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Abstract

Studies of morphological processing have shown that semantic trans-
parency is crucial for word recognition. Its computational operational-
ization is still under discussion. Our primary objectives are to explore
embedding-based measures of semantic transparency, and assess their im-
pact on reading. First, we explored the geometry of complex words in
semantic space. To do so, we conducted a t-distributed Stochastic Neigh-
bor Embedding clustering analysis on 4,226 Malay prefixed words. Sev-
eral clusters were observed for complex words varied by their prefix class.
Then, we derived five simple measures, and investigated whether they
were significant predictors of lexical decision latencies. Two sets of Linear
Discriminant Analyses were run in which the prefix of a word is predicted
from either word embeddings or shift vectors (i.e., a vector subtraction
of the base word from the derived word). The accuracy with which the
model predicts the prefix of a word indicates the degree of transparency
of the prefix. Three further measures were obtained by comparing embed-
dings between each word and all other words containing the same prefix
(i.e., centroid), between each word and the shift from their base word,
and between each word and the predicted word of the “Functional Repre-
sentations of Affixes in Compositional Semantic Space” model. In a series
of Generalized Additive Mixed Models, all measures predicted decision
latencies after accounting for word frequency, word length, and morpho-
logical family size. The model that included the correlation between each
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word and their centroid as a predictor provided the best fit to the data.

Keywords: semantic transparency, embeddings, morphology, lexical
decision, Malay
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2 Introduction
A remarkable phenomenon in language processing in skilled readers is
the ability to rapidly decode and extract meaning from written words.
A growing body of research on semantic transparency addresses the ease
with which a word’s meaning is understood, with greater degrees of trans-
parency associated with easier word recognition (e.g., Chee and Yap, 2022;
Diependaele et al., 2009; Feldman et al., 2002; Jared et al., 2017; Libben
et al., 2003; Marelli and Baroni, 2015). Semantic transparency is typi-
cally defined in terms of compositionality, that is, the extent to which the
meaning of a complex word can be predicted from the meaning of each
of its constituents. From a decompositional perspective of morphological
processing (Taft and Forster, 1975), adapatable is transparent because the
morphemes adapt + -able describes something or someone that possesses
the ability to adapt, whereas moonshine is fairly opaque as it refers to a
type of liquor, rather than following straightfowardly from the meanings
of moon and shine. Word and paradigm, or realizational morphology,
offers an alternative explanation in which the word itself represents the
most basic unit and that the relationship of words is governed by rules of
analogy (e.g., Hockett, 1954; Blevins, 2016). In this case, moonshine is
regarded as semantically opaque because its features are neither related to
those of the whole words moon nor shine. A point of departure between
the two main approaches is whether or not there is an explicit representa-
tion of morphemes. In more recent distributed accounts of morphological
processing (e.g., Baayen et al., 2011; Baayen et al., 2019; Gonnerman
et al., 2007; Plaut and Gonnerman, 2000; Rueckl and Seidenberg, 2011),
typically implemented in the form of connectionist models, morphemes
are not explicitly represented. Instead, the representations of a word’s
form and meaning are shaped by its distributional properties such as the
statistical co-occurrences between spelling and meaning.

There is no clear consensus yet in the operational definition of semantic
transparency because word meaning can be studied in various ways (for
details on experimental discrepancies, see Auch et al., 2020). In many
of such studies, researchers have relied on human participant ratings,
a method that is relatively labor intensive. Here, we explore semantic
transparency using multidimensional word embeddings. Westbury et al.
(2024) observed that the initial idea of using high-dimensional matrices
to represent word meaning traces back to Osgood et al. (1957), despite
the lack of computing power at the time. To represent meaning numeri-
cally in a high-dimensional space is, therefore, not entirely a new concept,
but rather, a technique that has been refined over time (e.g., Landauer
and Dumais, 1997; Lund and Burgess, 1996). Moreover, evidence from
Bruni et al. (2014) suggests that the semantic relatedness of words rep-
resented by embeddings and human ratings are comparable. The present
study capitalizes on recent computational advances to explore the use of
high-dimensional word embeddings that may capture word meaning more
comprehensively and possibly offer a greater ecological validity compared
to small-scale participant ratings.
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A primary goal for the present study is to further facilitate studies
of Malay word recognition. The Malay language, or Bahasa Melayu, is
a relatively understudied Austronesian language spoken in many regions
of Southeast Asia such as Singapore, Malaysia, Brunei, and Indonesia.
Malay is rich in derivational morphology with minimal inflection. Deriva-
tional affixes are typically used to form words that are related in meanings
(e.g., ’baik’ good, ’kebaikan’ a good action/well-being). To accomplish the
goal of the present study, our first objective is to further augment the
Malay Lexicon Project 3, a morphological database, to include a variety
of semantic properties for words in the database. At present, the Malay
Lexicon Project 3 has estimates of orthographic-semantic consistency cal-
culated for a large subset of simple words. In this study, we calculated
several measures that estimate the degree of semantic transparency for a
large subset of complex words which will be added to the database. The
secondary objective is to evaluate whether, and how well, each measure
predicts response times.

3 Present Study

First, we explore the geometry of semantic transparency of complex words
in a high-dimensional semantic space and describe our calculations of
several measures of semantic transparency that use word embeddings.
Then, we evaluated each measure by determining whether they predict
lexical decision latencies in a series of Generalized Additive Mixed Models
(GAMM).

3.1 Semantic Geometry of Derived Words

A technique that has been gaining traction and typically used in areas of
machine learning to visualize high-dimensional data is the t-distributed
stochastic neighbor embedding clustering analysis (t-SNE; Van der Maaten
and Hinton, 2008). A t-SNE is an unsupervised nonlinear dimensional-
ity reduction technique. A key insight from Distributional Semantics is
that semantically related words appear in similar contexts. As such, se-
mantically related words have similar embeddings that appear closer in
the t-SNE space than other words. t-SNE has been used successfully to
explore productivity and semantic transparency of German (Stupak and
Baayen, 2022) and Mandarin (Shen and Baayen, 2022). Of particular rel-
evance, complex words in German show clustering by derivational suffix,
but not by particles. Similarly, in Mandarin, clusters were detected for
suffixes. Importantly, clusters in a t-SNE are driven by information that
is most saliently encoded in the embeddings.
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In this study, we adopted this technique to explore the morphological
structure of Malay prefixed words. Recent computational (Denistia and
Baayen, 2022) and corpus-based work (Denistia et al., 2022) on Indone-
sian prefixation, an Austronesian language closely related to Malay, have
shown that embeddings are informative in discriminating the semantics of
prefixes pe- and peN-. Pre-trained 300-dimensional word embeddings were
first extracted from FastText (Bojanowski et al., 2017) for all words in the
MLP database for which there are embeddings. Of those, 4,226 words con-
taining at least one of 10 prefixes were analyzed using the Rtsne package
(Krijthe and Van der Maaten, 2015) in R. The resulting output are the
spatial coordinates for each word in two dimensions as depicted in Figure
1. Considerable clustering is revealed for a variety of words colour-coded
by their derivational prefix, except for words containing peri- (n=3), pra-
(n=4), pe- (n=35), and se- (n=31) for which there are too few of such
words in our dataset for meaningful clustering, if any, to occur. MeN-
words (cyan) appear largely in the middle and represent the majority of
the data. BeR- words (yellow) cluster in two groups in the bottom right.
TeR- words (purple) mostly appear on the outskirts of meN- words in
the middle. PeN- words (red) appear on the edges forming an outer ring.
PeR- words (teal) are sparsely scattered only on the left. Ke- words (navy
blue) cluster in two groups in the bottom left. Importantly, across a va-
riety of prefixes, we observe a strong form-meaning correspondence such
that words containing the same prefix appear closer in semantic space to
each other than words that contain different prefixes.
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Figure 1: Note. Each coloured dot represents a derived word and each colour
corresponds to a particular prefix a word contains. Words that have similar
embeddings appear closer to each other in the t-SNE space than others.
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3.2 Embedding-based Measures

3.2.1 Linear Discriminant Analysis

Following the t-SNE analysis, we computed two measures of semantic
transparency of prefixes by conducting Linear Discriminant Analyses (LDA).
LDA is an approach used in supervised machine learning to solve classifi-
cation problems. Two sets of LDA models were run, each with a different
input, and examined whether each word is linearly separable in the em-
bedding space by their prefix. One dataset contained the vectors for each
derived word. The second dataset contained shift vectors for each word,
that is, the displacement in semantic space of the derived word from its
base by subtracting their vectors. Importantly, in both cases, the ac-
curacy with which the model successfully predicts a word’s prefix is an
index for the degree of correspondence between the form and meaning
of a prefix. The predictions of the LDA model that are derived from a
leave-one-out cross-validation approach are presented in Tables 1 and 2.
Results from the LDA are in tandem with those of the t-SNE, that is, the
LDA produced mostly correct classifications for words that contained pre-
fixes that cluster successfully in the t-SNE. As an example, of 754 words
that contained the prefix beR-, the LDA model accurately classified words
containing the prefix beR- 713 times, yielding an accuracy of .946 for the
prefix beR-. A cautious approach to the interpretation of the LDA re-
sults is to compare the proportion of correct classifications for each prefix
against a baseline accuracy. The baseline accuracy in this case is .40,
and can be calculated by taking the number of words that contain the
prefix that occurs the most (i.e., meN-) divided by the total number of
words. Overall, both LDA models predicted class membership accurately
(.93 using derived word vectors, and .88 using shift vectors), providing
evidence for the effectiveness of word embeddings and their shift vectors
in discriminating words of different prefixes.

6



Table 1: Predictions of Class Membership using Embeddings

beR ke meN pe peN peR peri pra se teR Total Accuracy

beR 713 4 21 0 1 1 2 0 0 9 754 .946
ke 5 456 2 0 16 25 0 0 3 2 509 .896

meN 15 5 1649 0 0 2 0 0 4 5 1680 .982
pe 0 7 0 14 10 4 0 0 0 0 35 .400

peN 1 20 0 7 618 31 0 0 1 0 678 .912
peR 2 22 1 2 15 155 0 1 1 1 200 .775
peri 0 2 0 0 0 1 0 0 0 0 3 .000
pra 0 0 0 0 1 1 0 2 0 0 4 .500
se 5 1 3 0 0 0 0 0 20 2 31 .645

teR 14 1 3 0 1 1 0 0 1 311 332 .937

Note.The prefix in each row represents the prefix of a word and the prefix in each
column represents the predicted prefix of a word. The bolded values represent the
number of correct classifications of the LDA model. The overall accuracy is .93

Table 2: Predictions of Class Membership using Shift Vectors

beR ke meN pe peN peR peri pra se teR Total Accuracy

beR 595 6 23 0 4 4 0 0 3 11 646 .921
ke 15 396 4 3 22 26 0 0 1 4 471 .841

meN 32 4 1290 0 4 2 0 0 5 6 1343 .961
pe 2 6 0 11 10 1 0 0 0 0 30 .367

peN 5 24 0 5 503 33 0 0 1 1 572 .879
peR 8 29 1 2 30 100 0 0 0 3 173 .578
peri 1 1 0 0 0 1 0 0 0 0 3 .000
pra 1 1 0 0 1 0 0 1 0 0 4 .250
se 7 6 0 0 2 2 0 0 8 2 27 .296

teR 15 3 5 0 1 3 0 0 2 214 243 .881

Note.The prefix in each row represents the prefix of a word and the prefix in each
column represents the predicted prefix of a word. The bolded values represent the
number of correct classifications of the LDA model. The overall accuracy is .88

3.2.2 Correlation Measures

Three measures of semantic transparency were further calculated for each
word. These are the correlation between each word and its prefix centroid
(i.e., the mean vector of all words containing a particular prefix), between
the vector of a word and its predicted vector derived from the Functional
Representations of Affixes in Compositional Semantic Space (FRACSS;
Marelli and Baroni, 2015) model, and between the derived and shift vec-
tors for each word.

In distributional semantics, the more two words occur in similar con-
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texts, the smaller the cosine of the angle between their vectors in semantic
space, and the greater their overlap in meaning. Alternatively, a very sim-
ilar measure that tends to be highly correlated with cosine similarity is
the Pearson correlation between two vectors. A greater cosine similarity
corresponds to a stronger correlation between two vectors. As such, the
correlation between each derived word and its centroid estimates the sim-
ilarity in meaning between each word and all other words containing the
same prefix.

The correlation estimates derived from the FRACSS model (Marelli
and Baroni, 2015) represent the similarity in meaning of the derived word
and the predicted word. The FRACSS model proposed a linear mapping
between the vectors of a derived word (e.g., revisit) and those of its base
(e.g., visit). To implement FRACSS, the first step is to calculate the
linear transformation that maps the vectors of a base word onto their cor-
responding derived words. This can be done by multiplying the matrix of
the word vectors and the inverse of that of their base words. The next step
is to calculate the predicted vectors of each word by multiplying the lin-
ear transformation with the vectors of the corresponding base words. For
a step-by-step code on the implementation of the FRACSS model and a
detailed discussion of FRACSS, see a JudiLing tutorial by Heitmeier et al.
(2024). To compute the correlation estimates derived from FRACSS, the
predicted vectors of each word are correlated with the vectors of the same
word extracted from FastText. In simpler terms, the FRACSS correlation
estimates represent the accuracy of the model in predicting a word, such
that larger correlation coefficients indicate a more precise mapping for a
derived word that is informed by its base.

Recall that the shift vector represents the displacement of a derived
word from its base. To illustrate, on the top panel of Figure 2, a larger
angle between the derived word and the shift vectors of a particular word
corresponds to a smaller angle between the derived and its base vectors,
thereby suggesting a smaller displacement of the derived form from its
base as they appear closer to each other in semantic space. In contrast,
on the bottom panel of Figure 2, a smaller angle (or stronger correlation)
between the derived and shift vectors of a particular word corresponds to
a larger angle (or weaker correlation) between the derived and its base
vectors. In such a case, there is greater displacement of the derived word
from its base, and are thus, semantically dissimilar as they appear far
apart in semantic space. In our dataset, the two pairs of vectors (i.e.,
derived-shift, and derived-base) are strongly correlated, r = -.7.
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Figure 2: Note. Vector illustration. Solid lines indicate vectors for the base and
derived word, and the dotted line represent the shift vectors. Of interest is the
angle between the base and derived vectors, and the derived and shift vectors
from the point of origin at (0, 0).

3.3 Evaluation of Measures on Behavioural Data

Each measure of interest was entered as a predictor, one at a time, in a se-
ries of Generalized Additive Mixed Models (GAMM) in R (R Core Team,
2025) using the bam function from the mgcv package (Wood, 2017) with
the directive discrete set to TRUE. Both bam and discrete=TRUE make
fitting a GAM model to a dataset much faster. Lexical decision laten-
cies for 1,719 words from 280 participants were extracted from previous
experiments of Malay visual word recognition (Maziyah Mohamed et al.,
2023; Maziyah Mohamed and Jared, 2023; Maziyah Mohamed and Jared,
2025). Only correct responses and RTs between 350ms and 3000ms that
were within 2.5 SDs from the overall mean RTs were analyzed, yielding
a total of 42,934 observations. Below we report whether each proposed
measure was a significant predictor of RT and compared the effectiveness
of each measure as predictors of Malay word recognition, with careful
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considerations of model residuals and concurvity statistics for model in-
terpretability (see Supplementary Materials).

For comparison, we first ran a baseline model without the predictors of
interest (see Table 3 and Figure 3). Whole-word frequency, word length,
morphological root family size and its interaction with word frequency
were entered as predictors. These predictors are shown to be crucial for
Malay word recognition in previous studies of the Malay Lexicon Project
(Maziyah Mohamed et al., 2023; Maziyah Mohamed and Jared, 2023;
Maziyah Mohamed and Jared, 2025). Word frequency and root family
size were log-transformed, and a te tensor product smooth was used to
account for the main effect each of frequency and root family size, and
their interaction. Random effects included trial number (centered and
scaled) and subjects, using a factor smooth interaction bs = “fs” and a
shrinkage directive m=1. This structure of random effects, adopted from
Chuang et al. (2021) and Baayen et al. (2022), is analogous to a ran-
dom effects structure in a linear mixed model that has by-subject random
intercepts and random slopes for trials. Results revealed a significant in-
teraction between whole-word frequency and root family size, such that a
facilitative effect of root family size on RT was most evident for lower fre-
quency words. A facilitative effect of word frequency was observed across
a large range of root family sizes. In addition, an inhibitory effect of word
length was observed, particularly for words that were very long (>11 let-
ters). These effects of whole-word frequency, root family size, and word
length on RT were consistently observed in subsequent models.

Table 3: GAMM - Baseline

Parametric coefficients
Variable Estimate Std. Error t p
Intercept -1.18 .03 -44.90 <.0001
ExpNo2 -0.21 .03 -7.18 <.0001
ExpNo3 -0.14 .03 -4.62 <.0001
Smooth terms
Variable edf Ref.df F p
Frequency*Family Size 13.84 16.57 146.01 <.0001
Word Length 6.47 7.49 154.52 <.0001
TrialNo, Subjects 863.38 2518.00 7.95 <.0001
R2 = .417
AIC = 12415.81

Note. Word frequency and root family size were log transformed. The model
syntax is inverse RT ∼ te(frequency*family size) + s(word length) + experiment
+ s(trial number, subjects, bs= ‘fs’, m=1). Inverse RT = -1000/RT; a negative
sign is used to make the interpretability more like traditional RT data.
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Figure 3: Note. Top row: Interaction between frequency and root family size
(left). Data represented by dark blue points. Warmer colours (e.g., pink, orange)
on the left-hand side denote longer RTs and cooler colours (e.g., green) on the
right-hand side denote shorter RTs. Numbers on contour lines represent fitted
inverse RT values. Partial effect of word length (right), with rugged lines on the
x-axis representing the distribution of the data. Bottom row: Partial effects of
trial number (centered and scaled) by subjects (left)

An additional five GAM models were run, each with all terms in the
baseline model and one measure of interest at a time. The two LDA clas-
sification scores were each entered as a linear predictor because there were
only 10 unique values, one for each prefix. All three correlation estimates
were entered as predictors using a thin plate regression spline smooth.
All five measures were significant predictors of RT. Most crucially, each
model that included the predictors of interest provided a better fit to the
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data than the baseline model (AIC = 12415.81).

A facilitative effect of the LDA accuracy was observed on RT. The
greater the proportion of correct classifications for a particular prefix,
the faster the responses. The accuracy of the LDA model in which shift
vectors were used as input was a better predictor of RT (AIC = 12398.76;
see Table 5) than the accuracy of the LDA that used the embeddings (AIC
= 12406.96; see Table 4).

The effect of the correlation between each derived word and their cen-
troid (AIC = 12325.08; see Table 6) on RT was facilitative, except for a
relatively small number of words that were very strongly correlated with
their centroids (r >.7 and above; see left panel of Figure 4). For a large
majority of the data, the closer a word is to all other words that share
the same prefix, the more easily it is recognized, as observed by shorter
RTs. If, however, a word is too close in semantic space to all other words
that share the same prefix, then word recognition appears more effortful,
as observed by longer RTs. It is possible that processing is more effortful
because such a word appears more confusable with its morphologically
related words.

Additionally, we observed a facilitative effect of the FRACSS correla-
tion estimates on RT (AIC = 12340.77; see Table 7). Higher estimates
indicate a more precise prediction of the derived word. Faster responses
were observed for words that were predicted more accurately by FRACSS
(see middle panel of Figure 4). In contrast, we observed an inhibitory ef-
fect of the correlation between the derived and shift vectors of each word
(AIC = 12381.06; see Table 8). As mentioned earlier, a stronger corre-
lation between the derived and shift vectors of a word indicate a greater
displacement of the derived form from its base. In such cases, slower re-
sponses are elicited (see right panel of Figure 4). Across all five measures,
the model that included the correlation between the vectors of the derived
word and its corresponding centroid provided the best fit to the data (see
Table 9).
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Table 4: GAMM - LDA (Embeddings)

Parametric coefficients
Variable Estimate Std. Error t p
Intercept -1.14 .03 -38.02 <.0001
LDA-Embedding -0.05 .02 -3.40 .0007
ExpNo2 -0.21 .03 -7.18 <.0001
ExpNo3 -0.14 .03 -4.58 <.0001
Smooth terms
Variable edf Ref.df F p
Frequency*Family Size 13.66 16.38 148.40 <.0001
Word Length 6.45 7.47 156.46 <.0001
TrialNo, Subjects 863.22 2518.00 7.95 <.0001
R2 = .418
AIC = 12406.96

Note. Word frequency and root family size were log transformed. The model
syntax is inverse RT ∼ te(frequency*family size) + s(word length) + LDA-
Embedding + experiment + s(trial number, subjects, bs= ‘fs’, m=1). Inverse
RT = -1000/RT; a negative sign is used to make the interpretability more like
traditional RT data
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Table 5: GAMM - LDA (Shift)

Parametric coefficients
Variable Estimate Std. Error t p
Intercept -1.14 .03 -40.66 <.0001
LDA-Shift -0.05 .01 -4.49 <.0001
ExpNo2 -0.21 .03 -7.17 <.0001
ExpNo3 -0.14 .03 -4.55 <.0001
Smooth terms
Variable edf Ref.df F p
Frequency*Family Size 13.52 16.24 150.19 <.0001
Word Length 6.47 7.49 157.36 <.0001
TrialNo, Subjects 863.21 2518.00 7.95 <.0001
R2 = .418
AIC = 12398.76

Note. Word frequency and root family size were log transformed. The model
syntax is inverse RT ∼ te(frequency*family size) + s(word length) + LDA-Shift
+ experiment + s(trial number, subjects, bs= ‘fs’, m=1). Inverse RT = -1000/RT;
a negative sign is used to make the interpretability more like traditional RT data

Table 6: GAMM - Correlation (Derived Word and Centroid)

Parametric coefficients
Variable Estimate Std. Error t p
Intercept -1.18 .03 -44.79 <.0001
ExpNo2 -0.21 .03 -7.20 <.0001
ExpNo3 -0.14 .03 -4.61 <.0001
Smooth terms
Variable edf Ref.df F p
Frequency*Family Size 13.41 16.06 146.12 <.0001
Word Length 6.47 7.49 158.03 <.0001
Correlation-dev.centroid 6.13 7.30 13.24 <.0001
TrialNo, Subjects 864.68 2518.00 7.97 <.0001
R2 = .419
AIC = 12325.08

Note. Word frequency and root family size were log transformed. The model
syntax is inverse RT ∼ te(frequency*family size) + word length + s(correlation-
dev.centroid) + experiment + s(trial number, subjects, bs= ‘fs’, m=1). Inverse
RT = -1000/RT; a negative sign is used to make the interpretability more like
traditional RT data
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Table 7: GAMM - Correlation (Target Word and Predicted Word; FRACSS)

Parametric coefficients
Variable Estimate Std. Error t p
Intercept -1.18 .03 -45.02 <.0001
ExpNo2 -0.22 .03 -7.29 <.0001
ExpNo3 -0.14 .03 -4.69 <.0001
Smooth terms
Variable edf Ref.df F p
Frequency*Family Size 14.00 16.73 147.08 <.0001
Word Length 6.38 7.40 129.71 <.0001
Correlation-FRACSS 5.52 6.63 12.35 <.0001
TrialNo, Subjects 862.79 2518.00 7.97 <.0001
R2 = .419
AIC = 12340.77

Note. Word frequency and root family size were log transformed. The model
syntax is inverse RT ∼ te(frequency*family size) + word length + s(correlation-
FRACSS) + experiment + s(trial number, subjects, bs= ‘fs’, m=1). Inverse RT =
-1000/RT; a negative sign is used to make the interpretability more like traditional
RT data

Table 8: GAMM - Correlation (Derived Word and Shift)

Parametric coefficients
Variable Estimate Std. Error t p
Intercept -1.19 .03 -45.18 <.0001
ExpNo2 -0.21 .03 -7.08 <.0001
ExpNo3 -0.14 .03 -4.48 <.0001
Smooth terms
Variable edf Ref.df F p
Frequency*Family Size 13.57 16.73 134.90 <.0001
Word Length 6.49 7.40 153.90 <.0001
Correlation-dev.shift 2.88 6.63 10.47 <.0001
TrialNo, Subjects 863.84 2518.00 7.96 <.0001
R2 = .419
AIC = 12381.06

Note. Word frequency and root family size were log transformed. The model
syntax is inverse RT ∼ te(frequency*family size) + word length + s(correlation-
dev.shift) + experiment + s(trial number, subjects, bs= ‘fs’, m=1). Inverse RT =
-1000/RT; a negative sign is used to make the interpretability more like traditional
RT data
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Figure 4: Note. Partial effect of each correlation measure on RT. Black lines on
the x-axis of each plot represent the data

Table 9: AIC Comparison

Model ∆ AIC
LDA-Derived 8.85
LDA-Shift 17.05
Correlation-Dev.centroid 90.73
Correlation-FRACSS 75.04
Correlation-Shift.centroid 34.75

Note. Difference in AIC scores are calculated by subtracting the AIC of each model
that included a predictor of interest from the AIC of the baseline model. Greater
values in the change of AIC score indicate a better fit to the data.

3.4 General Discussion

In the present study, we first sought to explore whether the embeddings
of Malay complex words cluster in semantic space by prefix, using t-SNE.
To make any meaningful interpretation, we focus on words containing a
prefix of a sizeable count. Namely, these are words that contained the
prefix beR-, meN-, teR-, peN-, peR-, or ke-. A key take-away from the
t-SNE analysis is the observation that there is considerable variation be-
tween complex words that arise from prefixes in Malay, a stark contrast to
polysemous particles in German that are semantically ambiguous (Stupak
and Baayen, 2022). More broadly, we have demonstrated that inquiries
into the semantic transparency of words can be meaningfully explored
using t-SNE.
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A detailed linguistic analysis of how these clusters emerge as depicted
in the t-SNE plot is beyond the scope of the present study. As an aside,
however, we inspected whether clustering occurs by word category. Across
languages, many previous studies have suggested that nouns and verbs
differ in their semantics and distributional properties (for a review, see
Vigliocco et al., 2011). We extracted word category information from the
msTenTen corpus, a Malay web corpus, on SketchEngine for each word in
our dataset. A large majority of the words in our dataset were assigned
as nouns. Some clustering was observed for verbs, although they appear
largely nested in the cluster of nouns (see Figure S1 in Supplementary
Materials). No obvious clusters were observed for adjectives. Relatedly,
the LDA model correctly classified nouns and verbs to a large extent,
but not for adjectives. The overall accuracy with which the LDA model
predicts word category is much lower (.77) than the LDA models that
predict a word’s prefix (.93 using word embeddings and .88 using shift
vectors). Most crucially, the clustering reported for prefixed words in the
present study is not confounded with word category.

A next step would be to identify a set of features in which these clusters
embody. Such a study will shed light on the kind of semantics that could
be extracted from word embeddings. We leave more fine-grained analyses
for future work. For an initial exploratory study on prefixed words, it
makes most sense to first examine whether or not complex words cluster
meaningfully by their prefixes. The results of the present study make
it sufficiently clear that word embeddings capture a rich knowledge of
semantic information that could be used to discriminate between complex
words.

A secondary objective of the present study was to calculate several
measures of semantic transparency and evaluated their impact on lexical
decision latencies in a series of GAM models. All five measures signifi-
cantly predicted decision latencies above and beyond classical predictors
of lexical processing and root family size. This finding complements prior
work in German (Stupak and Baayen, 2022) and Mandarin (Shen and
Baayen, 2022) in which distinct clusters in semantic space were formed
for words that share a derivational affix and show a strong semantic associ-
ation with their base words. In the present study, the correlation between
a word and its corresponding centroid emerged as the best predictor of
decision latencies.

Unlike word embeddings, the vector of a centroid does not represent a
real word, but rather, an average embedding that could be understood as
the prototypical meaning of the prefix. In our case, words are considered
related if they share a prefix. We showed that the speed with which a
word is processed is predictable in part from the strength of the semantic
relationship between a particular word and all other related words, such
that faster responses were elicited for a word that shares a strong semantic
relationship with its centroid. Such evidence provide empirical support for
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the potential of realizational morphology as a theory of lexical processing,
even for Malay, a language that is morphologically rich in derivation and
contains minimal inflection. Although subword embeddings are consid-
ered, morphemes are not explicitly represented. Realizational morphology
is typically discussed in studies concerning inflected forms. Only derived
forms were analyzed in this study. These results further support a previ-
ous exploratory study on Indonesian morphology (Denistia and Baayen,
2022) that used the Discriminative Lexicon Model (DLM; Baayen et al.,
2019. The DLM, grounded in word and paradigm morphology, is a com-
putational theory of the mental lexicon in which the whole word is taken
to be the most basic unit. The DLM consists of simple linear mappings
between high-dimensional representations of form and meaning (for de-
tails on the implementation of the DLM, see JudiLing tutorial; Heitmeier
et al., 2024). In that study of Indonesian morphology, the DLM accurately
discriminated between words containing prefixes pe- and pen-, often asso-
ciated with similar meanings, even though the model was not explicitly
informed about exponents and stems. On our to-do list is a closer inspec-
tion of the potential role of centroids in the DLM. Preliminary evidence
from the DLM trained on words in the present study’s dataset revealed
that there is indeed a strong correspondence between the centroid and the
linear mappings of a word’s form and its meaning (see Figure 5), further
justifying a promising role of centroids in word recognition.
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Figure 5: Note. Correlation heatmap of prefix centroid embeddings and a subset
of the linear comprehension mapping F that maps the embeddings of a word
form (trigrams) to its meaning (FastText) in the DLM. The set of trigrams
presented correspond to at least one of the prefixes. Darker shades, compared
to lighter shades, indicate a stronger correlation between the embeddings of the
centroid and comprehension mapping F. The strongest correlations are present
for the trigrams that correspond to the prefix, indicating that it is the prefixal
trigrams that contribute most to realizing the meaning of the centroid

Furthermore, each of the three models that included a correlation mea-
sure provided a better fit to the data than either of the two models that
included a measure derived from the LDA, providing support for analog-
ical patterns in contrast to strict classification. These findings resonate
with the results of several studies by Westbury and colleagues. In West-
bury (2023), both human animacy judgments and word embedding models
are shown to produce good approximations of animacy ratings on the ba-
sis of family resemblance rather than distinct category memberships. For
instance, words related to human beings such as professors received an
animacy rating of .60 by human participants and .55 by word embedding
models, providing more support for the idea of similarity compared to bi-
nary classifications even for a concept as basic as animacy. Westbury and
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Hollis (2019a) and Westbury and Hollis (2019b) successfully demonstrated
that the centroid, in their case, the mean vector of words in a particular
word category can be used to assess category membership such as nouns,
verbs, and adjectives. Words of a particular category are highly corre-
lated with their centroid. The authors noted that their findings regarding
centroids extend to many semantic properties. In the present study, we
establish that the centroid can be used to assess semantic transparency of
a prefix in Malay.

Between the two LDA-based measures, the model that included the
classification scores derived from the shift vectors provided a better fit
to the data than the model that included the classification scores derived
from just the word embeddings. The shift vectors represent a snapshot of
the transformation in meaning of the derived form from its base. Recent
work on English has shown that the semantics of pluralization varies by se-
mantic class, even though such differences are not marked morphologically
(Shafaei-Bajestan et al., 2024). For instance, the nature of the change in
semantic space from singular to plural differs between words that describe
a person or an animal. In that study, using shift vectors, distinct clusters
in a t-SNE were observed for a large set of WordNet supersenses that
include broad semantic categories for nouns. Our findings lend support
to prior work in that such movements through semantic space, up to the
point that the meaning of a derived form is realized, account for additional
information that is meaningful for word recognition.

4 Conclusion

The present study reports an exploratory analysis of the semantic geom-
etry of Malay word embeddings in high dimensional space. Techniques
used in machine learning were employed in the visualization of word em-
beddings for ease of interpretability and in the computation of embedding-
based measures of semantic transparency. We observed distinct clusters
of complex words varied by their prefix class. In addition, we provide evi-
dence that each embedding-based measure significantly predicts lexical de-
cision latencies. In particular, the model that included the correlation be-
tween each derived word and their centroid appears to be the best fit to the
data. That is, the similarity of each word to the prototypical meaning of its
prefix appears to be the best way to characterize semantic transparency.
These measures are available for a large set of Malay words and can be
downloaded in the latest version of the Malay Lexicon Project 3: https:
//osf.io/dhyzb/?view_only=e05e71b31cb54daf94a55f46f9cc82da
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