
ADHD symptoms. *: at least one feature from the feature
group (�, σ , σ 2) is used for regression, †: used for classifica-
tion

Feature Overall Inatt. Hyper. Impuls.

trial duration (σ ) 0.30† 0.30† 0.26*† 0.20*†

correctness (�) -0.20† -0.27 -0.14 -0.03
# segments (σ 2) 0.24*† 0.26 0.18* 0.09
max. segment length (σ ) 0.18 0.08 0.18† 0.22†

∆ min. segm. length (σ ) 0.15*† 0.14 0.04† 0.21*
avg. curvature (σ 2) 0.18*† 0.15 0.22 0.06
∆ avg. curvature (σ 2) -0.25*† -0.24* -0.28*† -0.05
min. curvature (σ ) 0.28*† 0.28*† 0.18*† 0.19*
max. curvature (σ ) 0.21*† 0.20 0.20 0.10
max. overall speed (�) 0.20* 0.13 0.20† 0.18
# boxes after correct (�) 0.11† 0.28† -0.05 0.01
travel distance (σ 2) 0.12 0.21 0.04 0.02
travel dist. after corr. (�) 0.13* 0.31* -0.01* -0.07*

and this variability did not change as much between sessions. Re-
garding trial duration, again, students with higher ADHD scores
showed higher variability (0.19 < r < 0.31). However, the group
difference in session differences is less pronounced.

Students with higher inattention scores interacted more with
the system after the correct answer was revealed at least once (r =
0.28 for number of boxes revealed after the correct answer has been
revealed, and r = 0.31 for the travel distance after the correct answer
has been revealed). We could not observe this for the other subscales.

The fact that variability measures generally had a higher impact
on prediction accuracies suggests that modelling the temporal se-
quencing of single trials with more longitudinal data could further
improve the results. Although we could observe differences in the
time sequences for students with higher ADHD scores for certain
features, our data basis does not support robust prediction models
that make use of the full temporal resolution as of yet.

Our results for workload classification prove that differences in
task difficulty induce a significant change in interaction behavior
regardless of ADHD scores. To a certain extent, these differences
are encoded in the used variability features. We still presume that
additional features that put a finer point to these differences could
further improve prediction accuracy. However, we found no sub-
stantial group differences between subjects with higher and lower
ADHD scores regarding change of touch behavior induced by in-
creased task difficulty. Adding features calculated only from the
most difficult tasks also did not improve ADHD prediction results.
Again, this could change with a larger set of interaction data or for
different tasks.

6 LIMITATIONS AND OUTLOOK
Regarding the practicability of our findings, a key limitation is
that we have only validated our prediction approach with scores
generated from self-reporting questionnaires. Although the used

questionnaires have been shown to have adequate construct va-
lidity, it remains uncertain whether our approach produces com-
parable results for subjects actually diagnosed with ADHD. As of
now, our results show that touch interaction data contains valuable
information for ADHD screening, but a direct comparison with
questionnaire-based approaches is not yet possible. By labeling our
data with scores from self-reports we cannot become better than
the questionnaires used to obtain these scores.

In order to confirm the practicability of our ADHD prediction
approach, we have to verify our methods in a clinical follow-up
study with children diagnosed with ADHD. Additional data from
confirmed ADHD patients is indispensable for future real-world ap-
plications, because the dataset that we have used for this work only
contains few very high scores. Ideally, a model should be trained
with a balanced number of samples across the whole spectrum of
ADHD scores.

Although our study was conducted within classrooms, it should
still be considered a lab study with controlled conditions and a lim-
ited timeframe. A longitudinal study embedded in everyday school
life would provide larger quantities of interaction data, which could
allow for machine-learning models with a more fine-grained tem-
poral resolution taking greater account of the behavioral variability
attributed to ADHD.We believe, however, that it is vital to maintain
maximum transparency on the intended purpose of the data col-
lection process and to deal responsibly with the collected personal
data – especially when handling sensitive issues such as mental dis-
orders. On that note, a short test session might even be preferable
to continuous data collection, although the increased quantity of
data could enable precise time series classification (e.g., with Long
Short-Term Memory networks [12]).

In practice, a short test could use a combination of touch data
and other modalities such as speech or facial expressions. It might
even be beneficial to combine our methods with a traditional self-
reporting questionnaire integrated into our multiple-choice setup.
That way, self-reporting scales could be bolstered with the proposed
interaction data models. It should, however, be noted that the re-
ported models are specific to the used combination of tasks and UI.
Changing the scenario, the interface or the dimensions of the touch
screen could yield different interaction patterns and consequently
lead to different models.

Furthermore, we believe that it is necessary to further look into
the underlying behavioral patterns that our prediction models are
based on. This could give new insights on how students with high
ADHD risk interact with a touch screen, which could in turn yield
valuable guiding principles for the design of future adaptive systems
that foster learning for children suffering from ADHD. Given our re-
sults and prior findings about intra-individual variability of ADHD
patients [5], we consider statistical methods that are well suited to
handle time series data (e.g., generalized additive models [11]) to
be particularly well suited for follow-up analyses.
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