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Abstract

Although Vietnamese has a long history of linguistic research, as yet no psycholinguistic studies
addressing lexical processing in this language have been carried out. This paper is the first to
investigate lexical processing in Vietnamese, and addresses the reading of Vietnamese bi-syllabic
compound words. A large single-subject experiment with 20,000 words was complemented by a
smaller multiple-subject experiment with 550 words. We report the novel finding of an inhibitory,
anti-frequency effect of Vietnamese compounds’ constituents. We show that this anti-frequency
effect is predicted by a computational model of lexical processing grounded in naive discrimination
learning. We also show that predictors derived from this model provide a much better fit to the
observed reaction times than traditional lexical distributional predictors. Effects of the density of
the compound graph, previously observed for English were replicated for Vietnamese. Furthermore,
tone diacritics were found to be important predictors of silent reading, providing further evidence
for the role of phonology in reading.

Keywords: compounds, Vietnamese, generalized additive modeling, shortest path lengths, naive
discriminative learning
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Introduction

Vietnamese is famous as a textbook example of a morphologically isolating language (Lyons,
1968), a language with no morphology. According to (Anderson, 1985, p. 8), Vietnamese is a lan-
guage “with nearly every word made up of one and only one formative (indeed, one syllable)”, (see
also Nguyễn, 1996, 2011). The goal of this paper is to show that Anderson’s (and Nguyen’s) char-
acterization may be both correct and incorrect. It is incorrect for the simple reason that in a lexical
database of Vietnamese constructed by the first author, of a total of 28412 words, no less than
22705 (80%) are words that to all practical purposes resemble compounds as familiar from English.
For instance, tàu hoả ‘train’, contains the words tàu, ‘ship’, and hoả ‘fire’, and tàu bay ‘aircraft’,
contains the word tàu ‘ship’, and bay ‘fly’, just like English fire engine contains the words fire and
engine. It is true that Vietnamese has no inflection nor any derivation, but it is rich in compounds.
And yet, we shall see that in reading, these compounds are far more like morphologically simple
words than English compounds.

Vietnamese (tiếng Việt), spoken by approximately 90 million people, belongs to the Việt-Mường
sub-branch of the Vietic branch of the Mon-Khmer family, which is itself a part of the Austro-Asiatic
family. In this tone language, all syllables are single morphemes and all morphemes are monosyllabic.
Vietnamese linguists have introduced the term syllabeme to refer to the syllable-morpheme identity
(see e.g., Ngô, 1984, for further information on syllabeme), and we adopt their terminology in this
study. Vietnamese words may consist of one syllabeme (e.g., cây ‘tree’, gạo ‘rice’, mắt ‘eye’) or
multiple syllabemes, e.g., hoa hồng ‘rose’ (lit. flower pink), and tàu hoả ‘train’ (lit. ship fire).

In the present-day alphabetic writing system of Vietnamese, a syllabeme is written as a sequence
of Roman letters, with additional diacritics for distinguishing phonemes that are not properly distin-
guished by the Roman alphabet, and with additional diacritics for the tones of Vietnamese (ngang
mid level, huyền low falling (breathy), hỏi mid falling (-rising), harsh, ngã mid rising, glottalized,
sắc mid rising, tense, and nặng mid falling, glottalized, short). Syllabemes are separated by spaces.
This spacing convention follows that of its neighbor China, albeit without using the characters fa-
miliar from this country’s orthography. The result is a straightforward writing system that enables
Vietnamese speakers to learn how to read and write within a few months. It serves as the official
orthography nation-wide (Nguyễn, 1997).

Vietnamese syllables are phonotactically severely restricted, and consist of an optional onset
consonant, followed optionally by a bilabial consonant glide, followed by an obligatory vowel (with
one of six tones), followed optionally by a single coda consonant. Table 1 presents a partition of the
most common syllabemes in contemporary Vietnamese. The total number of attested syllabemes in
actual use is 6,651, with a syllabeme type defined as a unique character sequence between spaces.
By comparison, the total number of English syllables as attested in the celex lexical database
for English wordforms (Baayen et al., 1995), differentiated for stress (no stress, primary stress,
secondary stress) is 17,918. Without differentiating between stress, the number of different syllables
remains substantially larger than in Vietnamese (11,492).

Although almost all syllabemes are independent words, the majority of words in Vietnamese
comprise more than one syllabeme. Two-syllabeme compounds often show the same lack of seman-
tic transparency that characterizes compounds in English. Knowing the meanings of the constituents
ship and fire is not sufficient to deduce the compound’s meaning (in Vietnamese: a means of trans-
portation making use of rails, in English: a truck designed for putting out fires).

The combination of a limited set of syllables (compared to English), the conflation of syllables
and morphemes, and rampant compounding raises the question of how compounds are processed.
Are they read as two-syllable words, or are they processed through some form of morphological
decomposition?
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Table 1: Vietnamese syllable type frequency

Type Frequency Example English gloss
CwV 141 hoa, quê flower, countryside
CwVC 436 hoang, xoay uncultivated, revolve
wV 11 oà, uỷ burst out crying, commissioner
CV 1106 ngủ, xu sleep, coin
wVC 27 oách, oằn dapper, to curve
CVC 4681 bên, xương side, bone
V 50 ả, ý lass, idea
VC 188 ác, ai fierce, anybody

In what follows, we first introduce a computational model for lexical processing based on naive
discriminative learning that predicts for Vietnamese that high-frequency constituents delay com-
prehension. The same model architecture, applied to English, predicts, in line with many empirical
studies on this language, facilitation from constituents with high frequencies and large morphologi-
cal families. This surprising prediction of the computational model is then tested against two lexical
decision experiments, one with a single subject (the first author) reading 20,000 words, and one
with multiple subjects reading a smaller subset of 550 words. The first experiment is an exhaustive
experimental survey of all two-syllabeme compounds of Vietnamese listed in a major dictionary
(Hoàng, 2000). The second experiment is a multiple-subject replication study. We then consider the
computational model in further detail, and conclude with a discussion and evaluation section.

Predicting lexical processing in Vietnamese with naive discriminative learning

Naive discriminative learning is a theory of lexical processing which builds on the Rescorla-
Wagner equations and the equilibrium equations thereof (Wagner and Rescorla, 1972; Danks, 2003).

Central to this learning theory is how well cues discriminate between outcomes. By way of a
non-linguistic example, consider cues such as having whiskers, having fur, and having paws, for
outcomes suchs as rabbits, mice, cats, and porcupine. Consider a picture with a rabbit, with
the rabbit’s whiskers clearly visible. In this situation, the weight on the link from having whiskers
to rabbit is increased, whereas the weight on the link from having whiskers to porcupine are
decreased. Importantly, the weights from having whiskers to mice and cats are decreased as well,
reflecting that having whiskers incorrectly predicted that the picture would be about a a mouse
or a cat. This may seem counterintuitive, but it reflects that learning is error-driven (Rescorla, 1988;
Marsolek, 2008; Ramscar et al., 2010), a finding for which excellent neurophysiological evidence has
been obtained (Schultz, 1998).

Naive discriminative learning (henceforth ndl) applies these insights to language, offering the
possibility to estimate how well orthographic cues (letters, letter pairs, or letter trigrams) activate
lexemic outcomes. Here, we use the term lexeme in the sense of Aronoff (1994) to denote a represen-
tation mediating between form and world knowledge. For the present purposes, the lexemes can be
thought of as the symbolic gateways to semantic, pragmatic, and encyclopedic lexical knowledge.
Ndl is an a-morphous theory: there are no representations for stems, morphemes, or exponents.
It is most closely related to Word and Paradigm Morphology (Matthews, 1974; Blevins, 2003) in
theoretical linguistics. In short, the model provides estimates of how well simple orthographic cues
predict lexemic outcomes.

The model’s predictions are derived from corpora or lexical databases. Central to the algorithm is
the definition of a learning event. A learning event consists of a set of orthographic cues, such as the
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orthographic digraphs {#q, qa, ai, id, d#} (with the hash denoting the space character), and
a set with one (or more) lexemes, such as {qaid} (a legal scrabble word meaning tribal chieftain).
Given the sets of cues and outcomes, the Rescorla-Wagner equations are applied to update the
weights from these orthographic cues present to all lexemes that the model has encountered. Thus,
the weight on the link between #q to qaid is strengthened, whereas the weight on the link to
question is weakened.

When applied rigorously to large corpora or databases, ndl correctly predicts a wide range of
phenomena in the lexical processing literature (Baayen et al., 2011; Baayen, 2010a, 2011; Baayen
et al., 2013; Mulder et al., 2014; Ramscar et al., 2010). For English bi-morphemic compounds,
higher frequency constituents afford shorter response latencies. This is mirrored exactly in ndl’s
predictions for this language (Baayen et al., 2011).

Returning to Vietnamese, in order to evaluate the potential consequences for lexical processing of
a lexicon combining productive compounding with a small set of a phonotactically highly constrained
syllabemes, we trained an ndl model (using the R code available in the ndl R package, Shaoul
et al., 2013) on 27181 words, of which 5471 consisted of one syllabeme, and 21710 contained two
syllabemes. Word frequencies ranged from 1 to 1.1552 × 106. We used letter bigrams as cues, and
compounds’ lexemes as outcomes. For instance, for the compound tàu hoả, the model was supplied
with the set of letter digraphs (#t, tà, àu, u#, #h, ho, oả, ả#) and the outcome train. As
tàu hoả occurred 216 times in our corpus, the model was trained on 216 learning events in which
the above letter bigrams were paired with the lexeme train.

Following (Milin et al., 2014), we estimated the model’s support for a given lexeme with the
product of the word’s activation (the summed weights on the connections of the word’s cues in the
visual input, to its lexeme) and the median absolute deviation of the weights on all connections feed-
ing into that lexeme (irrespective of whether they are present in the visual input). For the statistical
analysis, this product was log-transformed to remove the rightward skew in its distribution. The
log-transformed support measure was subjected to a change in sign to obtain a simulated response
latency (words with greater support should be responded to with shorter response latencies).

In order to understand how the simulated response latencies relate to standard lexical distribu-
tional measures, we compiled a set of 18 (highly correlated) corpus-based counts, serving to predict
both the latencies in the experiments reported below, and the latencies simulated by the ndl model.
These counts included several measures of frequency of occurrence of the two-syllable words in a
newspaper corpus and in a subtitle corpus, as well as measures of dispersion (contextual diversity)
in these corpora. Furthermore, corresponding counts were collected for the first and second syl-
labemes. In addition, the primary (Moscoso del Prado Martín et al., 2004) and secondary (Baayen,
2010b; Mulder et al., 2014) family size counts for the syllabemes were obtained, as well as their dis-
persion. Finally, additional family size counts were compiled for the constituents, once disregarding
only diacritics for tone, and once disregarding all diacritics. For further information on the lexical
resources on which these counts are based, see Pham (2014).

As the collinearity of this set of predictors was very high (as indexed by the κ index of collinearity
of Belsley et al. (1980), which for our data was 610.58; values above 30 are considered as indicat-
ing very severe collinearity), we orthogonalized them using principal components analysis (for an
introduction to this method, see, e.g., Baayen, 2008). A screeplot revealed three primary principal
components. The first principal component, henceforth Compound Frequency PC, revealed large
negative loadings for the compound frequency and dispersion measures. Constituent family size
measures, with or without diacritics, had reduced negative values on this component. The second
principal component contrasted morphological family size measures (large negative loadings) and
constituent frequency measures (with somewhat smaller negative loadings) with compound fre-
quency and dispersion measures (large positive loadings). This component is henceforth referred to
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as Part-Whole Balance PC, as it contrasts words with prominent constituents and low compound
frequency with words with high compound frequency and constituents with small family size and
frequency. The third principal component, Positional Family Size PC, contrasted family size
measures for the second syllabic constituent (large negative loadings) with family size measures for
the first syllabic constituent (large positive loadings). The proportion of the variance captured by
the three principal components were 0.37, 0.23, and 0.18.

A linear regression model fitted to the simulated latencies with the first two principal components
as predictors supported a positive slope for Compound Frequency PC (β̂ = 0.48, p < 0.0001) and
a negative slope for Part-Whole Balance PC (β̂ = −0.71, p < 0.0001). Since measures for the
frequency of the compound have large negative loadings on Compound Frequency PC, the model
predicts that more frequent compounds will be responded to more quickly, as expected. Furthermore,
since constituent family size and frequency measures have large negative loadings on Part-Whole
Balance PC, the model predicts that reading is slowed down when the constituent frequencies and
family sizes are large. This prediction of interference from constituents with large family sizes and
greater frequency for Vietnamese is surprising in the light of the facilitation typically found for lexical
decision in English (Baayen et al., 2010, 2011). We therefore now consider two lexical experiments
in Vietnamese, in order to ascertain whether the model’s prediction of an anti-frequency effect for
constituent syllabemes is correct.1 We first report a large single-subject experiment that covers the
full range of items on which the ndl model was trained. We then present a second study with a
many participants responding to a small subset of the words in Experiment 1.

Experiment 1: A single-subject large-scale lexical decision experiment

Method

Materials All disyllabic words from the Vietnamese Dictionary (Hoàng, 2000) were selected, with
the exception of those words involving reduplication, resulting in a list of target words comprising
15021 words. In addition, nearly 5000 single syllabeme (monomorphemic) words were included,
resulting in a total of 20,000 Vietnamese words. (For the importance of comprehensive numbers of
items, see, e.g., Balota et al., 2004; Ferrand et al., 2010; Keuleers et al., 2012).

For the statistical modeling of the response latencies, we considered several additional predictors
in addition to the three principal components introduced above: the length of the compound (in
letters), session number (1–16), the time of day the block was run (in minutes from midnight; the
translation into clock time is given at the top of the panel), the lexical tone of the first syllable
(1–6) as well as that of the second syllable (1–6), and the word category of the compound. Table 2
presents the distribution of tones.

Table 2: Distribution of tones in Vietnamese single-syllabeme and two-syllabeme words.

Tone Single Syllabeme First Compound Syllabeme Second Compound Syllabeme
types tokens types tokens types tokens

ngang 984 14,130,780 6641 5,059,200 4693 3,443,209
huyền 802 11,543,156 3840 2,586,797 3360 2,295,111
ngã 313 3,314,686 858 386,988 1054 547,700
hỏi 514 5,075,897 2145 1,884,127 2277 1,868,108
sắc 1365 11,823,632 5507 4,128,831 5918 4,015,755
nặng 976 7,218,239 3361 2,784,402 4995 4,560,463
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As fixed-effect factors we included whether the first/second syllable constituents are also used as
classifiers, and whether the compound is part of a strongly connected component of the Vietnamese
directed compound graph. A strongly connected component of a directed graph is a subgraph with
the property that each vertex (node) in the graph can be reached from any other vertex by fol-
lowing the directed edges (links). Baayen (2010b) studied the directed compound graph of English
(restricted to bi-morphemic compounds), i.e., a graph in which compound constituents are the ver-
tices, and in which directed edges connect first constituents to second constituents. The English
compound graph has one (large) strongly connected component. The Vietnamese compound graph
is characterized by two (also large) strongly connected components. Compounds in a strongly con-
nected component are part of a particularly dense area of the lexicon. Just as neighborhood density
at the segment level (Chen and Mirman, 2012; Balota et al., 2004) may affect lexical processing,
neighborhood density at the syllabeme/constituent level may help explain response latencies.

Within a strongly connected component, cyclic chains exist, as illustrated in Figure 1. In this
graph, each pair of nodes linked by a directed edge represents an existing compound, with con-
stituents ordered as indicated by the direction of the arrows. A numeric predictor that comes into
play only for words in the strongly connected component is the length of the shortest path from
second syllabeme to the first. In Figure 1, these shortest path lengths are 2, 4, 8, and 10 respectively.

For each of the 20,000 words in the experiment, a pseudoword was generated using the Wuggy
pseudoword generator (Keuleers and Brysbaert, 2010). Each pseudoword differed from its reference
word by one subsyllabic segment (i.e., the onset, nucleus, or coda) per syllable. As a consequence,
a two-syllable nonword differed in two positions from its reference word. A further constraint on
pseudoword generation was that the position selected for change was chosen such that it resulted in
the smallest possible overall change in syllable frequency, transitional frequency between syllables,
and subsyllabic frequency. As a result, the pseudo-morphological structure of the nonwords resem-
bled the morphological structure of the words as closely as possible, as can be seen in Table 3. The
distribution of tone diacritics in the nonwords also faithfully reflected their distribution in existing
words.

Table 3: Examples of compound words and their equivalent pseudowords. None of the pseudowords
are existing word in Vietnamese.

Word Pseudoword
ác cảm ác bạm
á hậu á đấu
ẩn nấp ẩm bấp
âm hưởng âm bượng
áp thấp áp cháp
nghị sĩ nghì sự
thể nghiệm thử nghiêm
vị thế vù thị
xoắn ốc xoán óc
xuất viện xuất tiên

Subject The first author, a native speaker of Vietnamese, served as the single participant of this
experiment. Responding to all forty thousand trials required 46 hours, over a 4-week period.
Procedure All the stimuli, including both words and nonwords, were merged into one list. A script was
written to randomly select equal numbers of word and pseudoword stimuli from the list, which were
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Figure 1: Examples of cycles in the compound directed graph: shortest head-to-modifier paths for
ý → nghĩa, ý → nguyện, miệt → vườn, and xà → cừ. English glosses of the compounds for the
upper left panel: nghĩa tình ‘sentimetal attachment’, tình ý ‘intention’, ý nghĩa ‘mean, sense’; for
the upper right panel: ý nguyện ‘wishes’, nguyện vọng ‘aspiration’, vọng cổ ‘name of a traditional
tune’, cổ tự ‘ancient writing’, tự ý ‘willingly’; for the lower right panel: kịch nói ‘play’, nói khó ‘beg’,
khó chịu ‘uncomfortable’, chịu thua ‘yield’, thua lỗ ‘lose’, lỗ mãng ‘coarse’, mãng xà ‘python’, xà
cừ ‘conch, nacre’, cừ khôi ‘splendid’, khôi hài ‘funny, humorous’, hài kịch ‘comedy’; for the lower
left panel: tiếng nói ‘voice’, nói khó ‘beg’, khó coi ‘unsightly, unaesthetic’, coi khinh ‘despise’, khinh
miệt ‘despise, think little and scorn’, miệt vườn ‘hick’, vườn trường ‘school garden’, trường bắn ‘rifle
range’, bắn tiếng ‘spread word’.

then merged into a template script for dmdx. Thanks to this automated procedure, the participant
(who also implemented the experiment) remained completely uninformed about the words to appear
in a given experimental session. The total experiment comprised 80 blocks of 500 stimuli. Each block
took about 60 minutes to finish (including breaks) and was subdivided into five sub-blocks of 100
stimuli each. Between each sub-block, the participant was asked to press the space bar to continue.
The participant felt that the interruptions increased his control and provided him with information
about his progress through the block. The participant completed a maximum of two blocks per day.

Stimuli were presented on a 17-in. Acer laptop with a refresh rate of 85 Hz and a resolution of
1,600 x 900 pixels, which was controlled by an Intel Core i7 1.6GHz processor. Stimuli were presented
in lowercase 26-point Courier New font, and appeared as black characters on a grey background.
Stimuli were presented and responses collected with the dmdx software (Forster and Forster, 2003).

The participant indicated as quickly and as accurately as possible whether a presented letter
string formed a word or not in Vietnamese by pressing a button on a Microsoft USB wired Xbox
360 game controller for Windows with his left (No) and right (Yes) index fingers. Each trial started
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with a centered fixation point ‘+’ that was presented for 500 msec, followed by the target letter
string, which stayed on the screen until the participant responded or until 2 seconds had elapsed.
The lexical decision experiment started with 12 practice trials in each session, followed by 500
experimental trials, separated by four breaks.

Results

Response latencies were subjected to a scaled negative reciprocal transform (-1000/RT) to reduce
the skew in their distribution. In order to properly model nonlinear functional relations in two or
more dimensions, we made use of generalized additive mixed-effects regression models gamms, (see,
e.g., Hastie and Tibshirani, 1990; Wood, 2006) as implemented in the mgcv package (Wood, 2006,
2011) (version 1.8.3) of the R statistical computing software (R Core Team, 2014).

Generalized additive mixed models extend the standard linear mixed model with tools for mod-
eling nonlinear functional relations between one or more predictors and the response variable. When
the relation between the response and a single predictor is non-linear (as, for instance, is the case
for the dilation of the pupil as a function of time: the pupil first widens, and then narrows), a thin
plate regression spline is the optimal choice. A thin plate regression spline is nothing more than a
weighted sum of mathematically simple functions, the so-called basis functions, with a penalty for
wiggliness to avoid overfitting. When a response depends on two predictors in a non-linear way, a
tensor product smooth can be used to fit a wiggly surface to the data. Just as thin plate regression
splines, tensor product smooths are penalized to avoid overfitting. Tensor product smooths provide
an important extension of the multiplicative interaction of two (or more) numeric predictors in the
linear mixed model. For two predictors, a multiplicative interaction fits a hyperbolic plane to the
data, such that when the value of one predictor is fixed, the effect of the other predictor is strictly
linear. Although some interactions may be well-described by a multiplicative interaction, many are
not — consider, for instance, an “egg-box” like regression surface. The linearity assumption of the
standard mixed model often fails to do justice to the actual patterns in the data, and may result
in important effects remaining unobserved. Given that previous studies on lexical processing have
observed interactions between frequential predictors (typically modeled with multiplicative interac-
tions, see, e.g., Colé et al., 1997; Kuperman et al., 2008, 2009; Miwa et al., 2014) and given improved
model fits obtained for such interactions when exchanging linear mixed models for gamms (Baayen
et al., 2010), we make use of gamms in order to obtain an optimal understanding of the quantitative
structure of our data.2

Tables 4 and 5 summarize the generalized additive mixed model fitted to the inverse-transformed
response latencies. First consider the parametric part of the model, summarized in the upper half
of Table 4. We find here the regression coefficients, their standard error, and associated t and p
values, familiar from standard linear regression models. The positive coefficient for Word Length
(β̂ = 0.016) indicates that, as expected, longer words tended to elicit longer latencies. The non-
significant negative coefficient for words in the strongly connected component of the compound
graph (scc=true, β̂ = −0.065) is suggestive, albeit no more than that, of words that are well-
embedded in the lexicon being responded to more quickly.

The second half of Table 4 lists the smooths and random effects in the model. Here, edf signifies
the effective degrees of freedom, which is roughly the number of parameters invested in a smooth
(or random effect). An edf close to 1 for a smooth is indicative of a straight line (which requires
one parameter, the slope, in addition to the intercept). The smooth terms of the model are best
understood through visualization, presented in Figure 2.

A nearly linear effect of Frequency PC indicates that more frequent words, which have more
negative scores on this principal component, are responded to faster, as expected (upper left panel).
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A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -1.5829 0.0477 -33.1898 < 0.0001
Word Length 0.0160 0.0014 11.0923 < 0.0001
SCC=True -0.0651 0.0352 -1.8486 0.0645
B. smooth terms edf Ref.df F-value p-value
smooth Frequency PC 4.0473 5.0885 277.9798 < 0.0001
smooth Part-Whole Balance PC : SCC=False 1.0000 1.0000 207.1894 < 0.0001
smooth Part-Whole Balance PC : SCC=True 3.8749 4.8666 160.2241 < 0.0001
smooth Positional Family Size PC 3.5894 4.5488 3.6806 0.0038
random effect Tone of First Syllable 4.0966 5.0000 7.2894 < 0.0001
random effect Tone of Second Syllable 4.1705 5.0000 4.9090 0.0001
random effect Word Category 7.7133 10.0000 11.7848 < 0.0001
smooth Minutes 4.3712 5.0122 38.3893 < 0.0001
smooth Session Number 8.4037 8.7715 41.3732 < 0.0001

Table 4: Generalized Additive Model fitted to the negative reciprocal transformed lexical decision
latencies of the large single-subject study (edf: estimated degrees of freedom); SCC: the factor
specifying whether the compound is part of the strongly connected component of the compound
graph

The next two panels present the effect of the Part-Whole Balance PC, which entered into an inter-
action with membership in the strongly connected component. The effect of Part-Whole Balance
PC was linear for words outside the scc, whereas it was slightly nonlinear for words that are part
of the scc. Comparing the third panel with the second, we find that the effect of the Part-Whole
Balance PC was stronger for words belonging to the scc. When the syllabemes of a compound
have larger families, and when these families belong to highly interconnected sections of the com-
pound graph, response latencies apparently become progressively longer. (For completeness, we note
that when separate predictors for constituent frequencies are considered, they likewise give rise to
inhibitory effects; models not shown.)

The fourth panel indicates a modest somewhat U-shaped effect for Positional Family Size
PC. Recall that large negative values on this principal component reflect large families for the second
syllable, whereas large positive values reflect large families for the first syllable. Apparently, when
the families are out of balance, i.e, when the one family is large at the expense of the other, then
responses are delayed. Processing appears to be optimal when both families are in balance (i.e.,
when Positional Family Size PC assumes values around zero). A similar trade-off was observed
by DeCat et al. (2014a,b) in the eeg elicited by English compounds.

Table 4 indicates that all three random-effect factors (the tone on the first syllable, the tone on
the second syllable, and word category) contribute significantly to the model fit (all p < 0.0001). The
coefficients for these random effects factors are shown in panels 5 through 7 by means of quantile-
quantile plots. We incorporated these predictors as random-effect factors instead of as fixed-effect
factors for several reasons. First, this helps us avoid tables of coefficients that are cluttered with
many contrast-coefficients that only represent a subset of the possible contrasts between the many
group means of these multi-levelled factors. Second, for these factors, we do not have any a-priori
hypotheses as to what levels should differ. We include these predictors because we predicted them
to capture a significant part of the variance, which indeed they do. Fixed-effect coefficients are not
of interest to us at this exploratory stage of investigation, because they are less informative. Third,
since the coefficients obtained for random-effect factors are shrinkage estimates, we are protected
agains overfitting the model.3
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Figure 2: The partial effects of smooths and random effect factors in the model fitted to the nega-
tive reciprocal transformed response latencies in Experiment 1. SCC denotes the factor specifying
membership in a strongly connected component of the Vietnamese compound graph.

Inspection of the coefficients for the tone of the first syllabeme shows that the huyền low falling
(breathy) and sắc mid rising, tense tones elicited longer latencies than the other four tones. With
respect to the second syllabeme, the ngã mid rising, glottalized tone elicited the shortest latencies,
and the huyền low falling (breathy) and ngang mid level tone the longest. The major word categories
(noun, verb, adjective) were responded to more quickly than the minor word categories.

The last two panels of Figure 2 presents smooths for the time of day at which the experiment
was run (Minutes) and session number (Session). The plot for Minutes shows that responses were
faster in the afternoon than in the morning. The plot for Session indicates that in the course of
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this month-long experiment, responses were elongated at the beginning and halfway through the
experiment, and that towards the end of the experiment, responses were shorter. We were not able
to find any interactions involving these two predictors that would improve the model fit. We also
could not detect any further effect of Trial (the rank of an item in its experimental list).

models AIC
+ Minutes and Session 583.09
+ Tone1 and Tone2 90.40
+ Word Category 19.39
+ Word Length 44.12
+ Frequency PC 1817.62
+ Part-Whole Balance PC * SCC 946.48
+ Positional Family Size PC 10.94

Table 5: Reduction in aic as predictors are added to an intercept only baseline model for the single-
subject dataset. Scc: factor indicating membership in the strongly connected component of the
compound graph.

Table 5 lists the decrease in aic4 when, starting with an intercept-only model, predictors or
groups of predictors, are added to the model formula. The most important predictor is Frequency
PC, unsurprisingly, as it captures the word frequency effect. The second most important predictor is
Part-Whole Balance PC, which contrasts words with large families and low frequencies with high-
frequency words with small families. Next in importance are the experimental variables Minutes
and Session. As expected for a language rich in tones, the two tone random effect factors also
contribute substantially to the goodness of fit. Contributions of the remaining predictors were
modest.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -1.6509 0.0393 -41.9976 < 0.0001
Word Length 0.0161 0.0017 9.6701 < 0.0001
Second Syl. is Classifier: TRUE -0.0115 0.0179 -0.6403 0.5220
B. smooth terms edf Ref.df F-value p-value
smooth Frequency PC 3.3490 4.2718 167.2776 < 0.0001
smooth Part-Whole Balance PC 3.8493 4.8373 152.8841 < 0.0001
smooth Minutes 3.8974 4.5590 29.4380 < 0.0001
random intercepts tone of first syllable 3.9878 5.0000 4.8267 0.0020
random intercepts tone of second syllable 4.3135 5.0000 5.5958 < 0.0001
random intercepts word category 7.4343 10.0000 7.3111 < 0.0001
smooth Session 8.1698 8.6756 31.4299 < 0.0001
smooth shortest path length 1.0000 1.0000 39.6244 < 0.0001
tensor smooth Sh. Path by Frequency PC : 2nd is Cl = FALSE 2.8869 3.5853 3.0730 0.0199
tensor smooth Sh. Path by Frequency PC : 2nd is Cl = TRUE 1.0000 1.0000 1.1487 0.2838

Table 6: Generalized Additive Model fitted to the negative inverse transformed lexical decision la-
tencies of the large single-subject study, restricted to the words in the strongly connected component
of the compound graph (edf: effective degrees of freedom; Cl: classifier).

Table 6 presents a generalized additive mixed model fitted to the subset of compounds that are
part of the strongly connected component of the compound graph (11392 of the 15021 observa-
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tions). For these compounds, the length of the shortest path from head to modifier is of potential
relevance. When the shortest path length is included as predictor, Positional Family Size PC
loses significance, and interactions emerge with whether the second syllable-constituent is also in
use as a classifier. For those compounds with a second constituent that is not also a classifier, and
only for these compounds, an interaction of Frequency PC by shortest path length was present, as
revealed by the tensor product smooth shown in Figure 3. Figure 3 presents the fitted surface as
a function of Shortest Path Length and Frequency PC. Darker colors denote shorter latencies,
darker shades of yellow denote longer latencies. As on a terrain map, contour lines connect points
that have the same vertical height. Contour lines are 0.05 units apart on the -1000/RT scale.

For this gamm model, we adopted a decompositional approach with separate smooths for
Shortest Path Length and PC freq, combined with a tensor smooth for the partial effect of
the interaction of these two predictors. (Inclusion of the interaction smooths for compounds with
second constituents differentiated by their classifier status reduced the aic by 4.3.) Figure 3 shows
that for high-frequency words (large negative values of PC freq), the effect of path length is small,
with an optimum of shortest responses around paths of length 2–4. As frequency decreases (larger,
positive values of PC freq), the effect of path length reverses, such that for the lowest frequency
words, lengths 4–6 are least optimal, with the longest response latencies. In other words, the word
frequency effect is strongest for compounds with a shortest path length of 4–5 — for these two path
lengths, the greatest number of contour lines is crossed in Figure 3 when moving horizontally along
the Y-axis.

The modulation of shortest path length by frequency is very similar to the interaction of short-
est path length by first constituent family size reported in Baayen (2010b) for word naming in
English. Interactive activation theories might explain the observed pattern as resulting from activa-
tion spreading from the second constituent through the compound graph and ultimately returning to
the first constituent, resulting in confusion about the functional status of the first constituent (e.g.,
modifier in the target compound, but head of the previous compound in the compound chain). This
confusion would then arise primarily for low-frequency compounds and intermediate path lengths.
For short paths, activation would arrive back too early to interfere, at a time when there still is
strong bottom-up support. For long paths, activation would have decayed too much to cause strong
interference (see Baayen, 2010b, for further discussion).

Whereas the graph-theoretical effects observed for Vietnamese converge with similar effects ob-
served for English, the sign of the effect of Part-Whole Balance PC is different from the empirical
record for English. Interestingly, the results for Frequency PC and Part-Whole Balance PC fit well
with the predictions of the ndl model. Apparently, the distributional characteristics of Vietnamese
differ such that the same learning model, trained on English, predicts facilitation, whereas when
trained on Vietnamese, it predicts inhibition from compounds’ constituents. We suspect that the
strong phonotactic restrictions on syllabemes are at issue here, resulting in a relatively small set of
individually meaningful constituents that are ‘recycled’ in compounds of varying degrees of trans-
parency, and that are written with intervening spaces. From a discrimination learning perspective,
discriminating between the meanings of the constituent syllabemes and the meanings of the com-
pounds is harder in Vietnamese compared to English, because there is more functional overloading
of the constituents.

There are some hints in the literature on French, English, and Dutch, that constituents and
complex words may be in each other’s way. Colé et al. (1997) report, for one of the conditions in
one of their experiments, an inhibitory effect of cumulative root frequency for French. Kuperman
et al. (2009) observed (using a multiplicative interaction in a linear mixed model) an interaction
of left constituent frequency by compound frequency for Dutch. Analyses of response latencies to
compounds in the English Lexicon Project (Balota et al., 2004) with generalized additive models also
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Figure 3: Tensor product surface for the interaction of Shortest Path Length and PC freq for com-
pounds the second constituent of which is not in use as a classifier, in the single subject experiment
(Exp. 1).

suggested a (nonlinear) interaction of left constituent frequency by compound frequency, such that
for low compound frequencies, very low or very high modifier frequencies resulted in longer lexical
decision latencies. None of these studies support the consistent inhibitory effect of high constituent
frequency and family size observed for both constituents in Vietnamese compounds.

The empirical results obtained thus far are based on a single subject, albeit on a very large
number of words. To further validate the Vietnamese constituent anti-frequency effect, we consider
a multiple-subject replication study with a smaller random sample of items.

Experiment 2: Multiple-subject small lexical decision experiment

Experiment 2 was run in Vietnam with 33 participants, and 550 words (and 550 nonwords). The
number of items was chosen to provide as extensive coverage as possible within a single experimental
session of approximately one hour.

Method

Materials 550 disyllabic compounds were randomly selected from the 15,000 compound items in the
single-subject experiment, such that high- and low-frequency compounds had an equal chance of
being selected.
Subjects Thirty three students at the Vietnam National University were recruited to take part in
the lexical decision experiment (mean age 21.9, range 20 – 22 years, 12 males, 21 females). All
participants were native Vietnamese speakers and had at least 14 years of education.
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Procedure The same experimental equipment was used as in Experiment 1. Eight lists, each with the
items in a different random order, were constructed for counterbalancing; subjects were randomly
assigned to these lists. The experiment was administered in the same way as a block in Experiment 1.
However, subjects were offerred the possibility of self-timed break after every 100 items.

Results

Table 7 summarizes the generalized additive mixed model fitted to the inverse-transformed
response latencies. In addition to the random effect factors for tone and word category, we included
random intercepts for item (word). For subjects, we requested a specific kind of random effect,
namely, shrunk factor smooths. These factor smooths make it possible to fit a “random wiggly
curve” for each subject to the time-series of response latencies across the trials in the experiment.
Within the linear mixed effect framework, the closest approximation would be a model including
by-subject random intercepts and by-subject random slopes for Trial. But, as we shall see below,
imposing linearity does not do justice to the data. The random factor smooths also take into account
the “vertical positioning” of the wiggly curves over experimental time, i.e., they take care of what in
the linear mixed effect model would be accounted for by means of random intercepts. For subjects,
additional random slopes for Frequency PC and Part-Whole Balance PC were found to be also
justified.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -1.7500 0.0728 -24.0328 < 0.0001
Word Length 0.0067 0.0040 1.6998 0.0892
SCC=TRUE -0.0160 0.0168 -0.9518 0.3412
B. smooth terms edf Ref.df F-value p-value
smooth Frequency PC 2.3021 2.4940 46.2645 < 0.0001
smooth Part-Whole Balance PC : SCC=FALSE 1.4554 1.5540 12.6024 0.0001
smooth Part-Whole Balance PC : SCC=TRUE 1.0005 1.0006 17.4281 < 0.0001
random intercepts tone of first syllable 3.5901 5.0000 42.7653 < 0.0001
random intercepts tone of second syllable 0.1776 5.0000 0.0570 0.3675
random intercepts word category 0.8549 3.0000 4.6022 0.0822
smooth Positional Family Size PC : SCC=FALSE 1.0001 1.0001 0.5445 0.4606
smooth Positional Family Size PC : SCC=TRUE 1.0005 1.0007 9.6217 0.0019
random intercepts Word 367.1178 534.0000 2.3098 < 0.0001
random by-Subject slopes for Part-Whole Balance PC 25.6535 32.0000 9.1267 < 0.0001
random by-Subject slopes for Frequency PC 26.9802 32.0000 13.1872 < 0.0001
by-Subject random smooths for Trial 248.0165 296.0000 98.4261 < 0.0001

Table 7: Generalized Additive Model fitted to the negative inverse transformed lexical decision
latencies of the smaller-scale multiple-subject study. SCC is a factor indicating membership of the
strongly connected component of the compound graph.

In the main, the effects observed in the multi-subject experiment mirror those for the single-
subject experiment. However, the effects of the tone of the second syllable, as well as that of word
category, are lost, due to a lack of power. The effect of Part-Whole Balance PC and its interaction
with membership in the strongly connected component of the compound graph was replicated. For
words in the strongly connected component, the effect of Part-Whole Balance PC was somewhat
reduced. An effect of Positional Family Size PC also re-emerged, but now its effect was strictly
linear, with a negative slope. Figure 4 present the partial effects of these principal components,
comparing the effects in Experiment 1 (upper panels) with those in Experiment 2 (lower panels).
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Figure 4: Smooths for the principal components for the single-subject data (top) and the multiple-
subject data (bottom). SCC: factor denoting membership in the strongly connected component of
the compound graph.

As for the single-subject experiment, we investigated the contributions of the predictors (or
groups of predictors) in terms of the extent to which they contributed to reducing the aic of the
model. Table 8 indicates that subject and item variability dwarves the linguistic predictors. This
pattern is strikingly different from that observed for the single-subject experiment, for which the
first two principal components (PC frequency and PC freq-fam, in interaction with membership
in the strongly connected component) effected the greatest changes in aic. In other words, a design
with multiple subjects comes at the cost of huge subject variablity, and huge variability with respect
to how subjects respond to items.

By far the most important random-effect component in this model is given by the by-subject
random smooths for Trial, visualized in Figure 5. As the experiment proceeded, subjects’ per-
formance fluctuated substantially, and non-linearly. Although for some subjects, these fluctuations
were mild, other subjects showed performance that changed substantially. One subject started out
as the slowest subject, but by the end of the experiment responded fastest, possibly indicating
an effect of habituation to the task. Conversely, the subject starting out as the fastest responder
became one of the slowest responders in the second half of the experiment. One subject revealed
a highly oscillatory pattern, with tremendous slowing down, followed by speeding, up, in the last
quarter of the experiment. We note here that the reduction in aic afforded by the factor smooths,
7413.72, is substantially larger than the corresponding linear mixed-effects model with straight lines
(obtained with random intercepts and random slopes) replacing the wiggly curves (6466.98).

An analysis of the subset of words with a second constituent in the strongly connected component
was carried out to inspect whether the interaction of Shortest Path Length by Frequency PC by
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models AIC
+ Trial by Subject factor smooths 7413.72
+ Subject random intercepts and slopes 2176.57
+ Item random intercepts 954.61
+ Tones 2.96
+ Word Category -0.99
+ Word Length 0.20
+ Frequency PC 1.47
+ Part-Whole Balance PC * SCC 3.55
+ Positional Family Size PC 2.03

Table 8: Reduction in AIC as predictors are added to an intercept only baseline model, for the
multiple-subject data. SCC: factor denoting membership in the strongly connected component of
the compound graph.
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Figure 5: Factor smooths with shrinkage for Trial by Subject in Experiment 2. Each wiggly curve
represents how a specific subject proceeds through the trials of the experiment. For instance, the
initially fastest subject (light blue) ends the experiment with average speed, after having been one
of the slower subjects in the second half of the experiment.

the second constituent being in use as a classifier would persist (model not shown). This interaction
was again present, and as before, it was restricted to those compounds with a second constituent
that is not in use as a classifier.

Finally, we note that the general inhibitory effect of Part-Whole Balance PC in Vietnamese
replicated well in Experiment 2, providing further empirical support for the predictions of the ndl
model. We therefore consider the learning model in some more detail.

Further modeling with naive discrimination learning

In the introduction, we observed that the ndl model predicted that Vietnamese lexemes are
better learned when the corresponding two-syllabeme words are used more frequently, and are
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learned less well the more the individual syllabemes are more entrenched in the sense that they are
more frequently used, and used more often in other two-syllabeme words. This analysis shows that
how well a lexeme is learned is itself co-determined by how its letter bigrams are used across the
lexicon.

However, when reading a compound such as tàu hoả, the digraphs of the word will activate not
only the lexeme of the compound (train), but also the lexemes of the constituent syllabemes (ship
and fire). We therefore also calculated the model’s support for the lexemes of the constituent
syllabemes, expecting to find that greater support for the constituent syllabemes’ lexemes gives
rise to longer response latencies.5 We therefore fitted a new gamm to the response latencies of
Experiment 1, with as predictors Minutes, Session, Word Length, membership in the strongly
connected component (SCC), Word Category, Tone, Compound Frequency, and a tensor product
smooth for the interaction of the ndl support for the lexemes of the compound and its syllabemes
respectively. As some syllabemes occur only in compounds (compare cran in English cranberry), the
analyses reported below are carried out on the 13681 compounds for which lexemes are available
for the compound itself and for both its constituent syllabemes.

Compound frequency is incorporated in our analysis as an estimate of the a-priori probability
that a word will be presented in the experiment. The greater the probability of correctly guessing
what word will be shown on the screen, the faster a response can be initiated. (The compound
frequency measure is theoretically well-motivated within the ndl learning framework, as relative
frequencies can arise as a result of learning one-to-many mappings. The one-to-many mapping
involved here is a subject’s ‘existence’ as cue, and possible words in Vietnamese as outcomes.)

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -1.6621 0.0239 -69.4582 < 0.0001
Word Length 0.0190 0.0015 12.5854 < 0.0001
SCC = True -0.0493 0.0054 -9.1795 < 0.0001
B. smooth terms edf Ref.df F-value p-value
smooth Log Compound Frequency 3.1282 3.9038 105.8299 < 0.0001
tensor product smooth for the three NDL measures 36.0092 46.2110 20.2480 < 0.0001
random effect Tone of First Syllabeme 3.1060 5.0000 2.8044 0.0013
random effect Tone of Second Syllabeme 0.0691 5.0000 0.0141 0.3889
random effect Word Category 6.3550 10.0000 6.2286 < 0.0001
smooth Minutes 4.1275 4.7890 39.9089 < 0.0001
smooth Session Number 8.4133 8.7888 38.0587 < 0.0001

Table 9: Generalized Additive Model fitted to the negative inverse transformed lexical decision
latencies of the large single-subject study (edf: estimated degrees of freedom, SCC: factor denoting
membership in the strongly connected component), with learning-based predictors.

The resulting model is summarized in Table 9. In what follows, we focus on the predictors
of interest from a modeling perspective: The effect of a-priori probability, and the effects of the
ndl support for the compound lexeme and its corresponding syllabemic lexemes. The upper left
panel of Figure 6 presents the effect of compound probability, which is, as expected, facilitatory.
The remaining panels visualize the three-way interaction of compound support by left and right
syllabeme support. Each panel shows the fitted surface for a given pair of support measures, with
other predictors in the model held constant at their most typical values. The upper right and lower
left panels show that processing is delayed most for high syllabeme support and low compound
support. Note, furthermore, that for the lowest values of syllabeme support, there is little effect of
compound support. Finally, the lower right panel indicates that processing is optimal for syllabeme
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Figure 6: Partial effects of frequency and the interaction of the three ndl support measures in
the gamm fitted to the inverse-transformed response latencies of the single subject experiment.
Darker shades of blue indicate shorter response latencies. Contour lines connect points with the
same response latency. Values on the contour lines are on the -1000/RT scale.

support values close to the most typical values of syllabeme support (as indicated by the dashed
lines, representing the medians, in the lower right panel). In other words, if a syllabeme has average
(and hence well expected and least surprising) support, it is least intrusive in the visual lexical
decision task.

It is noteworthy that this gamm provides a much better fit to the data than the original model
presented in Table 4. The model with ndl predictors has an aic of 137.1. This compare very
favorably to the model with the principal components replacing the ndl measures as predictors
(aic: 596.6) (Allowing for a four-way interaction of the three principal components and membership
of the strongly connected component does not provide an improvement (aic: 594.8) in goodness of
fit with respect to the model with non-interacting principal components.)
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In summary, we have shown that response latencies can be predicted with substantially greater
accuracy when a learning approach is adopted. In this learning approach, there are two ways in
which a compound’s constituent syllabemes interfere and slow down comprehension.

The first kind of interference takes place during implicit learning, the never-ending process
of adjusting the weights from orthographic cues to lexemic outcomes. Since compounds re-use
syllabemes that often have their own meanings, and since these meanings are seldom contributing
in a fully compositional way to the meaning of the compound (e.g., a ‘fire engine’ is, in English, an
truck used to extinguish fires, whereas in Vietnamese, it is a vehicle, designed to drive on rail tracks,
that used to be propelled by fire), when learning what a compound means, there is a constant tug of
war between the cues and the compound lexeme on the one hand, and the cues and the syllabemic
lexemes on the other.

To understand this tug of war, we have to take a step away from the intuitive (and behaviorist)
idea of associative learning, according to which learning amounts to associations being formed in
memory for co-occurring cues and outcomes. This intuitive view of learning ignores that unlearning
takes place whenever cues fail to predict outcomes, a point emphasized by Rescorla (1988). Re-
turning to the example from the introduction: Having whiskers is a cue to cats, rats, and rabbits.
When whiskers are seen together with a rat, the weight on the link between whiskers and rat is
strengthened, but at the same time, the weights on the links to cats and rabbits are unlearned and
weakened, even though it is a fact about the world that cats and rabbits have whiskers (see also
Marsolek, 2008, for unlearning in vision). This unlearning is one of the factors driving the inhibitory
effect of Part-Whole Balance PC in the present experiments: The more frequent a constituent is
and the less frequent the compound, the more the meaning of the compound will be unlearned from
the cues of that constituent when that constituent is read in isolation (see also Ramscar et al., 2013,
for more general consequences of unlearning).

The second kind of interference takes place during the event of compound reading itself: Intrusive,
well-learned syllabemic lexemes become activated, just as hat in that is activated in English (Bowers
et al., 2005; Baayen et al., 2007). To resolve the conflict between co-active lexemes, further control
processes must be involved (see, e.g., Yeung et al., 2004; Ramscar and Gitcho, 2007). The greater the
support for the intruding syllabemic lexemes, the more time is required by these control processes
to resolve these conflicts.

As we did not obtain any evidence for an interaction involving the ndl measures and membership
in the strongly connected component (scc), it seems likely that the effect of scc arises after the
compound and syllabeme lexemes have been activated. Possibly, syllabemic lexemes in the strongly
connected component of the compound graph generate, due to their higher interconnectedness, more
predictions about lexemes they combine with. As these predictions do not match the visual input,
the control processes have more evidence against such syllabemic lexemes, allowing faster responses
(cf. the negative sign of the effect of scc in Table 9).

A methodological note

When resources are limited, is it better to conduct a large study with one, or only a few,
participants, or to conduct a study with more participants and fewer items?

The answer depends on the goal of one’s study. If the goal is to study between-subject variation
in language processing, obviously a multi-subject design is the appropriate choice. An important
caveat here is that the majority of experiments in psychology and psycholinguistics make use of
convenience samples of subjects — typically undergraduate, predominantly female, students of psy-
chology (Francis et al., 2001; Sander and Sanders, 2006). Experiment 2 of the present study is no
exception, with a majority of female participants, and with both males and females being university
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students. As shown by (Kuperman and Van Dyke, 2011, 2013), substantial between-subject differ-
ences exist in reading skills (and reading habits) as a function of education and vocation. Thus, the
multiple-subject experiment is revealing only about a very small, unrepresentative section of Viet-
namese readers. Anyone interested in generalizing to a broader section of society should consider
stratified random sampling from the full society.

The goal of the present study is not clarifying between-speaker differences in reading printed
Vietnamese, but rather, exploring the consequences of experience with the lexical-distributional
properties of Vietnamese for reading. A problem that arises here is that we do not have data on the
experiences of individual subjects. All we have is an aggregate — the corpus — that cannot but be
inaccurate for any individual reader.

Given the limitations of our current resources, the question is whether we learn more about
the consequences of lexical-distributional predictors for lexical processing from a single-subject
experiment, or from a multi-subject experiment with participants with a similar socio-economic
background.

To address this question, we first assessed the adjusted R-squared obtained by fitting separate
models with only lexical predictors for each of the 33 subjects in Experiment 2. We then com-
pared the distribution of R-squared values with the corresponding distribution of R-squared values
obtained by randomly sampling 500 data points (compounds) from Experiment 1, 30 times, and
fitting the same model to these subsets of data. In the mean, the two distributions were indis-
tinguishable, but the variance for the single-subject sample of R-squared values was significantly
smaller (p < 0.0001, F -test). This is remarkable, as the subsamples cover a much wider range
of words. It suggests that the between-subject variability in performance is much larger than the
within-subject variability in performance.

This possibility receives further support when the amount of variance explained in the two
experiments is scrutinized. The adjusted R-squared for Experiment 1 is 0.21, and that for Exper-
iment 2, 0.59. However, most of the variance captured by Experiment 2 concerns between-subject
variation. This becomes clear when we compare these adjusted R-squared values with those obtained
by fitting models with all lexical predictors excluded, using only predictors such as Trial, Minutes,
and Session. The adjusted R-squared for Experiment 1 is only 0.04, whereas for Experiment 2, it
is 0.46. Thus, the bulk of the variance captured in our multi-subject experiment concerns subject
variation. By contrast, the bulk of the variance for the single-subject experiment is captured by
lexical-distributional predictors.

The advantage of having better coverage of the language with our single-subject experiment is
illustrated by the interaction of the Frequency PC, the Shortest Path Length, and the use of the
second constituent as Classifier. The fitted tensor surfaces for Experiments 1 and 2 are shown in
the left and right panels of Figure 7 respectively. Due to data sparsity, the tensor for the multi-
subject experiment (right panel) captures only the bottom half of the effect that emerges from the
single-subject experiment (which has 30 times as many items). Thus, Experiment 1 emerges as more
useful for understanding the linguistic aspects of lexical processing.

It might be argued that our single subject for Experiment 1 is, in some way, atypical. For
instance, he might have been better motivated. On the other hand, at times, he might also have been
more bored: The nonlinear pattern over sessions may well have been affected by a combination of the
drudgery of performing yet another uninteresting lexical decision experiment and consideration of
the number of sessions yet to be completed. Furthermore, our subject was an expatriate at the time
of testing, which might have affected performance negatively. Fortunately, the very similar adjusted
R-squared distributions for the 33 subjects of Experiment 2 and the 30 disjunct subsamples of 500
items from Experiment 1 suggest that the subject of Experiment 1 is not that different from other
university-educated native speakers of Vietnamese sampled in Experiment 2.
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Figure 7: Tensor product surface for the interaction of Shortest Path Length and PC freq for
compounds the second constituent of which is not in use as a classifier, in the single-subject (left)
and multi-subject (right) experiment.

In the light of these considerations, we think that for languages with few speakers, or languages
with few speakers with the necessary metalinguistic skills required for standard psycholinguistic be-
havioral paradigms, a comprehensive single-subject may therefore have advantages to offer when the
focus of interest is on language rather than on socially-conditioned variation in language processing.

General Discussion

This study reports what is — to our knowledge — the first experimental study of Vietnamese.
We have documented the effect on lexical decision latencies of a wide range of predictors, ranging
from lexical tone to family size, and from membership in the strongly connected component to
compound frequency.

One interesting result is the strong effect of lexical tone in the visual lexical decision task.
The literature on the processing of tone is surprisingly limited. Cutler and Hsuan-Chih (1997)
observed that same-different judgements were difficult for words differing only for tone, irrespective
of whether subjects spoke Cantonese or not. Zhang and Damian (2009) observed faster responses
in a tracking task for segments compared to tones. Zhao and Jurafsky (2009) reported for speech
production a higher F0 for lower-frequency words with mid tones. Shaw et al. (2014), also studying
production, using electromagnetic articulography, observed independence of vowel and tonal targets.
Nixon (2014) studied tone sandhi using the picture-word interference paradigm. The present study
adds to this literature by demonstrating that the tones of Vietnamese come with specific processing
costs, even in silent reading. For instance, in the multiple subject experiment, the ngang mid level
tone elicited on average the shortest response latencies, while response latencies were longest for
the huyền low falling (breathy) tone. In Vietnamese, tone is marked by diacritics on vowel letters.
Nevertheless, these tiny diacritics are clearly highly discriminative, and give rise to strong effects
in the reaction times. As these effects vary between whether the diacritic appears on the vowel in
the first syllabeme or that on the second syllabeme (see Table 9), it is unlikely that the effect of
the tone diacritics can be reduced to a purely orthographic effect. We think it is more likely that
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it reflects the involvement of sound structure in reading (see also Carreiras et al., 2005; Lee, 2007;
Winskel and Perea, 2014).

A second result of interest is the effect of membership in the strongly connected component
of the directed compound graph of Vietnamese. Effects of network density have been reported for
English (Baayen, 2010b), and the present results are encouraging enough to suggest it may be worth
exploring whether these kind of “network effects” can be replicated in other languages as well.

The most surprising result that we obtained is that in Vietnamese, in contrast to English,
constituent syllabemes interfere with reading. This interference was predicted by the ndl model,
and was observed in two independent experiments. As ndl models for English correctly predict
facilitation from constituents instead of inhibition, (see, e.g., Baayen et al., 2011, for one implemen-
tation, other implementations not shown here yield comparable results), the main source of this
cross-language difference must reside in the distributional properties of the lexicons of English and
Vietnamese. Our hypothesis is that Vietnamese, with its highly restricted syllable phonotactics, and
orthographic conventions that space all compounds, is forced to overload its syllable-morphemes to a
much higher extent to English. We think this stronger overloading lies at the heart of the Vietnamese
constituent anti-frequency effect.

In the discriminative learning approach adopted in this study, there are no form units for syl-
labemes nor for compounds, and yet morphological effects are properly predicted. For a language
traditionally described as isolating (recall the quote from Anderson cited in the introduction), this
is an especially fitting result. Given the ndl model and the excellent predictivity of the predic-
tors it offers, one might be tempted to conclude that Vietnamese compounds are ‘just’ two-syllable
words, the syllables of which happen to have independent meanings, just as hat in that has its own
meaning. This temptation should be resisted, however, as Vietnamese compounds show the same
kind of weak, a-posteriori comprehensible compositionality that characterizes English compounds.
In other words, we think that Vietnamese compounds are partially and idiosyncratically motivated,
and hence motivated signs, albeit the product of long and equally idiosyncratic evolutionary paths
through cultural history. Of course, this does not entail that a decomposition of Vietnamese com-
pounds into constituent morphemic forms would play a role — to the contrary, no such form-driven
decomposition takes place in our learning model. What does happen is that orthographic cues may
co-activate the lexemes of constituent syllabemes, especially when these syllabemes have high fre-
quencies of use compared to the compound itself. The resolution of the conflict between co-active
syllabemic and compound lexemes may in turn have further repercussions at higher levels of cogni-
tion, leading to phenomena such as folk-etymologies and the intuitive feeling that the compounds
in one’s native language make eminent sense, which they do not (compare tàu hoả and fire en-
gine in Vietnamese and English). The modeling of the consequences of these higher-level cognitive
repercussions for lexical processing is a challenge for future research.

Was Anderson right in describing Vietnamese as a language “with nearly every word made up
of one and only one formative”? Given the present results, the answer is both no and yes: No
because compounds are rampant in Vietnamese, and yes, because compounds are more similar to
two-syllable simple words than comparable compounds in English.

Notes
1 We present the simulation first, and the experiments second, for expositional clarity. We note here that with

respect to the “context of discovery”, the experiments were run first. The anti-frequency effect observed in the reaction
times then led us to test naive discrimination learning against the Vietnamese data.

2 Baayen (2014) provides a short non-technical introduction to the gamm. For examples of the use of generalized
mixed-effects additive models in psycholinguistics, see Baayen (2014); Baayen et al. (2010); Tremblay and Baayen
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(2010); Kryuchkova et al. (2012); DeCat et al. (2014b) and Balling and Baayen (2012), and for applications in
linguistic studies, Wieling et al. (2011); Kösling et al. (2013); Wieling et al. (2014) and Tomaschek et al. (2013).

3Note that it is not necessary for a random-effect factor to have levels representing a sample of a much larger
population. For such factors, just as for the present factors, the shrinkage estimates of the coefficients afford more
precise estimates for when the same levels are sampled in a future replication study. When the population is large, as
typically is the case for subjects and items, then the mixed model provides an estimate for unknown subjects and items,
thanks to the fixed-effect estimates for the population. For random effect factors such as Tone and Word Category,
we have no interest in unsampled tones or word categories, as there are none. Nevertheless, we can profit from the
shrinkage estimates to protect against overfitting with many factor levels while bringing systematic non-independence
related to Tone and Word Category into the model.

4Akaike’s information criterion, or aic (Akaike, 1974) is an information-theoretic measure of goodness of fit. Smaller
values indicate a better fit.

5 Modeling with ndl requires decisions about what form information to use for cues, and what lexemic information
to use for the outcomes. With respect to the cues, we explored letter pairs and letter trigrams. With respect to the
outcomes, we compared models using as outcomes the lexemes of the compound together with the lexemes of its
constituents with models using as outcomes only the compound lexeme. The latter models outperformed the former
when pitted against reaction times. We therefore report results only for the best model, using letter bigrams as cues,
and non-decompositional lexemic representations as outcomes.
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