
A Discriminative Lexicon Approach to Word Comprehension, Production and Processing:
Maltese Plurals

Jessica Niedera, Yu-Ying Chuangb, Ruben van de Vijvera and Harald Baayenb

aDepartment of General Linguistics, Heinrich-Heine-Universität Düsseldorf, Germany;
bDepartment of General Linguistics, Eberhard-Karls-Universität Tübingen, Germany

nieder@phil.hhu.de

yu-ying.chuang@uni-tuebingen.de

Ruben.Vijver@hhu.de

harald.baayen@uni-tuebingen.de

Abstract

Comprehending and producing words is a natural process for human speakers. In linguistic
theory, investigating this process formally and computationally is often done by focusing
on forms only. By moving beyond the world of forms, we show in this study that the
Discriminative Lexicon (DL) model operating with word comprehension as a mapping of form
onto meaning and word production as a mapping of meaning onto form generates accurate
predictions about what meanings listeners understand and what forms speakers produce.
Furthermore, we show that measures derived from the computational model are predictive for
human reaction times. Although mathematically very simple, the linear mappings between
form and meaning posited by our model are powerful enough to capture the complexity and
productivity of a Semitic language with a complex hybrid morphological system.1
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1 Introduction.
Most formal and computational accounts of word structure unfold almost exclusively in the
world of forms: Forms are related to and compared with other forms. In these accounts the
main explanatory action takes place at the level of forms with rules or constraints explaining
the relations among forms that have related meanings, such as singular-plural pairs. Meaning
is conceived of as a static complement to the form. In such accounts it is implied that
once the form is explained, the meaning will follow. However, the view of meaning as
being static is put in doubt by latent semantics (Landauer & Dumais 1997), in which the
meaning of a form is represented dynamically as its distribution across phrasal contexts. This
raises the question as to how word forms and dynamic meanings can be comprehended and
produced. Under a dynamic conception of meaning, it is not obvious that a form’s meaning
follows from its form. We will address this question in this paper within the theory of the
Discriminative Lexicon (Baayen et al. 2019). We will argue that comprehension can
be modeled as a mapping of form onto meaning, and production as a mapping of meaning
onto forms. Empirically, our focus will be on the semi-productive noun plural system of the
Semitic language Maltese.

The prosodic theory of non-concatenative morphology laid out in McCarthy (1981) is
firmly grounded in the world of forms. It starts with underlying forms that are the starting
point for a set of rules that derive words’ surface forms. A Semitic verb form is conceived
of as consisting of a root, filled with consonants which carry the meaning of the lexeme
and its derivations, and a melody of vowels in which inflection is expressed. The Arabic
form kataba ‘he wrote’ consists of the root

√
ktb, which expresses the lexeme ‘to write’ and

the melody aaa, which expresses third person singular past. Both, consonantal root and
vowel melody are mapped onto a skeleton CVCVCV from left to right resulting in the final
word form kataba. Nouns, too, can have non-concatenative inflections; in Arabic or Maltese
non-concatenative plurals are referred to as broken plurals. These plurals can be analyzed
prosodically.

In subsequent work, the nature of the CV-skeleton changed, but not the fact that forms
are mapped onto forms. McCarthy and Prince (1996) and McCarthy and Prince (1990)
developed a theory, called Prosodic Morphology, in which the skeleton is replaced by
prosodic categories using Arabic non-concatenative broken plurals as a testing ground.

The singular nafs ‘soul’ has a corresponding broken plural nufuus. This plural can be
characterized as an iamb: A light syllable followed by a heavy syllable. Formally McCarthy
and Prince (1990) account for the iambic plural as a mapping of the phonological material
from the leftmost superheavy syllable (nafs) of the singular onto an iamb and a concomitant
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change of vowel quality.
In a further attempt to reduce stipulations about the shape of non-concatenative morphology,

Kastner (2019) proposed that the symbols for the verb and its inflectional features are first
inserted into a syntactic tree. Subsequently, general principles of the Hebrew sound system
account for the arrangement of the segmental material of the verbal root and its inflectional
exponents.

For instance, the root node
√
ktb ‘to write’ and its voice specification {a,a} for past

tense are inserted into the syntactic tree in a concatenative fashion as [Tense[Past [Voice
[v

√
ktb]]]] (where small v is a functional head). This results in the input form ktb,aa for

the phonological component. A hierarchy of constraints (Prince & Smolensky 2004) then
predicts the optimal output katab.

Instead of deriving Hebrew verbal forms from consonantal roots, as argued by McCarthy
(1981) and Kastner (2019), Ussishkin (2005) proposes that words are derived from other
words, subject to a set of prosodic and morphological constraints.

Many computational models of morphology likewise do not predict words’ forms from
their meanings, but from other forms of these words. Some of these models set up a list
of possible changes that have to be applied to move from one form to another, and then
seek to predict which of the possible form changes is appropriate given selected properties of
the base word. For instance, Ernestus and Baayen (2003) examined several quantitative
models that all were given the task to predict whether or not the stem-final obstruent
of a Dutch plural noun or verb form is voiced or voiceless. These models, which ranged
from recursive partitioning trees and logistic regression models to Analogical Modeling
(Skousen 1989), Memory-Based Learning (Daelemans & Van den Bosch 2005) and
Optimality Theory (Boersma & Hayes 2001), all performed with roughly the same
accuracy, suggesting that any reasonably decent statistical classifier, given access to the
relevant features of the base word, can accomplish this classification task.2 However, all these
models are incomplete, in the sense that to create an actual plural form, the appropriate
voicing feature has to be combined with further concatenation of the appropriate plural
suffix.

For Semitic languages such as Arabic and Maltese, predicting the plural of a noun is
set up as a classification problem by Dawdy-Hesterberg and Pierrehumbert (2014), focusing
on Arabic, and by Nieder and colleagues (2021a), focusing on Maltese. The former study used
the Generalized Context Model (Nosofsky 1986), the latter study applied memory-based
learning (Daelemans et al. 2001), Naive Discriminative Learning (Baayen 2011), as
well as an Encoder-Decoder deep learning architecture (McCoy et al. 2020) to generate

2Thus, the recursive partitioning algorithm of Belth and colleagues (2021) is also likely to perform well.
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plurals from singulars. The deep learning model stands in the tradition of the past-tense
model of Rumelhart and McClelland (1986), who derived English past-tense forms from their
present-tense counterparts.

The only way in which semantics plays a role in these grammatical and computational
models of inflection is through inflectional contrasts, such as singular versus plural, which
are used to set up separate classes of forms (Albright & Hayes 2003). However, it seems
unlikely that native speakers produce plurals from singulars (or vice versa). In her classic
study of the knowledge of children of English morphology, Berko (1958) notes that only
28% of the 4- and 5-year olds, and only 38% of the 5- and 7-year olds provided the plural
gutchess for the given singular gutch. van de Vijver and Baer-Henney (2014) also found that
many children repeat a novel given singular as plural in a wug test in German. Zamuner
and colleagues (2011) found that Dutch children are unable to form a novel singular from a
given, novel plural, while they have no problems providing a singular from a known plural.
However, they were reasonably successful in providing novel plurals from novel singulars.
Klafehn (2013) reports that Japanese native speakers are unable to provide inflected words
for provided novel words.

All these results suggest that producing a novel word form is not necessarily as straightforward
as simply applying a rule to manipulate a form in an appropriate context. But it is not just
results from wug tests that strongly indicate that plurals are not formed on the basis of
their singulars. Bybee (1995) argues that in Hausa it is more insightful to characterize a
plural in a product-oriented way: as a characterization of what makes a good plural in
Hausa, rather than as an instruction how to turn a singular into a plural. This is because
there is little predictability from singular to plural. A plural and a singular consist of
overlapping phonological material, but the overlap can be inconsistent from singular-plural
pair to singular-plural pair. Of course, there are situations in which form-to-form mappings
are useful. For instance, instructions for how to create the forms of a paradigm from its
principal parts can be quite helpful for second language learners, as a way to efficiently master
paradigms, and for analysts, as a way of coming to grips with the systems of implications
among word forms. But whether native speakers derive forms via other forms remains an
open question (Blevins 2016; Nieder et al. 2021a).

In this study, we move beyond the world of forms, and model comprehension as a mapping
of form to meaning and production as a mapping of meaning to form. We make use of a
computational implementation of Word and Paradigm Morphology (Matthews 1972;
Blevins 2016), the Discriminative Lexicon (DL) (Baayen et al. 2019), to model the noun
system of Maltese, a Semitic language spoken in Europe. The DL model differs from most
theories of morphology in that comprehension and production is achieved without requiring
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theoretical constructs such as stems, exponents, and inflectional classes. In general, the task
of morphological theory is often conceptualized as providing a formal mechanism specifying
what are possible meaningful words. The DL model divides this task into two subtasks:
first, to predict what possible forms are, given their meanings; and second, to predict what
possible meanings are, given their forms.

In psychology, several computational models have been put forward that construct
complex words starting from their meanings. The models by Levelt and colleagues (1999) and
Dell (1986) are similar in design to realizational theories of morphology (see, e.g., Bonami
& Stump 2016; Stump 2001). To our knowledge, these two psychological computational
models have not been implemented for and applied to languages other than English, and it is
therefore unclear whether the mechanisms of spreading activation and interactive activation,
that they make use of, can be made to work for complex morphological systems such as the
Maltese noun system.

Gaskell and Marslen-Wilson (1997) proposed a three-layer network model that maps
speech input onto semantics, while explicitly shying away from making claims about representations
that might develop in the hidden layer of their network. The triangle model of Harm and
Seidenberg (2004) likewise addresses the relation between words’ forms and their meanings,
using a more complex multi-layer network. This model has been tested not only on English,
but also on Serbo-Croatian (Mirković et al. 2005). Following their lead, the DL model
(Baayen et al. 2019) zooms in on the mappings from form to meaning in visual and auditory
comprehension, and the mapping from meaning to form in production. As in the above
connectionist models, both words’ forms and their meanings are represented by high-dimensional
numeric vectors. However, the DL model simplifies the connectionist multi-layer networks
of Gaskell and Marslen-Wilson (1997) and Harm and Seidenberg (2004) by removing all
hidden layers. The simple input-to-output network that results is mathematically equivalent
to multivariate multiple linear regression.

By representing words’ meanings numerically, it becomes possible to harness the power of
distributional semantics (Landauer & Dumais 1997; Mitchell & Lapata 2008; Mikolov et al.
2013) when considering the questions of what possible meanings are given words’ forms, and
what possible forms are given words’ meanings. This is important, because form and meaning
can show intricate interactions. For instance, Baayen and Moscoso del Prado Martín (2005)
called attention to irregular verbs in English (and as well in German and Dutch) being
more similar to each other in their meanings than regular verbs. The greater semantic
density of irregular verbs in English may underlie the interaction of semantic deficits and
regularity in aphasia reported by Bird and colleagues (2003), and modeled computationally

5



using distributional semantics by Heitmeier and Baayen (2021). Below, we shall see that
the broken plurals and the sound plurals of Maltese may also pattern differently in semantic
space.

Several studies suggest that the DL correctly predicts the forms of complex words (see
Baayen and colleagues (2018) for Latin verb inflection, Chuang and colleagues (2020) for
Estonian noun inflection, van de Vijver and colleagues (2021) and van de Vijver and Uwambayinema
(2023) for Kinyarwanda nouns and verbs, and Chuang and colleagues (2021a) for Korean
verbs). The first goal of the present study is to clarify whether the theory of the DL also
correctly predicts Maltese singular and plural nouns. Of particular interest is how well the
simple networks used by the DL are able to model not only concatenative morphology, but
also non-concatenative morphology.

The framework of the DL has also been used to predict how words are realized phonetically.
Tomaschek and colleagues (2021) modeled the duration of English word-final [s] for different
grammatical functions, Saito and colleagues (2021) used measures from the model to predict
tongue trajectories, Chuang and colleagues (2021c) predicted word duration for English
pseudowords as pronounced by native speakers of English, and Chuang and colleagues
(2021a) applied the model to word duration in Taiwan Mandarin. The latter study also
shows that the priming effects reported for Dutch in Creemers and colleagues (2020) are
correctly predicted by the model (see also Baayen & Smolka 2020, for German). In the light
of these results, the second goal of the present study is to clarify whether measures derived
from the model help predict lexical processing costs, as gauged with a cross-modal primed
lexical decision task.

The remainder of this paper is structured as follows. We first provide an overview of
plural formation in Maltese and report previous experimental and computational studies on
Maltese plurals. Section 3 proceeds with an introduction to the Discriminative Lexicon. We
then present the computational models that we developed for the Maltese noun system. We
report how well they perform as a memory for known words, and also examine the extent to
which the memory is productive, in the sense that it can handle unseen words that it has not
been trained on. Subsequently, we show how the theory can be used to obtain further insight
into the lexical processing of Maltese nouns in comprehension. We conclude this study with
a discussion of the new insights that our results bring to morphological theory on the one
hand, and its limitations on the other hand.
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2 Maltese plurals.
The turbulent history of Malta is reflected in the national language of the island. Maltese
developed from Maghrebi Arabic, and has absorbed influences from Sicilian, Italian and,
more recently, from English. These influences affected its lexicon and its morphology
(Hoberman 2007).

The Maltese noun plural system shows a perplexing amount of possible plural forms.
Maltese has a great number of typically Semitic non-concatenative plural forms—called
broken plurals in the Semitic linguistic tradition. Broken plurals are characterized by
differences in the prosodic structure of a plural as compared to its corresponding singular
form. For example, the singular form kelb ‘dog’ /kElp/ has the plural form klieb ‘dogs’ /kli:p/3

in which the coda consonant [l] of the singular is found in the onset of the plural form. In
addition, the vowel [E] in the singular form corresponds to [i:] in the plural. Schembri (2012)
distinguishes 11 different broken plural patterns. In Maltese, broken plurals account only for
a small proportion of plural forms of the language (Borg & Azzopardi-Alexander 1997, report
a proportion of 10%). In addition to broken plurals, Maltese also has a sizable set of sound
plurals and the majority of plurals belong to this category (Borg & Azzopardi-Alexander
1997; Nieder et al. 2021b).

Sound plurals are characterized by additional segmental material at the right side of the
plural in comparison to the singular: The singular form prezz ‘price’ has the plural form
prezzijiet in which the plural differs from the singular due to the presence of a particular
plural exponent, the suffix -ijiet. In their work, Nieder and colleagues (2021b) and Nieder
and colleagues (2021c) distinguish 12 different sound plural patterns (they count the dual
forms as a sound plural pattern) with different frequency distributions and productivity.
Table 1 below gives an overview of the Maltese sound and broken plural patterns and the
two possible dual forms.

The complexity of the Maltese noun system stems from two sources. One is the sheer
variety of suffixes and patterns exhibited in plurals. This sets Maltese apart from languages
in which the complexity of nominal systems is due to nouns falling into different declension
classes. The other complexity is the availability of several plural forms for many singulars,
without there being a noticeable semantic difference among the plural variants. For example,
the singular kaxxa (sg.) ‘box’ has two plural forms, one is a broken plural, kaxex, and one
is a sound plural, kaxxi; another example is the singular giddieb (sg.) ‘liar’, which has two
sound plural forms, giddieba and giddibin.

In addition to sound and broken plurals, Maltese shows other plural types for a small
3Another possible phonetic variant given in the online dictionary Ġabra is /klI:p/
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Singular Plural Gloss Plural Type

fardal fradal ‘aprons’ broken A, CCVVCVC
birra birer ‘beers’ broken B, (C)CVCVC
kbir kbar ‘big (pl.)’ broken C, CCVVC
ftira ftajjar ‘type of bread (pl.)’ broken D, CCVjjVC
bitèa btieèi ‘yards’ broken E, CCVVCV
sider isdra ‘chests’ broken F, VCCCV
marid morda ‘sick persons’ broken G, CVCCV
gèodda gèodod ‘tools’ broken H, (gè)VCVC
elf eluf ‘thousands’ broken I, VCVC
gèaref gèorrief ‘wise men’ broken J, CVCCVVC(V)
gèama gèomja ‘blind persons’ broken K, (gè)VCCV
karta karti ‘paper’ sound, -i
omm ommijiet ‘mother’ sound, -ijiet
rixa rixiet ‘feather’ sound, -iet
giddieb giddieba ‘liar’ sound, -a
meèlus meèlusin ‘freed’ sound, -in
kuxin kuxins ‘cushion’ sound, -s
triq triqat ‘street’ sound, -at
sid sidien ‘owner’ sound, -ien
baèri baèrin ‘sailor’ sound, -n
èati èatjin ‘guilty’ sound, -jin
qiegè qigèan ‘bottom’ sound, -an
spalla spallejn ‘shoulder’ dual, -ejn/ajn
sieq saqajn ‘foot’ dual, -ejn/ajn

Table 1: Maltese broken plurals, sound plurals and duals (examples taken from Schembri
2012; Nieder et al. 2021b). The words are provided in Maltese orthography. Long vowels are
respresented as VV in the CV structure for broken plurals. The digraph gè is historically a
pharyngeal fricative, which was lost in modern Maltese (Borg & Azzopardi-Alexander 1997).
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number of nouns, such as the suppletive plural, for example mara - nisa ‘women’ or a double
plural marking that is a blend of a broken plural and a sound plural suffix (called plural
of the plural by Mayer and colleagues (2013)), the singular tarf has the blended plural
trufijiet ‘edge’. A few words are pluralized with a dual suffix but grammatically behave like
plural words, for example sieq - saqajn ‘foot’ (Borg & Azzopardi-Alexander 1997; Mayer
et al. 2013).

2.1 Experimental and computational research on maltese plurals.

There exists both experimental and computational research on the Maltese nominal system.
In the following, we first discuss the experimental research on Maltese nouns before turning
to the computational studies.

Two experimental studies have clarified that native speakers use information about
pattern frequency to produce and process plural forms for singulars they never heard before
(Nieder et al. 2021b; Nieder et al. 2021c). While some plural suffixes and patterns occur
frequently in the language, for example the sound plural forms ending in -i and -ijiet or
the broken plural patterns characterized by the CV-templates CCVVCVC (broken A) and
CCVVC (broken C), others are found in a relatively small number of plural forms only
(see Nieder et al. 2021b; Nieder et al. 2021c; Schembri 2012, for detailed information about
pattern frequency in Maltese).

In a production study, Nieder and colleagues (2021b) asked Maltese native speakers to
produce plurals for existing singulars and pseudo-singulars. The plurals produced by the
participants reflected the frequency of the plural patterns in Maltese. The participants
made use of more frequent plural suffixes when they produced sound plurals and of more
frequent CV templates when they produced broken plurals (a finding that is also reported
by Drake (2018) for Maltese diminutives).

Further evidence for the importance of the type frequency of exponents (sound plurals)
and CV templates (broken plurals) emerged from a reaction time study by Nieder and
colleagues (2021c). Frequent broken templates and frequent sound plural exponents elicited
significantly shorter reaction times than infrequent ones. This experiment did not provide
evidence for an effect of plural type (broken versus sound): on average, response times for
both kinds of plurals were highly similar. Below, we return to this study, to show that,
nevertheless, the way in which responses are generated in this task differs for broken plurals
and sound plurals.

Computational analyses of the Maltese plural formation have focused on form-to-form
modeling using sets of rules or using analogical mappings. These computational studies are
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moving away from an earlier consensus among Maltese scholars, according to which there
are no rules governing broken plurals (as discussed in Schembri 2012).

Invariably, the singular form is taken as starting point for predicting the corresponding
plural form. Some models are classifiers for plural classes, others generate full plural forms
given the corresponding singulars.

Mayer and colleagues (2013) present a computational study of Maltese broken plurals
that focuses on the application of rules to form plurals from singulars. They propose a
set of four rules, based on the work of Schembri (2012), which derives broken plurals from
their singulars. These rules were shown to correctly derive 75% of all 654 forms in their
database that have a broken plural. This study shows unambiguously that the Maltese
broken plurals are to a considerable extent systematic, but it does not address the question
of how speakers select between broken and sound plurals. Furthermore, as mentioned above,
it is not self-evident from a cognitive perspective that speakers would create plurals from
singulars.

Farrugia and Rosner (2008) also focused exclusively on broken plurals, using an artificial
neural network with encoder and decoder hidden layers, to categorize and produce Maltese
broken plurals. As basis for their work they also edited the analysis of Schembri (2012).
Operating on phoneme-based representations, their model categorized nearly all nouns in
their dataset with an accuracy of around 98%. Although they report good results for forms
the model had seen in training, it did not perform well on unseen forms, achieving exact
matches between predicted and observed plural forms for only 26.6% of the cases.

This computational model again shows that there are indeed systematic relations between
the form of the singular and its broken plural form, and that these relations can be derived
from the data without requiring handcrafted rules. It remains unclear, however, how the
model would have performed if it had been trained on both broken plurals and sound plurals
jointly.

Nieder and colleagues (2021a) compared three different computational models to investigate
whether it is in principle possible to account for the form-based relations in Maltese nominal
paradigms without taking recourse to the construct of the morpheme: the Tilburg Memory-Based
Learner (TiMBL) (Daelemans et al. 2004), the Naive Discriminative Learner (NDL)
(Baayen 2011), and an Encoder-Decoder network. TiMBL and NDL are classifiers, the
Encoder-Decoder network is a model generating actual plural forms. The models were
trained on a dataset consisting of both sound plurals and broken plurals. The classifiers
were given the task to predict which class out of 8 plural classes (4 broken plural classes, and
4 sound plural classes: three for the three most frequent exponents, and one for all other
exponents) is appropriate for a given singular. TiMBL’s best performance under 10-fold
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cross-validation was 97%, whereas NDL’s best performance under 10-fold cross-validation
was 88.7%. The best performance of the Encoder-Decoder model was at 48.22%. Interestingly,
although information about the CV template has been reported to increase classification
accuracy for Arabic (Dawdy-Hesterberg & Pierrehumbert 2014), such information did not
improve the accuracy of the TiMBL classifier for Maltese.

What all these modeling studies clarify is that there is considerable structure in the
Maltese noun system. However, the best-performing models are either trained on only broken
plurals, or they are trained to predict form classes, including classes that lump together less
frequent form changes. Furthermore, all models focus on production, predicting plurals
from singulars without considering words’ meanings, and do not address the comprehension
of Maltese nouns. In what follows, we address this broader range of questions within the
framework of the discriminative lexicon. Before doing so, we first introduce the dataset that
we used for training and evaluating our models.

2.2 Dataset.

The dataset consists of all broken plurals listed by Schembri (2012) and all word forms
tagged as nouns from the MLRS Korpus Malti version 2.0 and 3.0 (Gatt & Čéplö 2013).
The resulting list of nouns was then enriched with information extracted from a Maltese
online dictionary (Ġabra, Camilleri 2013) using the free corpus tool Coquery (Kunter
2017), resulting in a dataset with singulars, their corresponding plurals and their glosses.
Subsequently, the dataset was manually extended with information about grammatical
number (broken vs. sound plural, dual or suppletive), CV structure, number of occurrences
(based on the Korpus Malti v. 2.0 and 3.0), origin (Semitic vs. Non-Semitic), grammatical
gender (based on Aquilina (1987)), concreteness (abstract vs. concrete), and type of noun
(verbal noun or collective noun).

The resulting dataset contains 6511 word forms in total: 3364 plurals, 3132 singulars and
15 dual forms. Of the 3364 plurals, 892 are broken plural forms while 2458 are sound plural
forms (with a total of 11 different sound plural types and 11 different broken plural types),
reflecting the proportion of plural types in use in Maltese. The remaining 29 nouns of our
dataset labeled as plurals have plurals that are neither of the broken nor of the sound type: 8
of these words have a double plural marking, for example sema (sg.) - smewwiet (pl.) ‘sky’,
which is a combination of a broken and a sound plural. Fifteen words are dual forms, such
as id (sg.) - idejn (dual) ‘hands’, and 6 words have a suppletive plural, for example mara
(sg.) - nisa (pl.) ‘women’, see Borg and Azzopardi-Alexander (1997) for further details.
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3 Predicting maltese noun inflection.
The models for the Maltese plurals reviewed in section 2.1 all predict the appropriate form
of a plural from its corresponding singular. However useful rules for building forms from
other forms may be for the teaching of a second language, it is far from clear that native
speakers and young L1 learners would follow the same procedure (Blevins 2016; Levelt et al.
1999; Dell 1986; Zamuner et al. 2011). The DL model proposed by Baayen and colleagues
(2019) takes as its point of departure that the task of morphology is to explain how listeners
understand complex words, and how speakers produce them. In other words, the DL focuses
on understanding words’ meanings given their forms, and producing words’ forms given their
meanings. Furthermore, the relation between form and meaning is modeled as immediate,
without any further intervening layers of representations.

The central ideas underlying the perspective of DL on form and meaning are illustrated
in Figure 1. In the upper left, the matrix C specifies, for three words w1, w2, w3, their
respective form vectors with values for two form features, f1 and f2. In the upper right,
the matrix S specifies the semantic vectors for the same three words, which have values
on the semantic dimensions s1 and s2. The form vectors are displayed in the lower left,
and the semantic vectors in the lower right. The mapping F takes the red vectors and
changes them into the blue vectors. Formally, this is done by post-multiplying C with F :
CF = S. Conversely, the G matrix takes the blue vectors and maps them onto the red
vectors: SG = C. The mappings that the DL sets up between numeric vectors representing
forms and numeric vectors representing meanings are the simplest mappings possible. They
can be conceptualized as simple artificial neural networks connecting form units (f1, f2) and
semantic units (s1, s2). In other words, the mappings implement full connectivity between
all form units and all semantic units. The networks do not make use of any hidden layers.
Equivalently, the mappings of the DL can also be understood as implementing multivariate
multiple regression. For comprehension, for instance, the F matrix can be interpreted as
the matrix with beta coefficients of a regression model. The beta weights in the first column
of F are used to predict the response variable given by the first column of S. Likewise, the
beta weights in the second column of F are used to predict the response variable given in
the second column of S. The same logic applies to the beta weights in G: For instance,
the beta weights in the first column are used to predict the response variable in the first
column in C. The method that we used to estimate the mappings F and G is taken from
linear algebra, for technical details, the reader is referred to Shafaei-Bajestan and colleagues
(2021).

In general, for a given set of n words and m dimensions in which differences in form are
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w1

w2

w3

w1

w2

w3

C =


f1 f2

w1 1 2
w2 −2 −2
w3 −2 1

 S =


s1 s2

w1 2 −4
w2 −4 4
w3 −4 −2



( f1 f2
s1 0.5 0
s2 0 −0.5

)
G

( s1 s2
f1 2 0
f2 0 −2

)

F

Figure 1: Linear mappings between form vectors (the row vectors of C, displayed in red on
the left) and meaning vectors (the row vectors of S, displayed in blue on the right). The
mapping F changes the form vectors into semantic vectors, and the inverse mapping G takes
the semantic vectors and changes them into the form vectors. The mappings F and G define
networks, the weights on connections from form features f to semantic features s, and from
semantic features s to form features f are given by the respective entries in the mapping
matrices.

expressed, we bring together their numeric form vectors into an n×m form matrix C. Given
k-dimensional vectors representing words’ meanings, we set up an n× k semantic matrix S.
The m × k mapping F takes the vectors in C and transforms these vectors as precisely
as possible into the semantic vectors of S. This is accomplished by solving the equation
CF = S.

For production, the DL model posits a k×m mapping G from the meaning vectors S to
the form vectors in C. This matrix is estimated by solving SG = C. For all but the smallest
toy examples, the predicted form vectors Ĉ = SG will only approximate the targeted
gold-standard form vectors C, which is why, following statistical practice, we use the notation
Ĉ rather than C. The same holds for the predicted semantic vectors Ŝ. Nevertheless, the
estimated weights are optimal, in the sense that they minimize the mean squared error. They
represent the endstate of learning that a simple two-layer artificial neural network can
achieve by endlessly iterating through the training data with the incremental learning rule
of Widrow and Hoff (1960). In what follows, we refer to the learning of the mappings using
the mathematics of multivariate linear regression as Linear Discriminative Learning
(LDL).
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3.1 Constructing the form matrix.

Lexeme Number Gender
kelb KELB singular M
kelba KELB singular F
klieb KELB plural M

Table 2: Paradigm for the Maltese noun kelb ‘dog’. In this example the singular word has
both a feminine and a masculine form. For words such as kelb that have a gender distinction
in the singular, we used the masculine as the gender for the plural, since Maltese does not
have a gender distinction in the plural.

To illustrate the central concepts of LDL, consider the Maltese toy lexicon listed in Table
2. This lexicon consists of a singular word for a male dog, a singular word for a female dog
and the plural word for both. The first modeling step is to make a decision as to how these
word forms can be represented as numeric vectors. One possibility is to decompose word
forms into triphones, which target, in a crude way, context-sensitive phone representations.
Heitmeier and colleagues (2021) present a systematic overview of modeling options for word
form representations in LDL. They report best generalizations for triphones (as compared
to biphones or quadrophones) due to their discriminatory power as a result of a balanced
number of unique cues (see Heitmeier et al. 2021). For our example lexicon, there are 11
distinct triphones. We couple each distinct triphone with a form dimension. Words that
contain a given triphone receive the value 1 for this dimension, and otherwise the value 0.
For our example lexicon, we obtain the following form matrix C.

(1) C =


#ke kel elb lb# lba ba# #kl kli lie ieb eb#

kelb 1 1 1 1 0 0 0 0 0 0 0

kelba 1 1 1 0 1 1 0 0 0 0 0

klieb 0 0 0 0 0 0 1 1 1 1 1



In this form matrix, the hash mark # represents a word boundary.
Instead of representing words’ forms by indicating which triphones are present, we can

set up form vectors that decompose a word’s form into its constituent syllables. In this study,
again based on the results of Heitmeier and colleagues (2021), we opted for bi-syllable cues
that are not only a linguistically-informed unit driving articulation (Levelt et al. 1999) but
are also known to capture certain suprasegmental effects (Heitmeier et al. 2021). Below, we
report results for simulations using these two ways of representing word form information.
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3.2 Constructing the semantic matrix.

The row vectors of the semantic matrix S represent a word form’s meaning numerically.
Within the general framework of distributional semantics, many algorithms are now available
for deriving semantic vectors (known as embeddings in computational linguistics) from
corpora (Baroni et al. 2014; Bojanowski et al. 2017; Joulin et al. 2016a; Joulin et al. 2016b;
Mikolov et al. 2013; Pennington et al. 2014; Yang et al. 2017). In the present study, we
explore two kinds of semantic vectors: vectors that we constructed ourselves in a linguistically
informed way, which we call simulated vectors, and ready-made vectors that were generated
with fasttext (Joulin et al. 2016a; Joulin et al. 2016b), which we call corpus-based vectors.

Simulated vectors.

The row vectors of the semantic matrix S represent words’ meanings in a high-dimensional
space. We can simulate such vectors using a random number generator. The idea underlying
this approach is similar to the statistical concept of ‘generating’ a statistical model: when
we model a response variable y as a linear function of x,

yi = a+ bxi + ϵi,(2)

the hope is that we can generate a dataset that has all the properties of the observed data,
with as only difference the measurement errors ϵi. When simulating semantic vectors, we do
the same: we set up a model that generates semantic vectors that represent the semantic
structure of words, apart from word-specific or idiosyncratic aspects of words’ meanings (see,
e.g., Sinclair 1991; Booij 1996, for word-specific semantics of inherent inflection). For our
example lexicon, we generated 11-dimensional vectors, matching the dimensionality of the
form matrix C. The result is a straightforward table with real-valued numbers.

(3) S =


S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

kelb 0.46 4.16 8.50 −4.46 8.96 −4.11 8.42 9.21 −25.75 15.83 −14.93

kelba 0.61 −11.93 8.09 1.00 3.44 −11.98 8.72 −4.75 −33.29 10.39 −2.12

klieb 5.67 9.84 11.26 0.85 10.69 −4.24 0.21 4.81 −26.47 10.82 −11.76



However, if we use this method to create semantic vectors for each word form, then,
unavoidably, the resulting semantic vectors are almost completely uncorrelated, which implies
that the meanings of these words are understood to be semantically entirely unrelated. When
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considering monomorphemic words, such uncorrelated vectors are justifiable as a very first
approximation that is no worse (but also no better) than representing words’ meanings by
their own symbolic nodes. However, since inflected words share inflectional features, we
need to generate vectors that properly reflect that for instance plurals are semantically more
similar to other plurals, and less similar in meaning than singulars.

Following Baayen and colleagues (2019), we generated semantic vectors of inflected words
by taking the (generated) vector of the lexeme and adding to it additional (generated)
vectors, one for each inflectional function. For the Latin noun horti (‘garden’, genitive
singular), for instance, a vector for genitive and a vector for singular are added to the vector
of garden.

−−→horti = −−−−−→garden +
−−−−−−−→singular +

−−−−−−→genitive.(4)

For Maltese nouns, we considered several semantic features: whether a noun is derived
from a verb (e.g., participles), whether a noun has collective semantics, whether a noun
has masculine or feminine gender, and number. The former two features were coded as
privative oppositions, that is, we added a vector representing collective semantics to collective
meanings, but left the semantic vectors of all other nouns unchanged. For the latter two
features, we generated semantic vectors under the assumption that here we have equipollent
oppositions. For number, we thus decided to construct three semantic vectors, one for
singular meaning, one for dual meaning, and one for plural meaning. For the forms kelb,
kelba and klieb, the semantic vectors in our example lexicon given above (matrix S) were
obtained by adding the pertinent inflectional vectors to the vectors of the lexemes, together
with error vectors representing words’ semantic idiosyncracies.

kelb: −−−→kelb + −−−−−−−→singular + −−−−−−−−→masculine + −→ε
kelba: −−−→kelb + −−−−−−−→singular + −−−−−−→feminine + −→ε
klieb: −−−→kelb + −−−−−→plural + −−−−−−−−→masculine + −→ε

(5)

An alternative coding for number, that we did not pursue, would be to code number as
a privative opposition, with an unmarked singular and marked dual and plural. However,
as the broken plurals are formally not marked variants of their corresponding singulars, we
opted for implementing equipollent semantic vectors for number.

In summary, we generate semantic vectors for inflected forms by addition of the primitive
vectors for their constituent meanings. This additive process is the way in which we approximate
the conceptualization of the semantics of inflected words.
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Corpus-based vectors using fasttext.

Although simulated vectors have been found useful for modeling morphological processing
in comprehension and production, they make the simplifying assumption that all base word
lexemes are semantically unrelated: their simulated semantic vectors are almost completely
orthogonal. In addition, the way in which inflectional semantics is accounted for may
also require more precision, see, for example, Shafaei-Bajestan and colleagues (2022) for
discussion of the semantics of the English noun plural. Instead of working with simulated
vectors, Baayen and colleagues (2019) derived semantic vectors for both content lexemes and
inflectional functions such as singular and plural by first morphologically tagging a corpus
(in their study, the TASA corpus, Ivens & Koslin 1991), and then using a method from
distributional semantics to construct semantic vectors for both content words and for the
inflectional (as well as derivational) functions identified by the tagger.

Since computational resources for Maltese are limited, for the present study, we complemented
modeling using simulated vectors with modeling using ready-made vectors that were created
with fasttext (Joulin et al. 2016a; Joulin et al. 2016b). Fasttext is an open-source library for
text classification and representation that offers the possibility to train a fasttext model
on a set of data or to download pre-trained vectors for various languages from https:
//fasttext.cc/docs/en/crawl-vectors.html. For this study, we opted for the latter approach.

Modeling with fasttext vectors has as advantage, compared to simulated vectors, that
the LDL mappings will be able to take into account similarities in meaning between content
words, as well as inflectional similarities. However, the algorithm underlying fasttext constructs
semantic vectors for words from semantic vectors of substrings of words by representing words
as a sum of their character n-grams (see Joulin et al. 2016a; Joulin et al. 2016b, for details
on how the vectors were created). As a consequence, it cannot be completely ruled out
that for inflected words the algorithm is capturing not only similarities in meaning but also
similarities in form.

We extracted fasttext vectors for the word forms in our data set using the pre-trained
300 dimensional word-vectors that are available for Maltese at https://fasttext.cc/docs/en/
crawl-vectors.html. For 4056 of the 6511 nouns in our dataset, fasttext vectors were available;
of these 4056 word forms, 2266 are singulars and 1781 are plurals.

In order to obtain some insights in how well fasttext captures the difference between
singular and plural meaning, we projected the 300-dimensional fasttext space onto a 2-dimensional
plane using Principal Components Analysis. A scatterplot of nouns in the plane of
the first two principal components, color-coded for number and plural type, is shown in
Figure 2. Interestingly, we find distinguishable clusters of singulars (light green) and plurals
(orange, dark green), albeit with considerable overlap. In addition, sound plurals (orange)

17

https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html


and broken plurals (dark green) seem to dwell in somewhat different semantic subspaces as
well. This is confirmed by a Linear Discriminant Analysis (LDA), which showed that a
classification of singular, sound plural and broken plural words using the first fifty principal
components reaches 85% classification accuracy. Apparently, number and type of plural are
to some extent intertwined with word meaning. This interaction of regularity with semantics
replicates a similar interaction for English regular and irregular verbs reported by Baayen
and Moscoso del Prado Martín (2005).
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Figure 2: Projection of fasttext semantic vectors onto a two-dimensional plane. Number and
plural types (sound and broken) are color-coded. Singulars and broken plurals cluster more
to the right on PC1, whereas sound plurals and broken plurals cluster more to the top on
PC2.

Figure 3 addresses how well fasttext captures differences in gender. Despite substantial
overlap of the clusters, LDA, again using the first fifty principal components, achieved a
classification accuracy of 79% and 70% for singular and plural words respectively. For the
other semantic features labeled in our dataset (concreteness, verbal noun, collective noun),
however, due to the fact that usually one level has overwhelmingly more tokens than the
other, no clustering in the semantic space could be observed.

Above, we mentioned that fasttext looks into words by representing word forms as a
bag of n-grams, and that as a consequence, it cannot be ruled out a-priori that similarities
in meaning are confounded with similarities in form. However, given the complexities of
the Maltese plural forms, it is unlikely that the clustering visible in Figure 2 is driven
predominantly by form similarity. Nevertheless, replication of this interaction of plural type
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Figure 3: Projection of fasttext semantic vectors onto a two-dimensional plane, spanned by
the first two principal components. The left panel plots singular feminine (red) and masculine
(blue) words, and the right panel plots plural words. PC2 captures to some extent plurality,
whereas PC1 captures aspects of gender, resulting in somewhat differentiated clustering
within number for feminine vs masculine nouns.

and semantics using, for instance, word2vec (Mikolov et al. 2013), would strengthen the
present conclusions for Maltese.

Evaluating model performance.

Before reporting how well the DL model approximates the Maltese noun system, we need to
explain how we evaluate model performance.

To evaluate comprehension, we calculated the correlations between a given word’s predicted
semantic vector (ŝi) and all the gold standard semantic vectors in the lexicon (the row vectors
of S). If ŝi has the highest correlation with the semantic vector of the targeted word (si),
comprehension is considered successful. On the other hand, unsuccessful comprehension
occurs when the highest correlation is with another word than target word. It should be
noted that for homophones, we consider comprehension correct as long as ŝi has the best
correlation with one of the homophone meanings, for example Maltese xark ‘shark’ /S5rk/
and xark /S5rk/ ‘a person who conducts business shrewdly or acts for their own material
benefit’ (note that there also is a Semitic word to express ‘shark’ available in Maltese: kelb
il-baèar). This is because here we are modeling the processing of words in isolation. Given
that it is not possible to recognize a specific homophone meaning out of context, we therefore
adopted this lenient evaluation metric for comprehension.
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With respect to production, as a first step, we generated for each word i the predicted
form vector ĉi from its semantic vector si. This predicted form vector, however, only provides
information about the amount of semantic support for the sublexical cues (such as triphones
or bi-syllables); it does not inform us about the order in which well-supported cues have
to be placed for articulation. For ordering, the model makes use of the order information
that is implicit in the sublexical cues. Take triphones, for example. The triphone kel
can be followed by elb (to form the word kelb), given the identity of the final diphone el
in kel and the initial diphone el in elb. In the absence of such overlap (e.g., for kel
and lie), no sequential ordering is possible. As the lexicon becomes larger, the number
of possible triphone combinations also grows, resulting in multiple candidate forms for a
given form vector ĉi. The candidate selected for articulation is chosen such that it best
realizes the meaning the speaker has in mind. Technically, this is accomplished by first
generating, for each candidate form ωj its predicted semantic vector ŝj, and then selecting
from these semantic vectors the one that is most similar to the targeted semantic vector
si that is to be expressed. In other words, we generate the predicted semantic vectors
for all candidate forms and select as model prediction the form vector associated with the
predicted semantic vector that has the closest meaning to the targeted meaning (a process
called synthesis-by-analysis by Baayen et al. 2018).

For the simulations presented in this study, we used the JudiLing package, an implementation
of LDL in the Julia language (Luo et al. 2021). For production, we used the learn_paths
function for ordering sublexical features into words. This algorithm takes predicted form
vectors, and learns to predict at what position(s) in a word a sublexical cue occurs. In this
way, each of a word’s sublexical cues is associated with a number reflecting how well it is
supported for its position in the word. We refer to this number as a cue’s positional support.
Only cues with sufficient positional support are taken into account when assembling the set of
word candidates. What counts as sufficient positional support is determined by a threshold
value θ: Only words with a positional support exceeding θ are taken into consideration.
More detail about the learn_paths algorithm can be found in Luo and colleagues (2021).
In Section 5.4, we will show that the total amount of positional support for a word’s cues is
predictive for reaction times to Maltese plurals.
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4 Modeling results

4.1 Evaluation on training data.

With two cue representations (one using triphones and one using bi-syllables) and two
semantic representations (one using simulated semantic vectors and the other using fasttext
vectors), we have in total four models. For comparison, the dimension of the simulated
vectors is set to 300, mirroring the dimensionality of the fasttext vectors. It should be noted,
however, that since fasttext vectors are not available for all the word forms in the dataset,
we therefore worked with a smaller dataset (n = 4056) when using fasttext. Comprehension
and production accuracies of the four models are presented in Table 3. For comprehension,
bi-syllable as cues yielded higher accuracies than triphones as cues, regardless of the kind
of semantic representation. With respect to production, we again see an overall advantage
of bi-syllable cues. In addition, while the difference between vector types is not large for
bi-syllable cues, with triphone cues, model performance with simulated vectors is a lot worse
than that with fasttext vectors. Given that there are more bi-syllable cues than triphone cues
(9821 vs. 4272 for the full dataset), the absence of sufficient semantic structure in simulated
vectors (e.g., all lexeme and inflectional features are orthogonal to one another) seems to be
potentially harmful when the form space is not well differentiated. On the other hand, the
model may be overfitting when bi-syllable cues are used. We return to this possibility below.

Given the high accuracy of all four models, we can conclude that the model generally has
a good memory for understanding and producing Maltese plurals. However, we do not know
how the model performs with respect to inflected forms that it has not encountered during
training. In other words, we do not yet know to what extent the model is productive. To
test this, we ran the model on a subset of the data that was not used during training. The
results of this process are reported in the following section.

comprehension production
simulated fasttext simulated fasttext

triphone 93.1% 95.6% 82.9% 91.1%
bi-syllable 99.8% 99.9% 99.0% 96.3%

Table 3: Model performance for comprehension (left) and production (right) for four
combinations of cue and semantic representations. For production, the threshold was set to
0.005 for both the simulated and the fasttext models.
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4.2 Evaluation on held-out data.

The question of whether our model is productive for Maltese is of considerable theoretical
interest because the noun system of Maltese is not straightforwardly regular. Although
some rules can be formulated, indicating that the system is not just random, the many
patterns for broken plurals and the wide variety of plural exponents characterize a system
for which full productivity cannot be expected. It would actually be strange and worrisome
if computational models were to be able to predict unseen forms with close to 100% accuracy.
Since regularity is generally seen as a prerequisite for productivity, the Maltese noun system
is perhaps best characterized as semi-productive. This possibility receives support from the
observation that native speakers of Maltese are often unsure about what the proper plural
of an unknown or infrequent word might be, as indicated by the production study in Nieder
and colleagues (2021b). In the light of these considerations, a substantial drop in prediction
accuracy is expected for held-out data, compared to the accuracy for the training data.

We also expect to find that for held-out data, production accuracy will be somewhat lower
than comprehension accuracy. This is due to the synthesis-by-analysis approach of the
model: to select a candidate path for production, the LDL model is using the results from
the comprehension model (see Baayen et al. 2018; Heitmeier et al. 2021, for further details).
The familiar asymmetry between production and comprehension (Boersma 1998; Pater 2004;
Smolensky 1996) was already visible in the results for the training data (see Table 3), and
we anticipate it will be present, and perhaps more pronounced, for the held-out data.

To examine model productivity, we held out 10% of the words in our dataset as testing
data. The held-out words were selected based on the criterion that all the sublexical cues and
inflectional features of the words have already been available to the model during training.
Furthermore, the held-out words were constrained to have lexemes that occurred in the
training data. In addition, we used the smaller dataset, instead of the full dataset, to enable
comparisons between simulated and fasttext vectors.

The testing data contained 174 singular forms and 205 plural forms. Of the plural forms,
192 were sound plurals, 12 were broken plurals, and one was a suppletive form. During
training, bi-syllable cues consistently outperformed triphone cues, both with simulated semantic
vectors and with fasttext vectors. This indicates that the models with bi-syllable cues, which
outnumber triphone cues, are not overfitting. In what follows, we only report results obtained
with bi-syllables.4

For comprehension, simulated vectors performed better than fasttext, with an accuracy
at 77.8% and 63.6% respectively. When the top 10 candidate meanings are considered,

4The triphone models with simulated and fasttext vectors are provided in the supplementary material.
The overall trend is similar, except that both comprehension and production accuracies are lower.
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comprehension accuracy increases up to 85.5% and 96.3%. A closer inspection of the
comprehension errors reveals a qualitative difference between the two kinds of semantic
vectors. For simulated vectors, the majority of the errors (91.7%) involve lexemes, that is,
the recognized form has a different lexeme than the targeted form. For fasttext vectors,
on the other hand, only about half of the errors are lexeme errors. The other half involves
number errors, for example, the singular form minuta ‘minute’ is recognized as its plural
counterpart minuti. The reduced number of errors for held-out data in the model with
simulated vectors suggest the orthogonality of the number features (singular, dual, plural)
in the simulated semantic space is beneficial for generalization. However, the simulated
vectors run the risk of oversimplifying the true complexity of plural semantics in Maltese
(see, e.g., Shafaei-Bajestan et al. 2022, for English noun plurals).

For production, model performance with simulated and fasttext vectors is similar, at
68.3% and 64.4% respectively5. With simulated vectors, the correct form appears among
the top 10 candidates for 72.8% of the held-out words; with fasttext vectors, this number
increases to 90%. Table 4 displays the comprehension and production results for the held-out
data.

comprehension production
simulated fasttext simulated fasttext

top 1-candidate 77.8% 63.6% 68.3% 64.4%
top 10-candidates 85.5% 96.3% 72.8% 90%

Table 4: Model performance for comprehension (left) and production (right) for the held-out
data. Rows indicate if only the predicted meaning (top 1-candidate) or the correct meaning
among top 10-candidates was considered for the evaluation.

The majority of correctly produced forms belong to singular and sound plural forms, for
both kinds of semantic vectors. Interestingly, in the case of broken plural forms we observe
a different pattern: Among the 12 broken plural forms in the held-out dataset, the model
using simulated vectors only produced one form correctly, while the model with fasttext
vectors produced all 12 forms correctly. This may be due to the clustering of broken plurals
in semantic space as gauged with fasttext (cf. Figure 2).

Further analyses on the production errors reveal that the type of errors that are made by
simulated and fasttext models are also qualitatively different. Overall, we identified seven
different error types for the production models that are shown in Table 5 below.

5For production of the held-out data, we lowered the threshold from 0.005 to 0.0005, and also for each
word form, we allowed two cues to have support lower than the set threshold. This adjustment was motivated
by the fact that some of the cues, due to their low frequency of occurrence in the training dataset, are not
encountered often enough to be properly learned, and therefore require a more lenient criterion for acceptance
as candidate cues for articulation.
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error type simulated fasttext target target lexeme predicted predicted lexeme
incorrect word 84 11 ġar neighbor brejk brake
wrong affix 15 2 satellita satellite satellitiku n.a.
phonetically close 10 68 mera mirror mara woman
singular 5 29 delegati delegates delegat delegate
plural 2 25 minuta minute minuti minutes
alternative plural 2 0 qlub cores qalbiet cores
missing diacritic 2 0 rivalità rivalry rivalita n.a.
sum 120 135

Table 5: Distribution of production errors from models with simulated and fasttext vectors
along with examples for target word forms and their lexemes and predicted word forms and
their lexemes (n.a. is given as lexeme for nonce-words).

In total, the two tested models produced 120 and 135 errors respectively. For most of the
errors that the simulated model makes, 84 of 120 (70%) compared to 11 of 135 (8.1%) for
the fasttext model, the predictions are far off from the targeted word forms. We labeled this
category incorrect word. While some of these incorrect word forms are actual Maltese
words, for example the model predicted ġar ‘neighbor’ for brejk ‘brake’, in some cases LDL
produced new word forms, for example the pseudo-word liku for ballu ‘dance (sg)’.

For 15 of 120 (12.5%) errors in the simulated model and 2 of 135 (1.5% ) in the fasttext
model, the models predicted a wrong affix. For example, the word satellita ‘satellite’ has the
sound plural form, satelliti. While the target form was satellita, the models produced the
non-existing form satellitiku using a wrong affix or additional phonological material, in this
case -ku, for their predictions.

We labeled 10 of 120 (8.3%) errors in the simulated and 68 of 135 (50.4%) errors in the
fasttext model as phonetically close. In these cases, LDL predicted a word form that
is phonetically similar to the target word form, for example mera ‘mirror’ instead of mara
‘woman’.

For the fasttext model, these kind of errors concern the majority of all errors, thus
highlighting the qualitative difference of the models’ prediction again.

Other errors, 5 and 2 of 120 (4.2% and 1.6%) for the simulated model compared to 29
and 25 of 135 (21.5% and 18.5%) for the fasttext model involve mixing up singular and
plural forms. For instance, the models predicted the singular delegat for delegati ‘delegates’.
Likewise, in another case the target word form was minuta ‘minute’ but the models predicted
the plural form minuti ‘minute’ instead.

In a few cases, 2 of 120 (1.6%) errors for the simulated model (please note that this error
did not occur at all in the fasttext model), LDL predicted an alternative plural form for a
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word that has multiple plural forms in our data set, for example qalba ‘core (sg)’ has three
plural forms, one sound plural (qalbiet) and two broken plurals (qlub and qliebi). The testing
data contained the broken plural form qlub, and the model predicted the sound plural qalbiet
instead.

This attraction to sound plurals is in line with the finding of a production study by
Nieder and colleagues (2021b), in which native speakers tend to use frequent sound plural
patterns for novel words.

The last minor group of errors, 2 of 120 (1.6%) of all errors in the simulated model (again,
please note that this error did not occur at all in the fasttext model), concerns a missing
diacritic. In two cases, the LDL prediction did not contain the diacritic of the target word
form, for example rivalita for rivalitá.

4.3 Discussion.

The explorations of Maltese noun inflection with LDL as computational engine for mappings
between form and meaning clarified that model performance is excellent with the training
data. For the held-out data, the model understands and produces unseen form with an
accuracy around 70%, an accuracy that actually is surprisingly high for a noun system that
is far from straightforwardly regular in many ways, and that can be expected to only be
semi-productive. Compared to previous modeling results obtained within the framework
of Word and Paradigm morphology (Nieder et al. 2021a), accuracy is much higher than
that of an Encoder-Decoder deep learning model, but lower than the exemplar-based model
implemented with TiMBL. The TiMBL model, however, was given a much simpler task,
namely, to predict classes of form changes, including classes bringing together many low-frequency
patterns of change. In comparison to data from real speakers, the LDL model results on
held-out data reflect the uncertainty of native speakers when it comes to infrequent words:
Nieder and colleagues (2021b) asked participants to provide plural forms for given singulars,
and observed that participants often were not able to provide the correct plural for existing
infrequent singulars.

One modeling result is especially intriguing, namely, that to properly produce broken
plurals for held-out data requires empirical, corpus-based vectors rather than simulated
vectors. Conversely, simulated vectors outperform fasttext vectors when it comes to sound
plurals. These observations suggest that there is a stronger isomorphism between the form
space and the semantic space for the broken plurals.

We conclude that the theory of the discriminative lexicon, as a computational formalization
of word and paradigm morphology, provides a useful framework for predicting what forms

25



are possible for listeners to understand, and what forms are possible for speakers to produce.
In what follows, we address the question of whether the way in which the discriminative

lexicon model formalizes listening and speaking (admittedly at a high level of symbolic
abstraction, especially when it comes to the representation of words’ forms) can contribute
to our understanding of human lexical processing. In the next section, we therefore examine
whether measures derived from the model can contribute to enhancing statistical models
fitted to response latencies in a primed lexical decision experiment with Maltese nouns that
is reported in Nieder and colleagues (2021c).

5 Modeling Maltese priming reaction times

5.1 Maltese priming study.

Nieder and colleagues (2021c) used a cross-modal priming paradigm with a lexical decision
task to investigate the lexical storage and processing of Maltese sound and broken plurals.

In their study, they included 144 written singular targets from a Maltese noun list that
appeared in one of two priming conditions: auditory primes were either 1) corresponding
plural prime word forms, for example klieb - KELB ‘dogs - dog’, or, 2) phonologically
and semantically unrelated control prime word forms that show the same plural suffix or
pattern like the corresponding plural word, for example bliet - KELB ‘cities - dog’. They
created two lists to prevent the same singular target appearing in both conditions for the
same participant. In addition, Nieder and colleagues (2021c) included 144 nonce singular
fillers created from existing Maltese singulars by changing the offset of the word forms (and
thus keeping an initial phonological overlap with existing words). These nonce fillers were
presented with the corresponding plural primes of the existing singulars that were used to
create nonce words with, for example klieb - KELT ‘dogs - nonce filler’.

To investigate a possible frequency effect, Nieder and colleagues (2021c) reduced the
Maltese plural variety substantially (see table 1 for an exhaustive list of the Maltese plural
suffixes and patterns again) by including two frequent sound plural suffixes (-i and -ijiet),
and two infrequent sound plurals (-a and -at), and two frequent broken plural templates
(CCVVCVC, broken A and CCVVC, broken C) and two infrequent broken plural templates
(CCVjjVC, broken D and CCVVCV, broken E). Their choice of including these plurals was
motivated by the frequency results of a production study reported in Nieder and colleagues
(2021b).

The results of the cross-modal priming study show no significant effect for plural type
(sound vs. broken), but instead Nieder and colleagues (2021c) report that the reaction times
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of their participants were significantly influenced by the frequency of suffixes and patterns
as well as by the word frequency of the singular targets. They conclude that Maltese sound
and broken plurals are processed in the same way with pattern frequency being an important
factor for lexical access.

5.2 Dataset.

For exploring the usefulness of our computational model for understanding actual lexical
processing, we re-analyzed the dataset from Nieder and colleagues (2021c). It contains 7885
observations (after removal of incorrect answers, practice trials and outliers) from fifty-nine
participants.

In the following, when using the frequency of suffixes and templates as a variable for the
model, we will use the terms pattern frequency and patterns to refer to both suffixes
and templates.

For the present study, we only used the reaction times for corresponding singular-plural
pairs, omitting the control condition that was present in the experiment. Thus, to take the
examples given above, we only included reaction times for klieb - KELB ‘dogs - dog’ but not
for bliet - KELB ‘cities - dog’. This left us with 3995 observations. We then removed all
words for which we did not have fasttext semantic vectors, resulting in a dataset with in all
2951 observations.

5.3 A baseline model.

Extending the analyses of Nieder and colleagues (2021c), we predicted response times with
plural type (TYPE), whether the plural form is sound or broken, and pattern frequency
(PFREQ), whether the plural pattern is frequent or infrequent (cf. Table 1). In addition,
we also included three lexical predictors pertinent to target words: frequency (FREQ),
neighborhood density (ND)6, and word length (LEN), measured in characters per word.
In order to detect potential non-linear trends of the numeric predictors, we made use
of the generalized additive mixed model (GAMM) provided by the mgcv package
(v.1.8-36, Wood 2017). The RTs (in seconds) were first inverse-transformed and multiplied
by -1 (so that small numbers still indicate fast RTs), and all the numeric predictors were
log-transformed. In the model we allowed the two categorical factors to interact, and included
by-subject random intercepts.

6Neighborhood density is calculated on the basis of the vocabulary of fasttext, the size of which is about
120 thousand words, with punctuation and hyphenated words excluded.
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Word length did not contribute to improving model fit, and is therefore not considered
in the analyses to follow. This is perhaps unsurprising, given that word length is highly
correlated with neighborhood density (r = 0.75) and frequency (r = −0.3). A summary of
the resulting model is presented in Table 6.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -1.7891 0.0380 -47.1069 < 0.0001
TYPEsound 0.0158 0.0178 0.8915 0.3727
PFREQinfrequent 0.0448 0.0179 2.5050 0.0123
TYPEsound:PFREQinfrequent -0.0198 0.0287 -0.6877 0.4917
B. smooth terms edf Ref.df F-value p-value
s(FREQ) 2.6296 3.1974 16.5970 < 0.0001
s(ND) 3.4840 3.8494 6.7397 < 0.0001
s(participant) 56.3240 58.0000 35.5194 < 0.0001

Table 6: Summary of a GAMM fitted to inverse-transformed RTs (-1/RT), with plural
type, pattern frequency, target frequency and neighborhood density as fixed-effect
predictors, and by-participant random intercepts.

For this smaller dataset, re-analyzed with a GAMM instead of an LMM, and with ND
as additional predictor, there is no evidence that RTs differ for broken and sound plurals,
replicating the findings of Nieder and colleagues (2021c) for the original full dataset. The
coefficient of pattern frequency indicates that plural primes with infrequent patterns induced
longer response times compared to plural with frequent patterns. Figure 4 presents the
partial effects of frequency and neighborhood density on RTs. The lines in the two plots
center around zero because the intercepts and the adjustments of categorical predictors (part
A in Table 6) are not included in the predictions: it is the effect of the predictor by itself that
is shown. For frequency, the effect is nearly linear, but levels off for the highest-frequency
words, a pattern often observed for word frequency in lexical decision tasks (see, e.g., Baayen
et al. 2006).7 The effect of neighborhood density, on the other hand, is much more wiggly,
and almost U-shaped. With the increase of neighborhood density, RTs first decrease and
then increase.

This U-shaped pattern suggests that participants responded faster for more probable
values of ND as found in the center of the ND distribution, and responded more slowly for
atypical values of ND, as found for atypically low and atypically high values of ND.

7Model fit can be further improved by including by-target random intercepts. However, due to very high
concurvity, this model becomes uninterpretable: The covariates do not explain anything that is not already
explained by the word-specific random intercepts. In this model, as well as in the model reported below, we
therefore did not include by-target random intercepts.
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Figure 4: Effects of frequency and neighborhood density on RTs, indicated by the wiggly
line. The blue area represent one standard error away from predictions. The rugs at the
bottom indicate datapoint positions.

5.4 Predicting reaction times with ldl predictors.

For predicting reaction times with measures based on discriminative learning, we opted
for using the model with bi-syllables as cues, and fasttext word embeddings as semantic
vectors. Bi-syllables were used as cues due to the better performance for these cues in
training (see Table 3 again). We used fasttext vectors because, unlike simulated vectors,
as we demonstrated above, they are remarkably sensitive to semantic differences between
stems, number, plural types (broken vs. sound), and gender. Moreover, recall that the
model using fasttext vectors did not only produce qualitatively different production errors
(see table 5 again) but, contrary to the model using simulated vectors, managed to arrive at
correct predictions for all broken plurals in the held-out data.

There are several potential measures that can be derived from an LDL model (see
Chuang & Baayen 2021, for an overview). We found two measures particularly useful for
understanding Maltese unmasked primed lexical decision latencies, one measure quantifying
how well primes’ forms can be learned, and the other measure quantifying how closely the
meaning of the prime plural already approximates the meaning of the target singular.

First consider the form measure, henceforth labeled prime support. The measure is
defined as the sum of the positional semantic supports that the bi-syllable cues of a given
plural prime word receive. By way of example, the word trabi, the plural form of tarbija (sg.f.)
‘baby’, contains three bi-syllable cues: #.tra, tra.bi, and bi.#, at positions 1, 2, and 3,
respectively (“.” denotes syllable boundaries). As described in Section 3.2, the learn_paths
function in the JudiLing package calculates, for each cue position, the amount of support
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that a bi-syllable cue of the target word receives. That is, given the semantics of trabi, the
positional support measure quantifies how certain the model is that #.tra should occur at
position 1, tra.bi at position 2, and bi.# at position 3. For this example, the positional
supports that the three bi-syllable cues receive are 0.25, 0.20, and 0.28, respectively. The
prime support measure sums these three individual supports (i.e., 0.25 + 0.20 + 0.28 =

0.73). The larger the prime support is, the more predictable a prime word’s form is
given its semantics, and the better its form is learned. This measure is motivated by
two considerations. First, according to the motor theory of speech perception (Liberman
& Mattingly 1985; Galantucci et al. 2006), understanding the auditory prime necessarily
involves internal production. Accordingly, the prime support measure, which captures
the extent to which a word’s temporally ordered triphones are supported by that word’s
semantics, is an integral part of the process of ‘analysis by synthesis’. Empirical support
for this measure is provided by Chuang and colleagues (2021b), who observed that the total
positional support for Mandarin words was a co-determinant of their spoken word durations.
Second, within the theory of the discriminative lexicon, internal comprehension is assumed
to guide production (the previously introduced synthesis-by-analysis approach, Baayen
and colleagues (2018)). In this approach, comprehension and production are understood as
more interlocked and interwoven than in classical models in which production and perception
are allocated to encapsulated modules.

The second measure, henceforth labeled pre-activation distance, addresses the relation
between plural prime words and their corresponding singular target words. It gauges the
extent to which listening to a prime plural word semantically pre-activates (or primes)
the meaning of the target singular word. The pre-activation distance is defined as the
Euclidean distance between the predicted semantic vector of a prime word and the gold
standard semantic vector of its target word. A large value of this measure indicates that the
predicted meaning of the plural prime word is far away in semantic space from the meaning
of the singular target word. Conversely, a small pre-activation distance indicates that the
prime word already closely approximates the meaning of the target word. This measure is
inspired by a similar measure proposed in Baayen and Smolka (2020) on the basis of a naïve
discrimination learning network, prime-to-target pre-activation, which calculates the
extent to which a target word is already activated by the cues of the prime word. The current
measure is modified to further take the semantics of prime and target words into account.

Similar to the baseline model, we fitted a GAMM to the inverse-transformed RTs with
by-participant random intercepts, but this time with prime support and pre-activation
distance as predictors. In addition, we asked a GAMM to predict the effects of both
measures for sound and broken plurals separately, given that, as shown in Figure 5, in
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Figure 5: Boxplots of classical measures (frequency and neighborhood density, top panel)
and LDL measures (prime support and pre-activation distance, bottom panel).

contrast to frequency and neighborhood density (top panel), a plural type difference emerges
in the model and is naturally captured by the LDL measures (bottom panel), though the
difference is more obviously pronounced for prime support than for pre-activation distance.
The summary of the resulting model is presented in Table 7, and Figure 6 visualizes the
partial effects of the two measures for sound and broken plurals.

For prime support (top panel), if we focus on where most datapoints are (indicated by
rugs at the bottom of each figure), for both sound and broken plurals, the effect emerges
as roughly inverse-U shaped: with increasing prime support, RTs first increase and then
decrease. Interestingly, the peaks of the inverse-U shape effects for both plural types coincide
with their respective first quartile (25th percentile). This suggests that for three quarters
of the data, plurals that can be well predicted by semantics prime their singulars to a
larger extent, resulting in shorter RTs. This pattern of results is in line with the effect of
prime-to-target pre-activation as reported in Baayen and Smolka (2020). The trend,
however, reverses for 25% of the plurals that are least learnable from their semantics. The
inverse U-shaped curves suggest a trade-off between not knowing the prime’s pronunciation,
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Figure 6: The effects of prime support (upper panel) and pre-activation distance
(lower panel) on RTs for sound (left column) and broken (right column) plurals. The rugs at
the bottom of each sub-figure indicate datapoint positions. The three dotted vertical lines
in each sub-panel denote the first, second, and third quartiles.

32



A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -1.7647 0.0382 -46.1578 < 0.0001
TYPEsound -0.0087 0.0205 -0.4236 0.6719
B. smooth terms edf Ref.df F-value p-value
s(primeSupport):TYPEsound 3.8939 4.6880 10.5593 < 0.0001
s(primeSupport):TYPEbroken 4.1001 5.0081 4.1433 0.0009
s(preActDist):TYPEsound 3.5923 4.4435 1.6615 0.1400
s(preActDist):TYPEbroken 2.6150 3.2798 6.8640 0.0001
s(participant) 56.3306 58.0000 35.6625 < 0.0001

Table 7: Summary of a GAMM fitted to inverse-transformed RTs, with the by-type
smooths for prime support and pre-activation distance as fixed-effect predictors, and
by-participant random intercepts.

which makes it more like a pseudo-word, and knowing the prime’s pronunciation well, which
makes it more like a real word and thus enabling faster responses. How these two forces are
balanced, and why the slowest responses are found at the first quartile, is unclear to us.

With respect to pre-activation distance, the effect is only seen for broken plurals. It is
nearly linear with RTs becoming shorter as pre-activation distance increases. At first sight,
the trend is puzzling, as one might have expected that if the prime fails to pre-activate the
target, reaction times should be longer, but in reality, they are shorter. To make sense of
this effect, we need to take a step back and have a critical look at the priming paradigm.
Priming is often understood as involving facilitation of lexical access to the target. However,
in general, compared to an identity baseline, primes typically give rise to longer instead
of shorter response latencies. Primes are only facilitating when they are compared to an
unrelated control baseline. In other words, unrelated primes are more disruptive than related
primes, and related primes are more disruptive than identity primes.

The interpretation of primes as disrupting and interfering with normal lexical processing
is supported by the experiments reported by Libben and colleagues (2018). Their study
made use of primed visual lexical decision, with two-constituent compounds as target words
and one of their constituents as primes. They observed longer reaction times for more
frequent primes, in combination with the usual shorter reaction times for more frequent
target compounds. In other words, their experiment indicates that the more frequent a
prime is, the more it disrupts the processing of the target (see also Andrews 1997; Forster
& Hector 2002, for interferences in priming and lexical retrieval).

With respect to the present experiment, a smaller pre-activation distance likewise bears
witness to a similar disruptive effect of the prime. Since the plural and singular of a word
are semantically highly similar in the first place, they are thus highly confusable and render
deciding on the target’s lexicality in general difficult. And as the prime and target are
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semantically more similar, the smaller the semantic distance of a prime to its target, the
slower participants were able to make a lexicality decision, thus leading to longer RTs. Such
a disruptive effect is more pronounced in broken plurals. The presence of a plural suffix in
sound plurals (see Table 1) possibly alleviates processing difficulties that arise when prime
and target are very similar in meaning. Under close semantic proximity, sound plurals,
thanks to the presence of a suffix, are easier to distinguish from their targets than broken
plurals, which are more likely to be similar to simple words.

5.5 Discussion.

How does the GAMM with LDL predictors compare to the baseline model with pattern
frequency, target frequency and neighborhood density as predictors? To address this question,
we compared Akaike’s Information Criterion (AIC) for the two models. The AIC of the
baseline model is 1900, and that of the LDL-based model is 1880. The corresponding evidence
ratio is 22026, indicating that the LDL-based GAMM is 22026 times more likely than the
baseline model to minimize the information loss.

We did not include target frequency as a predictor in the GAMM with prime support and
pre-activation distance, for two reasons. First, within the framework of the discriminative
lexicon, there are no word units with which frequency counts can be associated. Second, for
modeling, we have made use of the multivariate multiple regression method for estimating
weights, which represents the endstate of learning. At the endstate of learning, for which
all token frequencies have increased to infinity, frequency effects are no longer present (see
Heitmeier et al. 2021; Shafaei-Bajestan et al. 2021, for a detailed discussion).

Frequency of occurrence does come into play when incremental learning algorithms are
used. For the present study, we did not explore incremental learning, for two reasons. First,
for representing words’ meanings, we would need incrementally updated semantic vectors.
Unfortunately, incrementally updated fasttext vectors are not available for Maltese. Second,
although incremental updating of the network is implemented in the JudiLing package
for comprehension, it is not fully implemented for production. Developing a fully-fledged
incremental version of the model is a target for further research. We do note, however, that
when target frequency is added as predictor to the GAMM with LDL predictors, while prime
support remain significant, pre-activation distance does not, and the effect size of target
frequency reduces substantially. This is due to the high correlation between pre-activation
distance and target frequency (r = 0.62), resulting in high concurvity and rendering the
effects uninterpretable. Similarly, concurvity increases with neighborhood density added to
the LDL model, as it is also highly correlated with pre-activation distance (r = −0.63).
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It is noteworthy that in the baseline model with classical predictors, the type of prime
was not supported as a predictor. In the model with LDL measures as predictors, an effect
of the prime is detected, albeit not the originally anticipated effect of priming by plural type.
In fact, according to this model, both a property of the prime (its ‘pronouncability’), and
the semantic relation of the prime to the target (gauged with preActDist), are the crucial
predictors for participants’ lexicality decision making.

6 General Discussion.
We conclude this study with a discussion of the new insights that our results bring to
morphological theory on the one hand, and the limitations of our approach on the other.

The semi-productivity of the Maltese plural poses a challenge for computational modeling.
Any system, whether based on rules, analogy, or machine learning, needs to strike a balance
between providing a good memory for the forms in use, and doing justice to the extent that
the system is productive. We have shown that the Discriminative Lexicon (DL) model finds
such a balance: it provides an accurate memory for both the comprehension and production
of known words, and it also performs reasonably well when given the task to produce or
understand novel, unseen forms. Given the semi-productivity of the Maltese plural, it is
actually surprising how well prediction for unseen words works. This finding supports earlier
descriptive studies that have called attention to substantial regularities in the Maltese plural
system (Mayer et al. 2013; Nieder et al. 2021b; Schembri 2012).

The theory of the DL currently does not include algorithms implementing decision making
in experimental tasks such as lexical decision. Nevertheless, some headway can be made
by incorporating measures derived from the theory as predictors in statistical models for
experimental measures such as reaction times. Two such measures, one gauging how well
we know a word’s form, and the other assessing how closely the meaning of the prime
approximates the meaning of the target, were found to improve the quality of a GAMM
model fitted to the reaction times in a primed lexical decision task. The resulting model
forced us to reconsider how to understand priming. Instead of understanding primes as
facilitating lexical access to the target, primes may actually be disruptive. Among highly
semantically relevant singular-plural word pairs, primes that are less similar in meaning to
the target give rise to reduced interference. It should be kept in mind, however, that these
results are tentative, based as they are on a post-hoc reanalysis, using exploratory data
analysis, of the experiment reported earlier by Nieder and colleagues (2021c), and further
replication studies will be essential for consolidating the present findings.

From this set of results, we conclude that the algorithm of linear discriminative learning,
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previously tested on Latin (Baayen et al. 2018), Estonian (Chuang et al. 2020), English
(Chuang et al. 2021c), German (Heitmeier et al. 2021), Indonesian (Denistia & Baayen
2021), Kinyarwanda (van de Vijver et al. 2021), and Korean (Chuang et al. 2021a), also
provides a fruitful window on non-concatenative morphology.

The approach to the Maltese plural system that we have worked out in this study,
which is a computational implementation of Word and Paradigm morphology (Blevins 2016),
differs from previous studies using computational modeling in that both production and
comprehension are modeled. Instead of defining the task of morphological theory as providing
a formal mechanism specifying what are possible meaningful words, the DL framework
explicitly addresses two challenges, first, to predict what possible forms are, given their
meanings; and second, to predict what possible meanings are, given their forms. The present
study is limited by the fact that the form representations that we made use of are based on
abstract sublexical features such as letter or syllable n-grams, and it is currently an open
question how the model will perform when, for instance, features derived from the acoustic
signal are used (see Shafaei-Bajestan et al. 2021, for an exploration).

Our study also contributes to the theory of morphological productivity. Productivity is
usually investigated for specific affixes. We have shown that we can assess the productivity of
a whole system by inspecting how well the model’s networks generalize to understanding and
producing unseen forms. Several researchers have suggested that the productivity of rival
affixes (e.g., -al, -ion, -ment) should be assessed jointly (Wurzel 1970; Zwanenburg 1983;
Corbin 1983). The present model for Maltese provides one way in which this suggestion can
be implemented: many different suffixes for sound plurals, and many different templates for
broken plurals,are all considered jointly.

Inspection of the semantics of Maltese singulars and plurals, using distributional semantics,
clarified that the broken plurals, sound plurals, and singulars form partly overlapping but
distinguishable clusters in semantic space. Furthermore, feminine and masculine nouns show
some clustering in semantic space that is slightly different for singulars and plurals. These
results show that the semantic vectors of inflected words have considerably more structure
than expected in approaches in which plural inflection realizes a fixed morpho-syntactic
feature. As the semantic vectors that can be simulated for inflected words with the JudiLing
package implement fixed shifts for a given morpho-syntactic feature, it is clear that such
vectors capture only part of the true complexity and richness of the semantics of inflected
words. Simulated vectors construct a useful scaffolding for inflected words’ semantics,
sufficient to set up effective mappings between form and meaning, but insufficient for modeling
the details of how form and meaning interact.

Since all models, including the one we presented in this paper, are idealizations, it
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is useful and necessary, we think, to reflect upon the differences between our model and
native speakers of Maltese. The input to our model is a list of words and their semantics,
conceptualized as embeddings. The model assumes that these forms and meanings are
correct for any given speaker, but, of course, this is an idealization given that actual usage
varies across speakers (Sinclair 1991; Bybee 2010). Native speakers reported to us that
they frequently hear other speakers use plurals that they had not heard before, but find
understandable nevertheless (J. Nieder, personal communication, 2019).

Whereas native speakers learn continuously and incrementally, we have modeled the
endstate of learning, of a learner with perfect memory and undivided attention to nouns
alone. Obviously the existence of such a learner is a myth. It is possible to model incremental
learning in LDL, but we do not have a sufficient amount of learning data of Maltese nouns
to reliably model their learning. We leave this open for further research.

Our model represents a single (mythical) learner, but in reality there are individual
differences between learners. Milin and colleagues (2017), for example, found evidence from
skilled Russian readers that some readers accelerated as they progressed in a new text,
whereas others slowed down. They connected this behavior to individual differences in the use
of perceptual cues. Such individual differences in the use of cues would also affect acquisition
of Maltese nouns. This could be modeled by learner-specific thresholds determining the
number of candidate forms a speaker is willing to take into consideration (see also Chuang
et al. 2020).

Keeping its limitations in mind, we contend that our model is useful as a quantitative
tool for investigating high-level properties of human learning. Our model not only goes
beyond predicting possible forms given another form, as is usual in computational models of
morphophonology, but also provides model-based measures that predict human processing.

We conclude with noting that the LDL learning engine of the DL model strives for
simplicity and interpretability. Formally, this engine carries out multivariate multiple linear
regression on form and meaning. The assumption that mappings between form and meaning
are linear undoubtedly involves substantial simplifications. Nevertheless, as illustrated in the
present study, this simple approach already works surprisingly well, suggesting that the noun
system of Maltese itself is also roughly linear. Because the architecture of the network is
fixed, and because there are very few hyperparameters (such as the threshold parameter that
has to be set for production), the performance of the model is almost completely determined
by the representations selected by the researcher for representing form and meaning, and the
data. This, we think, makes the model especially useful as a tool for linguistic analysis.
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