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Abstract

According to the CARIN theory of Gagné and Shoben (1997), conceptual relations play an im-
portant role in compound interpretation. This study develops three measures gauging the role of
conceptual relations, and pits these measures against measures based on latent semantic analysis
(Landauer and Dumais, 1997). The CARIN measures successfully predict response latencies in a fa-
miliarity categorization task, in a semantic transparency task, and in visual lexical decision. Of the
measures based on latent semantic analysis, only a measure orthogonal to the conceptual relations,
which instead gauges the extent to which the concepts for the compound’s head and the compound
itself are discriminated, also reached significance. Results further indicate that in tasks requiring
careful assesment of the meaning of the compound, general knowledge of conceptual relations plays
a central role, whereas in the lexical decision task, attention shifts to co-activated meanings and
the specifics of the conceptual relations realized in the compound’s modifier family.!

Keywords: conceptual relations, semantic transparency, relative entropy, morphological process-
ing, compounds, CARIN theory.
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humbug

1. something designed to deceive and mislead

2. a willfully false, deceptive, or insincere person
3. an attitude or spirit of pretense and deception
4. nonsense, drivel

5. British : a hard usually mint-flavored candy

http://www.merriam-webster.com

Most derived words and compounds have one or more meanings that are not fully predictable, or
even totally unpredictable from the meanings of their constituents. The entries of the complex words
worker and handbag as given by the Merriam Webster’s at http://www.merriam-webster.com in
Table 1 illustrate this phenomenon. How does a reader arrive at the meaning ‘a bag hung from a
shoulder strap for carrying small personal articles’ when reading handbag?

According to subsymbolic connectionist models (Seidenberg and Gonnerman, 2000; Gonnerman
and Anderson, 2001; Harm and Seidenberg, 2004), word meanings are represented by patterns of
activation over banks of units. The more two meanings are similar, the more similar their patterns of
activations over the semantic units should resemble each other. In this approach, semantic similarity
can be quantified by means of the cosine similarity between activation vectors (see, e.g., Moscoso del
Prado Martin, 2003). Thus, the meanings of bag and handbag are supposed to have smaller cosine
distances than the meanings of bag and worker. Connectionist networks typically learn the mapping
of orthographic form to meaning better if words that share form also share meaning. This allows
connectionist models to account for graded effects of semantic similarity in, for instance, studies
using the primed visual lexical decision task (Seidenberg and Gonnerman, 2000; Gonnerman and
Anderson, 2001).

Table 1: Dictionary entries for worker and handbag in the online Merriam Websters.

worker

1. one that works especially at manual or industrial labor or with a particular material
2. a member of the working class

3. any of the sexually underdeveloped and usually sterile members of a colony of social ants, bees, wasps,
or termites that perform most of the labor and protective duties of the colony

handbag

1. suitcase

2. a bag held in the hand or hung from a shoulder strap and used for carrying small personal articles and
money

The idea that word meanings can be quantified by means of vector spaces is the conceptual
cornerstone of latent semantic analysis (Landauer and Dumais, 1997). Instead of a word’s semantics
being defined as a pattern of activation over a conceptual feature space, a word’s semantics is derived
from its co-occurrence statistics across different documents. This operationalization of semantic
similarity has been found to be predictive across a wide range of different tasks. Several studies
have made use of latent semantic vector spaces to characterize degrees of semantic transparency
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Table 2: Semantic relation coding schema, adapted from Shoben(1991). The last five conceptual
relations marked with an asterisk are extensions to the original set of relations considered in the
CARIN theory. H: head; M: modifier.

Relation Example Relation Example

H cAuses M flu virus H DERIVED FROM M  peanut butter
M cAUuseEs H job tension H aBour M budget speech
H HAs M colledge town H puriNnG M summer clouds
M HAs H lemon peel H UseED BY M servant language
H MADE oFr M chocolate bar M rocATION 1S H murder town
H MAKES M honey bee H BY M student vote

H vocATION 18 M office friendships M LIKES H” age-long

H ror M plant food H or M* bombshell

His M canine companion H MADE BY M* anthill

H uses M machine translation ~H RESEMBLE M* arrow-root

(Moscoso del Prado Martin and Sahlgren, 2002; Rastle et al., 2004; Moscoso del Prado Martin et al.,
2005; Jones et al., 2006; Gagné and Spalding, 2009) in studies addressing morphological processing.

Latent semantic analysis captures semantic similarity with a high degree of success. This is
possible thanks to the fact that objects and actions that co-occur in the world and in our experience
tend to co-occur in written documents. However, what is not explicitly written (or talked) about,
escapes detection. As a consequence, the method can be quite insensitive to obvious differences
between word meanings. For instance, the LsA score for mailbag and punching bag is 0.17, which is
also the score for mailbag and tea bag. Yet a tea bag is a small bag holding tea, whereas a punching
bag is ‘a stuffed or inflated bag usually suspended for free movement and punched for exercise or
for training in boxing’ (http://www.merriam-webster.com). LSA scores inform us that meanings
are similar, but not in what way they are similar.

The goal of the present study is to clarify to what extent semantic transparency and its processing
consequences can be approximated and operationalized more precisely than is possible with latent
semantic analysis for the case of noun-noun compounds in English. More specifically, we will pit
LSA scores against quantitative measures building on the CARIN theory of conceptual interpretation.

Building on earlier work by Levi (1978), Warren (1978), and Shoben (1991), Gagné and Shoben
(1997); Gagné (2001); Gagné et al. (2005) build on the assumption that conceptual relations such
as listed in Table 2 capture important aspects of compound meanings. Central to the theory are
the additional assumptions that there is a relatively small number of generic conceptual relations,
and that the same general conceptual relation can be actualized across a great many different
compounds. For example, mountain cabin, milk virus, and water bird are, according to CARIN
theory, all interpreted with the same general H LOCATION 1S M relation: A mountain cabin is a
cabin located in the mountains.

A key insight of CARIN theory is that the distribution of conceptual relations in the set of
compounds sharing a given target compound’s modifier, henceforth the target’s modifier family,
is an important determinant of compound interpretation and compound processing speed. If the
target’s modifier family is characterized by a highly heterogeneous set of conceptual relations, there
is greater uncertainty about the conceptual relation appropriate for that target. By contrast,
if the set of conceptual relations instantiated in the target’s modifier family is dominated by a
particular conceptual relation, then there is less uncertainty: the distributionally most strongly
supported conceptual relation becomes the maximum likelihood choice for interpretation. CARIN
theory therefore predicts that the compound mountain stream is faster to interpret than mountain
magazine because the LOCATION relation used to interpret mountain stream is also used in a great
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many other compounds which have mountain as their modifier (e.g., mountain cabin, mountain
goat, and mountain resort. By contrast, the ABOUT relation used in mountain magazine is not
commonly used with other compounds which have mountain as their modifier, and hence mountain
magazine is predicted to require more processing time. Interestingly, Gagné and colleagues observed
that the relative frequency of that relation within the set of relations attested for the compound’s
modifier reaches significance across a variety of psychometric tasks. The question of interest to us is
whether quantitative measures derived from CARIN theory allow us to predict the costs of semantic
processing with greater precision than measures based on LSA vector semantics.

In what follows, we consider three measures based on CARIN theory. The first measure, C,
evaluates the relative frequency of the compound’s conceptual relation in the compound’s modifier
family M. Let s; denote the conceptual relation of the i-th compound, and let n(s;) denote the
type count of compounds with the same conceptual relation in the set of compounds M. Then the
CARIN relative frequency C; for compound ¢ is defined as

o n(s)
Ci= Sjemn(ss) @

This measure is closely related to the strength metric proposed by Gagné and Shoben (1997). There
are two differences in our operationalization, however. Whereas Gagné and Shoben (1997) take into
account (in addition to the compound’s own conceptual relation), only the three highest ranked
competing relations for the denominator, we take all conceptual relations into account. Furthermore,
Gagné and Shoben (1997) make use of of exponential decay functions, we use straightforward
probabilities.

The second measure gC' does not restrict itself to the set of compounds realized within the
compound’s modifier family, but generalizes the measure by evaluating the compound’s conceptual
relation against the full set of conceptual relations in the lexicon L:

o n(sg)
9¢i = Zjeﬁ n(s;) @)

The third measure evaluates the difference between the probablity distribution p of the concep-
tual relations within the modifier family M and the probability distribution ¢ for the lexicon £ by
means of the Kullback-Leibler divergence or relative entropy measure

reC = D(plla) = >_pilogs(pi/a:), (3)

a measure which Milin et al. (2009a) have shown to be predictive for inflectional paradigms in
Serbian, Baayen et al. (2008b) for inflectional paradigms in Dutch, and Milin et al. (2009b) and
Kuperman et al. (2010) for derivation in English. For the calculation of reC), it is necessary to back
off from zero, which we did by adding 0.5 to the counts underlying the probabilities p; and g;.
These three CARIN measures are pitted against three measures obtained with latent semantic
analysis (Landauer and Dumais, 1997), using the default settings for pairwise comparison at http://
lsa.colorado.edu/. The first measure, Modifier-Compound LSA Similarity, is the cosine similarity
of the modifier and the compound. The second measure, Head-Compound LSA Similarity, is the
cosine similarity of the head and the compound, and the measure, Modifier-Head LSA Similarity, is
the cosine similarity of the modifier and the head. Of these measures, those involving the modifier
are the best candidates for capturing aspects of the conceptual relations in which the modifier is
entangled. The Head-Compound LSA Similarity may capture exemplar-category relations, such
as top soil being a kind of soil, and a honey bee being a kind of bee. This semantic dimension is
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orthogonal to that of the conceptual relation between head and modifier in the compound. Given
the positive results obtained in other studies with vector semantics, it is conceivable that the CARIN
measures turn out to be predictive and capture effects of processing conceptual relations, and that
of the LsA measures, only the Head-Compound LSA Similarity measure turns out to be predictive.

Before we present the details on the database used to calculate the CARIN measures, and on how
these measures perform as predictors for experimental data, we first clarify the general framework
within which we conceptualize the core ideas of CARIN theory.

We begin with noting that the meaning of a compound is not very well predictable from the
meaning of its constituents, even if the conceptual relation between modifier and head is given. For
instance, how exactly the meaning of hand functions in the meaning ‘a bag hung from a shoulder
strap and used for carrying small personal articles and money’ is unclear. A handbag can be
described as a ‘a bag held in the hand’ (see Table 1, using the H FOR M or H LOCATION 1S M
conceptual relations), but a shopping bag is usually also held in the hands, and yet is not referred to
as a handbag. As a consequence, in order to understand what a handbag is from speech or writing,
the co-occurrence of hand and bag in this order is crucial. How exactly the orthographic form of
handbag mediates understanding the meaning of handbag is hotly debated.

Early models posited that a complex word is accessed through its constituents (see, e.g., Taft
and Forster, 1976; Taft, 1985, 1994). More recently, reading has been argued to involve obligatory
blind early morphographic decomposition Rastle et al. (2004); Rastle and Davis (2008), but see
Feldman et al. (2009) for counterevidence. As there is no rule that can compositionally derive the
meaning ‘a bag hung from a shoulder strap and used for carrying small personal articles and money’
from the meanings of hand and bag, the role of constituents in this class of models reduces to that of
hash codes. The compound handbag is broken up into the orthographic hash codes hand and bag,
which jointly provide a pointer to the rich meaning of handbag.

This class of models is challenged, however, by the presence of whole-word frequency effects in
the first fixation durations on compounds in Dutch, Finnish, and Japanese (Kuperman et al., 2008,
2009, 2010; Miwa, 2013). For instance, Kuperman et al. (2009) reported an eye-tracking experiment
with 2,500 polymorphemic Dutch compounds presented in isolation for visual lexical decision while
readers’ eye movements were registered. They observed simultaneous effects of compound frequency,
left constituent frequency, and left family size for the first fixation duration (i.e., before the whole
compound has been scanned). Effects of right constituent frequency and right family size emerged
only at later fixations. The time course of compound reading that emerges from the eye-tracking
record is incompatible with models positing an obligatory first stage at which all the hash codes
would be parsed out, followed by a subsequent stage at which the hash codes would provide access
to the compound’s meaning.

Our working hypothesis is that the (early) compound frequency effect indexes the activation of
the compound’s specific meaning. The greater the frequency of a compound, the faster this mean-
ing (and the specific conceptual relation instantiated with this meaning) becomes available. The
constituents of the compound likewise activate their meanings, and do so faster when they have
a higher frequency of occurrence. Depending on the task, these meanings may engage with the
conceptual relations available in the language, to build a potential interpretation for the compound
— the system’s best guess at what the compound might mean if the compound were novel. We
therefore expect a greater value of the gC' and/or C' measures to predict facilitated compound inter-
pretation. However, when the probability distribution of the conceptual relations in the compound’s
modifier family differs markedly from the general distribution in the language, conflict resolution is
required. This conflict is gauged with reC', and we therefore expect reC' to be positively correlated
with processing time.

In what follows, we first describe the database with conceptual relation statistics that we com-



piled. We then report two experimental studies, followed by one study analyzing response latencies
in the English Lexicon Project. We conclude with a discussion of the implications of our findings.

Study 1: A database of conceptual relations

Most of the studies on conceptual relations have focussed on a small set of compounds for which
conceptual relations have been carefully assessed and validated. As a first step, we constructed a
database of conceptual relations that is much larger and enables regression studies with the C, gC
and reC as predictors.

For a random sample of 783 English compounds, all compounds sharing their modifier con-
stituent with any of these 783 compounds were selected from the CELEX lexical database, resulting
in 3455 compounds. For each compound, its meaning was extracted from WordNet (Fellbaum,
1998). The first author then coded all compounds with four types of information: Semantic Type,
Semantic Relation, Semantic Modifier, and Semantic Head. Semantic Type specified whether the
compound is Transparent, Partially Opaque, or Fully Opaque. These individual judgements of
transparency were further validated with a rating experiment (Study 3, reported below).

Semantic Relations were coded following Gagné and Shoben (1997), extended with the four
relations in the lower half of Table 2. For a proper evaluation of the conceptual relations, it was
necessary to distinguish between the dominant meanings of the constituents in isolation (e.g., air
in airstrip denoting the gas we breathe) and the meaning of the constituent within the compound.
For instance, air in compounds such as airstrip and airport denotes, either by shortening or by
metonomy, the vehicle for traveling through air, i.e., its semantics within a series of compounds
is airplane or aircraft. We therefore distinguish between the semantic modifier (airplane) and the
modifier itself (air). The semantic relation for airport is therefore defined as a port for airplanes (H
FOR M). For a compound like backlash, we distinguish between the semantic modifier adverse and
the semantic head (violent) reaction. Even though the meaning of backlash is not straightforwardly
derivable from the meanings of back and lash, the latter words do contribute to the meaning of the
compound through structural metaphors (forwards is good, backwards is bad) and partial semantic
inheritence (Lakoff and Johnson, 1980). Hence, the semantic relation for backlash is defined as H
1s M, i.e., a violent reaction that is adverse. For exocentric compounds such as camel-hair, the
semantic modifier is the material camel-hair and the notional head is cloth. Here, the semantic
relation is cloth made of camel hair (H MADE OF M).

The information about the conceptual relations for the 3455 compounds sharing a modifier with
any of the 783 target compounds allowed us to calculate the three measures introduced above for
gauging the role of conceptual relations in lexical processing: the CARIN strength measure C', the
generalized strength measure gC', and the relative entropy measure reC'. We then built a database
for the 783 target compounds and their values for the three CARIN measures. Figure 1 summarizes
the distributions of these predictors by means of histograms. The distribution of C' is marked by
a large proportion of compounds (41%) with a modifier for which only one conceptual relation is
attested in the modifier family.

The data set was further enriched with the frequencies of the modifiers, the heads, and the whole
compounds, which were collected from the coca corpus Davies (2010). The degree of orthographical
overlap of the modifier and head constituents was estimated with the Levenshtein distance measure
Levenshtein (1966) (the minimal number of deletions, insertions, or substitutions that is required
to transform the source string into the target string), following Baayen et al. (2011). We further
calculated Compound Entropy (defined over the probability distribution of modifier and head,
cf. Baayen et al. (2008b) and Baayen (2010)), Modifier and Head Family Size (De Jong et al.,
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Figure 1: The distributions of the CARIN measures C, gC, and reC.

2002; Baayen et al., 2010), and three measures evaluating semantic similarity using latent semantic
analysis were also added: Modifier-Head LSA Similarity, Modifier-Compound LSA Similarity, and
Head-Compound LSA Similarity. Finally, each compound was assigned the value for its semantic
transparency (transparent, partially opaque, or fully opaque) in our dataset of semantically analyzed
compounds.

The experiment to which we now turn was designed to assess the predictivity of the CARIN
measures, as well as the semantic transparency classes that we established. The experiment re-
quested subjects to specify whether they knew the meaning of the compound. We registered both
the answers and the response latencies.

Study 2: Familiarity Classification Experiment
Method

Materials A total of 1313 compounds was randomly selected from the words for which we collected
the CARIN statistics described above.

Subjects Thirty-three native English speaking undergraduate students from the University of Al-
berta were participated for partial course credit. All had normal or corrected-to-normal vision.

Procedure Stimuli were presented on a 19-inch Lenovo CRT monitor with a refresh rate of 85 Hz and
a resolution of 1,024 X 768 pixels. The monitor was controlled by a Pentium 4 3-GHz PC. Stimuli
were presented in lowercase in 20-point Arial font, and they appeared as black characters on a grey
background. Stimuli were presented one at a time, following a fixation point, and centered around
this fixation point, using DMDX version 4.0.4.4 (Forster and Forster, 2003). Five practice items
preceded the experimental items. Trial presentation was self-paced. Participants initiated a trial
by pressing the space bar. Paricipants were given a short break after the practice trials and were
encouraged to ask the experimenter to explain parts of the procedure that they did not understand.



Subsequently, participants were presented with 125-147 of the experimental compounds, presented
in random order.

In this experiment, which took about 25 minutes to complete, participants were asked to report
whether they knew the meaning of the compound, with as possible responses “Yes”, “I can guess
what this means”, and “I have no idea what this means”, using the number keys 1, 2, and 3 on the
number keypad. After their answer, they pressed the space bar to move to the next trial.

Participants were asked to place the fingers of their left hand on the number keys 1-3 on the top
left of the computer keyboard, and to place the index finger of their right hand on the space bar
key, in preparation for responding. Subjects were assigned randomly to one of the sub-experiments.
Both the button presses and the response latencies were recorded.

Results and Discussion

Response Latencies Response latencies were analysed with a generalized additive mixed model
(GaMM) with subject and item as crossed random effect factors (see, e.g., Baayen et al., 2008a;
Wood, 2006, 2011).

We performed a stepwise variable selection procedure in which non-significant predictors were
removed to obtain a parsimonious yet adequate model. Subsequently, potentially harmful outliers,
defined as data points with standardized residuals exceeding 2.5 standard deviation units, were
removed from the data set. We then fitted a new model with the same predictors to this trimmed
data set. This procedure was followed also for the analyses reported below.

The optimal model incorporated by-subject and by-item random intercepts, as well as by-subject
random slopes for compound frequency. Other random-effect parameters were considered, but were
found not to improve the model fit, and were therefore removed from the model specification. Table 3
summarizes the resulting GAMM. The upper part of the table presents the parametric coefficients,
the lower part the spline (a mathematical technique for modeling wiggly lines) and tensor smooths
(a mathematical technique for modeling wiggly surfaces) and the random effect components. Here,
edf denotes the estimated degrees of freedom and Ref.df. the reference degrees of freedom for the
F-test. For examples of generalized additive models in (psycho)linguistics, see, e.g., Baayen et al.
(2010); Tremblay and Baayen (2010); Kryuchkova et al. (2012); Balling and Baayen (2012); Wieling
et al. (2011) and Koesling et al. (2012).

Table 3: Generalized additive model for the familiarity categorization latencies of Study 2.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept 6.5793 0.0568 115.7317 < 0.0001
Compound Frequency -0.0699 0.0097 -7.2408 < 0.0001
B. smooth terms edf Ref.df F-value p-value
tensor for Compound Entropy and gC: C < 1 4.7600 5.2382 6.0656 < 0.0001
tensor for Compound Entropy and gC: C =1 6.7633 7.7439 2.7547 0.0056
spline for Head-Compound LSA Similarity 3.0697 3.5468 13.1632 < 0.0001
random intercepts for Item 469.9737 862.0000 1.3152 < 0.0001
random intercepts for Subject 30.3558 32.0000 28.1294 < 0.0001
by-subject random slopes for Compound Frequency 12.4314 32.0000 0.7713 0.0139

Compound frequency had the expected facilitatory effect: The more often a compound is en-
countered, the better it is known, and the faster its meaning can be retrieved.

A three-way, nonlinear interaction emerged involving Compound Entropy by the generalized
CARIN measure gC and a factor specifying whether C' was equal to one. When C' = 1, only a
single conceptual relation is attested in the compound’s modifier family. In this case, the effect of
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Compound Entropy and gC' was attenuated, and response latencies were somewhat shorter overall,
as can be seen by comparing the upper panels of Figure 2. This fits well with the absence of
uncertainty about the appropriate conceptual relation given the compound’s modifier family.

Focusing on the subset of the data for which there is more than one conceptual relation (C' < 1)
in the compound’s modifier family, we have that for the lower values of gC, Compound Entropy
has a large facilitatory effect. For larger values of gC, this effect levels out. Furthermore, for lower
values of Compound Entropy, the effect of gC' is facilitatory, but for larger values of Compound
Entropy, its effect vanishes.

As expected, the Modifier-Head and Modifier-Compound LSA Similarity measures were not pre-
dictive at all. However, a strong, non-linear effect of Head-Compound LSA Similarity was present,
as shown in the bottom panel of Figure 2. Responses are fastest for words with intermediate val-
ues. Since the head of an (endocentric) compound typically denotes a general category of which the
compound denotes a subcategory (e.g., tree versus olive tree), for highly similar head and compound
pairs, the difference between the two may be difficult to discern. For instance, the compounds with
the highest Head-Compound LSA Similarity in our data set are honeybee and topsoil, which are near
synonyms of bee and soil. For such pairs, discrimination between the two appears to come with a
cost, possibly because the modification is more difficult in case concepts that are very similary have
to be distinguished. Conversely, for very low Head-Compound LSA Similarity, there is no sensible
exemplar/category relation between head and compound (compare, e.g., bug and humbug). This
appears to also give rise to a processing cost, see also Ji et al. (2011) for independent evidence
suggesting that opaque compounds give rise to greater processing costs when the task emphasizes
the importance of semantic interpretation.

Table 4: Variable importance of the predictors for the familiarity decision using a random forest
with conditional inference trees as base learners.

Predictor Variable Importance
C 0.0003
Transparency 0.0005
Levenshtein Distance 0.0006
Length 0.0006
reC 0.0007
LSA Head Compound 0.0020
Modifier Family Size 0.0023
gC 0.0025
Compound Entropy 0.0036
Compound Frequency 0.0040

Familiarity Responses An analysis of the familiarity responses, using a random forests analysis with
the party package for R (Hothorn et al., 2006; Strobl et al., 2009) ranks Compound Frequency as
the most important predictor, followed by Compound Entropy (see Table 4). This ranking is also
supported by a logistic regression modeling with as response variable whether the response was ‘yes’,
as shown in Table 5. Possibly, the probability of a ‘yes’ response decreases with Head-Compound
LSA Similarity, and increases with gC'.

We next consider an experiment in which subjects were asked to evaluate the transparency of
compounds on a seven point Likert scale. As this task seeks explicitly to tap into knowledge of
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Table 5: Coefficients of the generalized mixed-effects model fitted to the familiarity response, di-
chotomized to ’yes’ versus 'no’ and ’uncertain’.

Estimate Std. Error  z-value p-value

Intercept 4.3301 0.2021 21.4282  0.0000
Compound Frequency 1.1942 0.1576 7.5786  0.0000
Compound Entropy 0.4710 0.1054 4.4667  0.0000
Head-Compound LSA Similarity -0.1675 0.0991 -1.6898  0.0911
gC 0.3759 1.6809 0.2236  0.8231

how the constituents in a compound make sense, we expected the CARIN measures to be predictive.
As the head-compound exemplar/category relation is irrelevant to this task, it is unlikely that the
Head-Compound LSA Similarity measure will be predictive.

Study 3: Transparency Rating Experiment
Method

Materials The materials were identical to the materials of Study 2.

Subjects The subjects were identical to those that participated in Study 2. All subjects first com-
pleted Study 2, before taking part in Study 3.

Procedure Subjects were taken through the list of compounds (presented in a new random order),
but now a compound was presented together with a sentence describing its meaning. They were
asked to rate the compound’s transparency on a 7-point scale, specifically with respect to whether
the constituents of the compound help to understand its meaning. Answers ranged from “Not at
all” (1) to “Fully” (7). After providing an answer on the numeric keypad, they pressed the space
bar to move to the next screen. Note that by presenting a sentence describing the meaning of the
compound, even those subjects who were initially unfamiliar with the compound’s meaning were
enabled to provide a reasonably informed judgement about the transparency of the compound.

Results and Discussion

Analyses were performed on only those compounds that participants were familiar with according
to their responses in Experiment 1. As a consequence, 3% of the data points were removed, resulting
in a dataset with 4424 data points.

Rating latencies were long and revealed no effects of interest, and are therefore not discussed
further. The rating scores were analysed with a linear mixed effects model with subject and item as
crossed random effects. (Analysis with generalized additive models were carried out, but no nonlin-
earities were observed.) The most parsimoneous yet adequate model incorporated four parameters
for the random-effects structure of the data, all of which were supported by likelihood ratio tests:
standard deviations for the random intercepts for subjects and items, a standard deviation for by-
subject random slopes for compound frequency, and a correlation parameter for the two by-subject
random effect components.

The mixed-effects covariance model fitted to the transparency ratings is summarized in Table 6.
Higher-frequency compounds elicited higher transparency ratings, as did compounds with larger
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Table 6: Coefficients of the mixed-effects model fitted to the transparency ratings. The reference
level of Semantic Type is Opaque.

Estimate Std. Error  t value

Intercept 4.1795 0.3705 11.2804
Semantic Type: partially opaque 1.2371 0.3442 3.5939
Semantic Type: transparent 1.9426 0.3244 5.9884
gC 1.3627 0.5583 2.4409
reC -0.3475 0.0927  -3.7467
Compound Frequency 0.1262 0.0439 2.8774
Modifier Family Size 0.0931 0.0382 2.4387
Compound Entropy 0.1075 0.0368 2.9259

modifier families. A greater compound entropy likewise came with increased ratings. The enhance-
ment in the ratings is consistent with the general effect of Compound Entropy in Study 2, where
a greater Compound Entropy afforded reduced response latencies. The effect of semantic type was
well supported, indicating that our manual classification is well in line with the intuitions of native
speakers of English.

Although including Semantic Relation (a factor with no less than 22 levels) did improve the
model fit, a simpler model with a better fit was obtained by replacing Semantic Relation by two
CARIN measures. The greater the probability of the compound’s conceptual relation in the language,
as indexed by gC, the higher the transparency of a compound is rated. In addition, the relative
entropy measure reC reached significance, with a negative slope indicating that a greater difference
between the compound’s modifier’s probability distribution of conceptual relations and the corre-
sponding general probability distribution predicts lower (less transparent) ratings. In other words,
if a modifier has an atypical distribution of conceptual relations, then it is felt to be more opaque.
This cost associated with atypicality is consistent with costs detected with the relative entropy
measure in other paradigmatic domains (see, e.g., Milin et al., 2009a,b; Baayen et al., 2011).

Our first experiment specifically addressed subjects’ knowledge of the meaning of compounds.
The rating experiment addressed the same subjects’ understanding of the interpretation of the
constituents in the compounds. Our analysis restricted itself to those compounds that they had
reported previously as familiar, and we provided a definition of the meaning of the compound to
make sure all participants are targeting the same meaning. The next and final study turns to the
lexical decision task, which by its nature allows subjects to respond when there is enough evidence
for a general lexicality decision, without forcing them to actually zoom in on precisely the mean-
ing of the word in the visual input (see, e.g., Grainger and Jacobs, 1996). In the lexical decision
task, we therefore expect to see more evidence for predictors tied to the constituents. For instance,
lexical decisions can be informed simply by the co-activation of the meanings of the constituents.
Since previous studies in the framework of CARIN theory have worked with the C' measure, it is
conceivable that in lexical decision, this measure gains importance.

Study 4: Lexical decision latencies in the English Lexicon Project

Response latencies in visual lexical decision for the 783 English compounds for which we assessed
the conceptual relation between modifier and head (Study 1) were extracted from the English
Lexicon Project (Balota et al., 2007).
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Figure 3: Partial effects of the tensor and spline smooths in the generalized additive model fitted to
the lexical decision latencies to noun compounds in the English Lexicon Project (Study 4). Dotted
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Table 7: Generalized additive model for the visual lexical decision latencies to 783 compounds from
the English Lexicon Project

A. parametric coefficients Estimate Std. Error  t-value p-value
Intercept 6.62 0.04 164.11 < 0.0001
Compound Entropy -0.05 0.02 -3.24 0.00
Word Length 0.01 0.00 3.41 0.00
Modifier Frequency -0.01 0.00 -2.41 0.02
B. smooth terms edf Ref.df F-value p-value
tensor smooth for modifier and head Family Size 6.25 7.76 3.44 0.00
tensor smooth for Compound Frequency and C 3.05 3.10 32.38 < 0.0001
spline smooth for Head-Compound LSA Similarity 4.80 5.87 3.75 0.00
spline smooth for Levenshtein Distance 4.88 5.86 3.31 0.00

Table 7 and Figure 3 summarize the generalized additive model that we fitted to the log-
transformed response latencies. As expected, longer words elicited longer latencies. Words with a
greater Compound Entropy were responded to more quickly.

As expected, more constituent effects were observed than in the preceding experiments. Modifier
frequency was facilitatory, and the same holds for modifier and head family size. These predictors
entered into an interaction (see the upper left panel of Figure 3) suggesting that facilitation from the
Modifier Family Size is present only for smaller head families. Furthermore, most of the facilitation
from head family size is present for intermediate values of this measure. The effect of Levenshtein
Distance (see the lower left panel of Figure 3) indicates that orthographically less confusable con-
stituents were activated more strongly, leading to shorter response latencies.

An effect of Head-Compound LSA Similarity was present, and roughly U-shaped (see the upper
right panel of Figure 3), replicating the U-shaped pattern for the familiarity classification response
latencies. However, whereas the effect in familiarity classification is quite symmetric, the effect
in lexical decision is mostly facilitatory, with broad confidence intervals in the right tail of the
distribution. Discriminating between honey bee and bee, and between top soil and soil, appears to
be less of a problem, consistent with the lexical decision task not requiring subjects to identify the
precise meaning of the compound.

Of the CARIN predictors, the measure estimating the probability of the compound’s conceptual
relation in its modifier family reached significance in interaction with Compound Frequency, as
shown in the lower right panel of Figure 3. The strong effect of Compound Frequency is modulated
by C such that for higher values of C, more facilitation occurs (the contour lines are closer together).
At the same time, the effect of C is stronger for lower-frequency compounds.

The modifier-specific effect of the CARIN strength C' emerges together with strong evidence for
the activation of the meaning of the modifier, provided by the modifier frequency and family size ef-
fects — effects that are absent in the familiarity categorization latencies. The full pattern of results
suggest that in the lexical decision task, but not in the familiarity categorization task, the meaning
of the modifier is considered on its own, as evidence for lexicality, in conjunction with its (modifier)
family. The probability of the compound’s conceptual relation given its modifier family, as esti-
mated by C, comes into play, and more so when compound frequency is low. For high-frequency
compounds, the compound’s meaning, including how modifier and head relate to each other (if they
do so), becomes available quickly, obviating interpretational processes based on the modifier and its
properties. As compound frequency decreases, the role of the modifier and its conceptual relation
becomes more important.
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General Discussion

This study addressed the role of semantic transparency and the role of conceptual relations in
compound processing. Whereas many previous studies have sought to assess semantic transparency
through human ratings or similarity scores based on latent semantic analysis (e.g., Rastle et al.,
2004; Moscoso del Prado Martin et al., 2005; Jones et al., 2006; Gagné and Spalding, 2009; Libben
et al., 2003), we have approached this question by means of key insights from CARIN theory (Gagné
and Shoben, 1997). According to CARIN theory, the conceptual relation between modifier and head
is an important part of a compound’s meaning. We hypothesized that knowledge of how the modifier
and the head relate to each other may be more important than the bare knowledge that modifier
and the head, or the modifier and the compound, have a high probability of co-occurring across the
same documents.

Three experimental studies, familiarity classification, transparency rating, and visual lexical de-
cision, provide strong support for the importance of conceptual relations. Of the three LSA measures
that we considered, only Head-Compound LSA Similarity reached significance, and this in only two
out of three experiments. (For a summary overview of the effects in our experiments, see Table 8.)
The effect of Head-Compound LSA Similarity was U-shaped in both familiarity classification and
in lexical decision. We interpreted this U-shaped effect as a trade-off between exemplar/category
discrimination (when head and compound are too similar in meaning, discrimination becomes more
difficult) on the one hand, and a problematic exemplar/category relation (as in the case of opaque
compounds such as humbug) on the other hand. Processing is optimal when the meanings of head
and compound are not too similar and not too dissimilar. We have argued that the Head-Compound
LSA Similarity measure is orthogonal to the conceptual relation between modifier and head. We
included Modifier-Compound LSA Similarity and Modifier-Head LSA Similarity as measures that
might help predict the semantic interpretation of compounds, but these measures turned out not to
be helpful. As explained in the introduction, latent semantic analysis tends to capture how similar
word meanings are, but it may fail to capture the specific way in which modifier and head are
conceptually related.

We developed three CARIN measures that did turn out to be predictive: the probability of the
compound’s conceptual relation C in the modifier family, the generalized probability gC of the
compounds’ conceptual relation in the language, and the relative entropy reC gauging the extent
to which the modifier-conditional and the unconditional probability distributions are dissimilar (see
also Milin et al., 2009a). The generalized measure gC' was predictive for the two tasks targeting
specifically the compound’s meaning: familiarity categorization and semantic transparency rating.
In the lexical decision task, the modifier-specific measure (C) reached significance. The relative
entropy measure reC was predictive for the transparency ratings.

Higher values of the relative entropy measure reC' predicted lower transparency ratings. The
more atypical a compound’s modifier makes use of the conceptual relations in the language, the less
transparent a compound is judged to be. This results fits well with other typicality effects traced
with relative entropy measures (see, e.g., Milin et al., 2009a,b; Baayen et al., 2011).

The transparency ratings were also partially predictable from gC', with a greater general proba-
bility of the conceptual relation giving rise to higher transparency ratings. Since the modifier-specific
CARIN measure C' was not predictive for the ratings by itself — although it was relevant, albeit indi-
rectly, through the relative entropy measure — we offer as a tentative hypothesis that in the rating
task subjects primarily bring their higher-level knowledge of the distributional properties of concep-
tual relations in the language (reflecting their distribution of noun-noun affordances in the world
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as we experience it) into play, and do not condition specifically on the distribution of conceptual
relations instantiated in the modifier family. In other words, we think that when subjects are evalu-
ating how well a compound’s constituents help understand its meaning, they evaluate its conceptual
relation against the full range of possible conceptual relations in the language, without restricting
themselves to the sub-world of the modifier. For instance, when evaluating chocolate bar (H MADE
OF M), compounds such as granola bar (with the same conceptual relation) are co-evaluated when
judging semantic transparency. What emerges from this study is that a transparency judgement
does not appear to be a measure that is isolated to a particular compound, but rather appears to
be based on a larger set of compounds.

For the familiarity classification task, the generalized CARIN measure gC' interacted with Com-
pound Entropy. In theory, Compound Entropy assesses the amount of information carried by the
constituent meanings in the restricted semantic space spanned by the compound. In the visual
lexical decision task, strongly co-activated, and potentially semantically uninterpreted and thus
competing meanings of modifier and head provide solid evidence for lexicality, enabling shorter
response latencies. In the semantic transparency rating task, having the meanings of modifier and
head equally well available is, apparently, optimal for evaluating how well the (idiosyncratic) mean-
ing of the compound makes sense. Returning to the familiarity classification task, we first note that
the interaction of Compound Entropy by gC' provides a strong indication that the effect of com-
pound entropy is indeed a semantic effect, as Compound Entropy interacts with a semantic factor
— ¢gC'. The tensor surface for the interaction indicates that the effect of gC' is most prominent for
words with lower values of Compound Entropy. We think that this effect may, at least in part, be
due to the centered presentation of the compounds in this experiment. In sentential reading, fixa-
tions tend to land predominantly on the modifier. In our experiments, fixations are in the center of
the compound. As a consequence, the modifier is less well visible than the head (see, e.g., Engbert
et al., 2005), due to the asymmetric shape of the eccentricity function for visual acuity. A strong
conceptual relation for the modifier would then compensate for sub-optimal viewing conditions for
the modifier. This — tentative — hypothesis also explains why for the higher values of gC', the effect
of compound entropy is severely attenuated: There is little additional benefit of well-balanced avail-
ability of constituent meanings if the conceptual relation carried by the modifier is well supported
thanks to the compound’s idiosyncratic meaning (including its conceptual relation) already being
available (as gauged by the effect of Compound Frequency).

In the visual lexical decision task, C interacted with Compound Frequency, showing its strongest
(inhibitory) effect for lower-frequency words. This suggests that when the mapping of form to mean-
ing is strong enough, the compound’s conceptual relation becomes available as part of its meaning,
and further conceptual interpretation is obviated. For lower-frequency compounds, conceptual inter-
pretation processes come into play that seek to predict the compound’s meaning from the conceptual
relations in its modifier family. These conceptual processes then lead to elongated responses. This
pattern of results is reminiscent of a trade-off between compound frequency and modifier frequency
in lexical decision and eye-tracking (Baayen et al., 2010), with facilitation from modifier frequency
only for lower-frequency compounds. This pattern emerges already, albeit in diminutive form, in
the first fixation, and becomes stronger in modifier subgaze durations, and strongest in the gaze
durations (see their Figure 4 for further details). In other words, the less well the compound is
known, the longer processing takes because interpretation comes to depend more on the modifier
and its distribution of conceptual relations.

Inspection of Table 8 shows that the lexical decision task picks up more constituent frequency
and family size effects than the familiarity classification task. Since the familiarity classification
task targets precise knowledge of the word, we think that the constituent effects in lexical decision,
including the inhibitory effect of C', may be the result of a multiple read-out strategy (Grainger and
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Table 8: Summary of predictors considered and the experiments, if any, in which they reached
significance.

Fam. Class. RT  Transparency Rating Visual Lexical Decision

Compound Frequency * * *
Compound Length . . *
Modifier Frequency . . *
Head Frequency .
Modifier Family Size . * *
Head Family Size . .

Head-Compound LSA Similarity *

Head-Modifier LSA Similarity
Modifier-Compound LSA Similarity

C . . *
gC * * .
reC . *

Compound Entropy * *
Levenshtein Distance .

Transparency Class . *

Jacobs, 1996) specific to the lexical decision task. Whereas the tasks that require focusing attention
on the meaning of the compound itself (familiarity categorization and transparency rating) show few
constituent effects and facilitatory effects of gC|, the lexical decision task shows abundant constituent
effects and a modifier-specific effect of C. This fits well with the requirements of this task: speeded
decisions on whether the stimulus is likely to be a word, for which any semantic activation counts
as evidence for lexicality.?

These considerations lead to the following perspective on compound processing in reading. We
assume that the goal of reading a compound is to understand what that compound means. The
more frequent the compound is, the better the meaning of the compound has been learned, allowing
shorter response latencies. In tasks that direct attention to the specific meaning of the compound,
the meanings of the constituents receive little or no attention. Responses and response latencies are
shaped by general knowledge of conceptual relations and the relations in the world of which they
are our experiental reflection. The more a compound’s meaning makes sense against the backdrop
of this general knowledge, the more we interpret it as transparent, and the faster we accept it as a
word we know.

However, in a task such as lexical decision, attention fans out to constituent meanings, the
meanings of morphologically related words (Bertram et al., 2000; Moscoso del Prado Martin et al.,
2004; Dijkstra et al., 2005), and to the meanings of embedded words such as hoe in shoelace (Bowers
et al., 2005; Baayen et al., 2007). Although the meanings of the many words that are fully or
partially compatible with the orthographic input will tend to be at odds with the meanings relevant
for interpretation — this holds even for the meanings of compounds’ constituents, see Libben (2010)
— the co-activation of many meanings provides evidence for lexicality that speeds lexical decision
latencies (Grainger and Jacobs, 1996). However, when attention fractionates over many meanings,
the risk is that interpretation becomes chaotic. This predicts that conceptual processes mitigating

2 A reviewer suggested that it is conceivable that in the lexical decision task, due to the inclusion of compound
nonwords combining a nonword constituent with a word constituent, it would be advantageous to strategically avoid
the activation of constituents. However, the observed effects of modifier frequency as well as those of modifier and
head family size indicate that participants are not able to selectively ignore constituent activation. Conversely, it
might also be possible that participants are made aware of constituents precisely because existing words appear in
nonword compounds. Finally, it is also conceivable that the observed pattern of results reflects a balance between
becoming aware of constituents and seeking to ignore them in nonword compounds.
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the costs of chaos should come into play. This is exactly what we think is indexed by the inhibitory
effect of C' in the visual lexical decision task: An attempt is made at interpreting the compound
given the conceptual relations in the modifier family.

This perspective on compound processing is very different from theories that posit a hierarchy of
form units (letters, letter n-grams, morphemes, and words) that are supposed, through an interactive
activation process, to single out a single form, to the suppression of all other forms. This selected
form would then provide access to semantics. Our approach, by contrast, assumes a fast mapping
from orthographic input to a broad array of meanings (Baayen et al., 2011), with the hard questions
about what the compound actually means being solved at the level of semantics. This is the true
arena of higher-level cognition, where typically among a wealth of information, attention is often
focussed on some particular detail. Our hypothesis is that in reading, attention can be directed to
the meaning of the compound, to the exclusion of co-activated meanings. When reading shoelace,
we know that a shoelace is not a shoe, nor lace, but a small piece of rope used to tighten shoes, and
that humbug denotes nonsense (or, in Britain, a hard mint-flavored candy) and has nothing to do
with humming or with bugs. This situation is no different from a car driver in a busy street focusing
on a traffic light: only one object from a rich array of objects in the visual scene is attended.

Because the language code, forced by the linear nature of speech, overloads old strings (hoe,
lace) with new significances (shoe, shoelace), it can leave the reader with a comet’s tail of semantic
debris. The danger of the lexical decision task is that the experimental evidence for the debris is
easily mistaken for the comet. Complementation by tasks that target the compound’s meaning,
such as familiarity categorization, and by eye-tracking studies (see, e.g., Kuperman et al., 2013, for
non-decompositional access in sentential reading) are crucial for bringing the comet itself back into
focus.
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