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Abstract We present the Chinese Lexical Database
(CLD): a large-scale lexical database for simplified Chi-
nese. The CLD provides a wealth of lexical information
for 3, 913 one-character words, 34, 233 two-character
words, 7, 143 three-character words, and 3, 355 four-
character words, and is publicly available through
http://www.chineselexicaldatabase.com. For each
of the 48, 644 words in the CLD, we provide a wide
range of categorical predictors, as well as an extensive
set of frequency measures, complexity measures, neigh-
borhood density measures, orthography-phonology con-
sistency measures, and information-theoretic measures.
We evaluate the explanatory power of the lexical vari-
ables in the CLD in the context of experimental
data through analyses of lexical decision latencies for
one-character, two-character, three-character and four-
character words, as well as word naming latencies for
one-character and two-character words. The results of
these analyses are discussed.
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1 Introduction

Over the last decades, the wealth of experimen-
tal research in the psycholinguistic literature has been
complemented with large-scale lexical resources. The
most well known lexical database, perhaps, is CELEX
(Baayen et al., 1995), which contains a large amount
of lexical information for English, German, and Dutch.
Language-specific lexical databases have been devel-
oped as well. The MRC psycholinguistic database
(Coltheart, 1981), Lexique (New et al., 2001, 2004,
2007), dlexDB (Heister et al., 2011), and EsPal (Duchon
et al., 2013), for instance, are examples of lexical re-
sources for English, French, German, and Spanish. In
recent years, lexical databases have also been developed
for less well-studied languages, including Modern Greek
(Kyparissiadis et al., 2017; Ktori et al., 2008), Mod-
ern Arabic (Boudelaa and Marslen-Wilson, 2010), and
Malay (Yap et al., 2010).

Another less-studied language is Mandarin Chinese,
which is also referred to as 普通话 (“common lan-
guage”). Mandarin Chinese is part of the Sino-Tibetan
language family. It is the official language of China
and has, according to recent estimates, nearly a billion
(935 million) native speakers (Parkvall, 2007). Man-
darin Chinese is a tonal language. The basic phonolog-
ical unit is the syllable. Each syllable consists of vowels
and consonants in a (C)V(C) structure at the segmen-
tal level and a tone at the suprasegmental level (cf. Sun,
2006). In the writing system, syllables correspond to汉
字 (Hanzi, literal translation: “Chinese characters”).
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According to the Table of General Standard Chinese
Characters, there are about 8, 100 Chinese characters,
of which 6, 500 are commonly used (Ministry of Educa-
tion of the People’s Republic of China, 2013). Due to
the complicated nature of traditional Chinese charac-
ters, learning to read or write in Chinese is a difficult
task. To master the language, one has to memorize and
rehearse thousands of characters. To improve literacy,
the Chinese government decided to simplify over 2, 200
characters in the 1950s (Honorof and Feldman, 2006).
The resulting writing system is referred to as simplified
Chinese and is the standard writing system in modern-
day China.

Due to the historical focus of psycholinguistic re-
search on Germanic and – to a lesser extent – Roman
languages, lexical processing is less well-studied in Man-
darin Chinese than it is in English, German, or Dutch.
Concomitantly, relatively few lexical resources exist for
Mandarin Chinese. For traditional Chinese, which has
remained the standard writing system in Taiwan, Tai-
wan Sinica has compiled a large-scale lexical database
(Chang et al., 2016), with naming latencies and 12 nu-
merical variables for 3, 314 one-character words. For
simplified Chinese, four lexical resources have recently
been developed. First, Liu et al. (2007) released a lexical
database that contains word naming latencies and 15

lexical predictors for 2, 423 one-character words. Sec-
ond, SUBTLEX-CH provides a collection of charac-
ter and word frequency counts based on a corpus of
movie subtitles in simplified Chinese (Cai and Brys-
baert, 2010). Third, the Chinese Lexicon Project (CLP)
contains lexical decision latencies for 2, 500 characters
and is released without lexical variables (Sze et al.,
2014).1 Fourth, MELD-SCH (Tsang et al., 2017) pro-
vides lexical decision latencies for 1, 020 one-character,
10, 022 two-character, 949 three-character, and 587
four-character words, as well as 10 numerical predic-
tors for these words.

Thus far, lexical resources available for Man-
darin Chinese have primarily been developed for one-
character words. According to Honorof and Feldman
(2006), no more than 34% of the word tokens in
Mandarin Chinese are single character words. Fre-
quency counts based on a large-scale corpus of simpli-
fied Chinese, the Simplified Chinese Corpus of Web-
pages (henceforth SCCoW; Shaoul et al., 2016) yielded
a similar estimate of 35%. An overwhelming majority
of the remaining words consist of two characters. In
the SCCoW, 59% of all word tokens are two-character

1 In the context of the Chinese Lexicon Project, Tse et al.
(2016) recently provided lexical decision latencies for two-
character words as well. In this study, however, stimuli were
presented in traditional Chinese.

words. A further 5% of all word tokens in the SCCoW
are three-character words, whereas less than 1% of all
word tokens consist four or more characters. The addi-
tion of multi-character words, therefore, is an equally
straightforward and crucial extension of existing lexical
resources for simplified Chinese.

Useful sets of lexical predictors have been provided
by existing lexical resources. In particular, Liu et al.
(2007) provided an extensive set of lexical predictors,
including measures of orthographic and phonological
frequency, visual complexity, phonological neighbor-
hood density, character combinability, and the con-
sistency of the orthography-phonology mapping. Fur-
thermore, subjective ratings were included for age
of acquisition, familiarity, concreteness and image-
ability. In addition, Tsang et al. (2017) made avail-
able word and character frequency counts, as well as
stroke counts, character combinability counts, and pro-
nunciation counts for a large semi-random subset of
one-character, two-character, three-character, and four-
character words in SUBTLEX-CH (Cai and Brysbaert,
2010).

Nonetheless, the set of lexical predictors provided
by existing lexical resources offers some room for im-
provement. Most notably, existing resources typically
provide a single lexical variable for each theoretical
concept. Concepts like frequency, visual complexity,
or consistency of the orthography-phonology mapping,
however, can be expressed through a variety of lexical
variables defined in different units or at different grain
sizes. The possibility to compare different measures of
a theoretical concept allows for more in-depth analyses
of experimental data, as well as for more precise formu-
lations of theoretical or computational models of lexical
processing.

Furthermore, the importance of the combinatorial
properties of characters increases in the context of
multi-character words. To accurately capture the in-
fluence of these properties on lexical processing, counts
of the number of words in which characters occur may
not be sufficient. Additional measures of the combina-
tional properties of the characters in multi-character
words therefore need to be developed. For this purpose,
information-theoretic measures of the association be-
tween the characters in multi-character words, and of
the predictability of a character given the other charac-
ters in a word are particularly promising (cf. C. C. Sun,
2016).

Here, we present a new lexical database for sim-
plified Chinese: the Chinese Lexical Database (hence-
forth CLD). The CLD provides a wealth of lexical in-
formation for the set of one-character, two-character,
three-character and four-character words that occur in
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both SUBTLEX-CH (Cai and Brysbaert, 2010) and
in the Leiden Weibo Corpus (Van Esch, 2012), with
the exclusion of proper nouns and words that con-
tain traditional (rather than simplified) Chinese char-
acters. It contains 3, 914 one-character words, 34, 233
two-character words, 7, 143 three-character words, and
3, 355 four-character words, for a total of 48, 644 words.
These 48, 644 words consist of 4, 895 unique characters.
Below, we first introduce the CLD and the lexical infor-
mation it comprises. Next, we evaluate the explanatory
power of the lexical variables in the CLD for both lex-
ical decision data and word naming data.

2 Chinese Lexical Database (CLD)

The CLD is released under the GNU General Pub-
lic License. The database is available via the library
of Eberhard Karl’s Universität Tübingen (http://dx.
doi.org/10.15496/publikation-21197), as well as
through http://www.chineselexicaldatabase.com.
Furthermore, the database is provided in the supple-
mentary materials for this paper. On http://www.
chineselexicaldatabase.com, we provide two op-
tions to access the data in the CLD. First, the database
can be downloaded in .txt and .csv format (61.4 mb,
zipped: 19.8 mb), in .pdf format (33.7 mb), or as a data
frame for the statistical software R (13.7 mb). Second,
the CLD can be accessed through a search interface.
Users have the option to search the full database, or to
submit lists of words, characters or radicals for which
lexical information should be displayed. Similarly, ei-
ther the full set of variables can be shown or the user
may select a subset of variables in which she is inter-
ested.

For the categorical variables that describe the struc-
ture, type, and tone of a character (see our description
of the lexical variables in the CLD below), factor lev-
els that should be included in the output can manually
be selected (by default all factor levels are included).
For numerical variables, minimum and maximum val-
ues can be set to limit the range of a variable in the
output. The result of a search can either be viewed in
the browser or e-mailed to the user.

Below, we provide a description of the informa-
tion contained in the Chinese Lexical Database (CLD).
The lexical variables in the CLD can be divided
into six conceptual classes: categorical predictors, fre-
quency measures, complexity measures, neighborhood
density measures, orthography-phonology consistency
measures, and information-theoretic measures. Below,
we describe the lexical variables in each of these classes.
A schematic overview of the classes of lexical variables
is provided in Table 1.

2.1 Categorical variables

The CLD contains a number of categorical vari-
ables. The first five categorical variables are the word
(Word) and its component characters (C1, C2, C3,
and C4; henceforth we refer to identical variables for
the first, second, third, and fourth character through
the abbreviation C1-C4). Words and characters have
pronunciations as well. Pronunciations for both words
and characters are provided both in Pinyin (Pinyin,
C1-C4 Pinyin) and in IPA format (IPA, C1-C4 IPA).
Pinyin literally means “spell the sound”. Pinyin tran-
scriptions translate Chinese characters into a romanized
form based on their pronunciation. The Pinyin variables
in the CLD are based on a publicly available Pinyin an-
notator developed by Xiao (2015).

Pronunciations in IPA format are based on the
Pinyin transcriptions of a word and were obtained by
applying a set of Pinyin-to-IPA conversion rules to
the Pinyin transcriptions (Wikipedia, 2016). To allow
users to control for the influence of phonetic differ-
ences on the registration of the onset and offset of a
response in naming tasks, we furthermore included the
initial phoneme and the final phoneme of each word
as lexical variables in the CLD (Initial Phoneme, Final
Phoneme). Finally, we provide the tone (1 (high-level);
2 (high-rising); 3 (low/dipping); 4 (high-falling); 5 (neu-
tral)) of each character (C1-C4 Tone).

In addition to the above-mentioned measures that
describe the pronunciation of a word and its charac-
ters, we included a set of categorical measures that de-
scribe the orthographic structure of each character (C1-
C4 Structure). Each character in the CLD is encoded
as one of six different structures: Left-Right (e.g., 明
“brightness” or “tomorrow”), Left-Right-Bottom (e.g.,
边 “side”), Up-Down (e.g., 草 “grass”), Circle (e.g., 回
“return”), Half Circle (e.g., 区 “area”), or Single (e.g.,
开 “open”). More complicated structures were approx-
imated as best as possible through this set of six struc-
tures. The character 涮, for instance, was encoded as
left-right (氵 +刷), whereas the character烹 (亨 +灬)
was encoded as up-down.

The final categorical predictor at the character level
is character type (C1-C4 Type). Chinese characters can
be divided into six different types, which, in the Chinese
linguistic literature, are called the “six writings” (cf.
Yip, 2000). Hsieh (2006) argues that there are four basic
types of character constructions among these “six writ-
ings”: pictographic, pictologic, pictosynthetic, and pic-
tophonetic. The other two types, “phonetic loan char-
acter” and “cognate”, he argues, are extensions of the
four basic character types. In our encoding of the char-
acter type measures in the CLD, we follow Hsieh (2006)
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Table 1 Overview of the (classes of) predictors in the Chinese Lexical Database. Abbreviations: C = character, SR = semantic
radical, PR = phonetic radical, OLD = orthographic Levenshtein distance, PLD = phonological Levenshtein distance.

Categorical variables
Word, C1-C4,
Pinyin, C1-C4 Pinyin, IPA, C1-C4 IPA, Initial Phoneme, Final Phoneme,
C1-C4 Tone, C1-C4 Structure, C1-C4 Type,
C1-C4 SR, C1-C4 PR, C1-C4 PR Pinyin, C1-C4 PR Regularity

Frequency measures
Orthographic frequency
Frequency, C1-C4 Frequency,
Frequency SUBTLEX-CH, C1-C4 Frequency SUBTLEX-CH,
Frequency LWC, C1-C4 Frequency LWC,
C1-C4 Family Size, C1-C4 Family Frequency,
C1-C4 SR Frequency, C1-C4 SR Family Size, C1-C4 PR Frequency, C1-C4 PR Family Size
Phonological frequency
Phonological Frequency, C1-C4 Phonological Frequency,
Mean Phoneme Frequency, C1-C4 Mean Phoneme Frequency,
Min Phoneme Frequency, C1-C4 Min Phoneme Frequency, Max Phoneme Frequency, C1-C4 Max Phoneme Frequency,
C1-C4 Initial Phoneme Frequency,
Mean Diphone Frequency, C1-C4 Mean Diphone Frequency,
Min Diphone Frequency, C1-C4 Min Diphone Frequency, Max Diphone Frequency, C1-C4 Max Diphone Frequency,
C1-C4 Initial Diphone Frequency,
Transitional Diphone 1-3 Frequency

Complexity measures
Length, Strokes, C1-C4 Strokes, C1-C4 Pixels, C1-C4 Picture Size,
C1-C4 SR Strokes, C1-C4 PR Strokes,
Phonemes, C1-C4 Phonemes

Neighborhood density measures
Phonological N, C1-C4 Phonological N, PLD, C1-C4 PLD,
C1-C4 OLD Pixels

Orthography-phonology consistency
Character level
C1-C4 Friends, C1-C4 Friends Frequency,
C1-C4 Homograph Types, C1-C4 Homograph Tokens, C1-C4 Homographs Frequency
C1-C4 Homophone Types, C1-C4 Homophone Tokens, C1-C4 Homophones Frequency

Phonetic radical level
C1-C4 PR Friends, C1-C4 PR Friends Frequency,
C1-C4 PR Enemies Types, C1-C4 PR Enemies Tokens, C1-C4 PR Enemies Frequency,
C1-C4 PR Backward Enemies Types, C1-C4 PR Backward Enemies Tokens, C1-C4 PR Backward Enemies Frequency

Information-theoretic measures
C1 Conditional Probability, C12 Conditional Probability, C123 Conditional Probability,
C1 Backward Conditional Probability, C12 Backward Conditional Probability, C123 Backward Conditional Probability,
C1 Entropy, C12 Entropy, C123 Entropy, C1 Backward Entropy, C12 Backward Entropy, C123 Backward Entropy,
C1-C2 Relative Entropy
Pointwise Mutual Information, Position-specific Pointwise Mutual Information, T-Score, Position-specific T-Score,
Entropy Character Frequencies

and discern four different types of characters. Charac-
ters that do not fit into one of the four basic character
types are encoded as “Other”. Most commonly, charac-
ters encoded as “Other” were simplified to the extent
that they no longer belong to one of the four basic char-
acter types.

Pictographic characters are the oldest type of Chi-
nese characters and originate from non-linguistic sym-
bolic systems. The orthographic form of these charac-

ters corresponds to their meaning (e.g., 川 (“river”);
山 (“mountain”)). The idea behind pictologic charac-
ters is similar. Pictologic characters, however, typically
refer to objects that do not have a concrete, easy to
depict shape. Often, a stroke is added to a pictographic
character to express a more specific or more abstract
concept. The pictologic character刃 (“blade”), for in-
stance, was derived from the pictographic character刀 (
“knife”). Pictosynthetic characters comprise multiple
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pictographic characters that together form a new char-
acter. The combination of日 (“sun”) and月 (“moon”),
for instance, results in the new character 明 (“bright-
ness”), which describes a shared semantic property of
both characters.

The fourth type of character, pictophonetic, com-
bines two common components of Chinese characters:
the semantic radical and the phonetic radical. Semantic
radicals typically provide information about the mean-
ing of a character. The semantic radical氵, for instance,
commonly appears in words that describe liquids, such
as 河 (“river”), 海 (“ocean”), or 泪 (“tears”). Pho-
netic radicals provide information about the pronunci-
ation of a character. This information, however, is not
always reliable. While the pronunciation of the charac-
ter 榆 (“elm”) and its phonetic radical 俞 are identical
(“yu2”), the pronunciation of the character拓 (“tuo4”)
and its phonetic radical 石 (“shi2”) are entirely differ-
ent. We return to the inconsistency of the information
provided by the phonetic radical below. An example of
a pictophonetic character is清 (“to clean”), which con-
sists of the semantic radical 氵 (“liquid”) and the pho-
netic radical 青. The phonetic radical determines the
pronunciation of the character 清, which is identical to
the pronunciation of the phonetic radical: “qing1”.

Both phonetic and semantic radicals have received
considerable attention in the experimental psycholin-
guistic literature for Mandarin Chinese. We therefore
included both the semantic radical (C1-C4 SR) and
the phonetic radical (C1-C4 PR) for each character as
lexical variables in the CLD. Both semantic radicals
and phonetic radicals were retrieved from the Chinese
Character Dictionary on the Mandarin Tools website
(Peterson, 2005). While each character has a semantic
radical, not every character has a phonetic radical. Of
the 4, 895 unique character in the CLD, 3, 538 contain
a phonetic radical (72.28%).

We now return to the issue of the unreliability of
the information provided by the phonetic radical. The
fact that phonetic radicals do not always provide reli-
able information about the pronunciation of a character
has been shown to influence lexical processing. Seiden-
berg (1985a), for instance, showed that characters with
pronunciations that are identical to the pronunciation
of their phonetic radical are named faster than charac-
ters for which the pronunciation of the character differs
from the pronunciation of the phonetic radical (see also
Liu et al., 2007; Hue, 1992). To allow for the investiga-
tion of phonetic radical regularity effects, we included
the pronunciation of the phonetic radical (C1-C4 PR
Pinyin) in the CLD. Furthermore, we provide a binary
variable that indicates whether (1) or not (0) the pro-
nunciation of a character is identical to the pronunci-

ation of its phonetic radical (C1-C4 PR Regularity).
This binary variable was set to NA for characters with
unpronounceable phonetic radicals. Further numerical
measures of the consistency of the information provided
by the phonetic radical are introduced in our discussion
of orthography-phonology consistency measures below.

2.2 Frequency measures

Frequency measures in the CLD can be divided
into two subclasses: orthographic frequency measures
and phonological frequency measures. Frequency mea-
sures in each of these classes are provided at differ-
ent grain sizes, ranging from the word level to the
radical level for orthographic frequency measures and
from the word level to the phoneme level for phonolog-
ical frequency measures. Below, we describe the ortho-
graphic frequency measures and the phonological fre-
quency measures in the CLD. First, however, we discuss
how we selected the textual resources that underlie the
frequency measures in the CLD.

2.2.1 Corpus selection

A pivotal decision during the construction of a lexi-
cal database is to select one or more textual resources on
the basis of which word frequency counts are calculated.
The quality of word frequency counts has a large influ-
ence on the predictive power of the lexical predictors
in the database. Word frequency is typically (one of)
the strongest predictor(s) for psycholinguistic data sets.
Furthermore, a wide range of other lexical variables
is calculated on the basis of frequency counts, includ-
ing frequency counts at smaller grain sizes, family size
and family frequency measures, orthography-phonology
consistency measures and information-theoretic mea-
sures. The quality of these measures, therefore, directly
depends on the quality of the word frequency counts.

The predictive power of frequency measures derived
from different textual resources depends on the degree
to which the content of these resources corresponds
to the linguistic experience of the participants in psy-
cholinguistic experiments. A corpus that contains a
large collection of bureaucratic documents, for instance,
may be less representative of the linguistic experience
of the average language user, than a collection of novels.

To find out which corpus yields frequency measures
that are most predictive for psycholinguistic data in
Mandarin Chinese, we compared frequency measures
from six different corpora for seven experimental data
sets. The six corpora are SUBTLEX-CH (Cai and Brys-
baert, 2010), Chinese Gigaword (Graff and Chen, 2003),
the Simplified Chinese Corpus of Webpages (Shaoul
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et al., 2016), the Lancaster Corpus of Mandarin Chi-
nese (McEnery and Xiao, 2008), the Leiden Weibo Cor-
pus (Van Esch, 2012), and the Public Weixin Corpus
(L. Sun, 2016).

SUBTLEX-CH is a corpus of film subtitles that con-
sists of 33.5 million words. In recent studies, frequency
counts from SUBTLEX-CH have been shown to be
highly predictive for lexical decision latencies (see Tse
et al., 2016; Cai and Brysbaert, 2010), as compared to
frequency counts from other textual resources. Chinese
Gigaword provides a corpus of newswire texts that con-
sists of no less than 1, 118.4 million (1.1 billion) words,
whereas the Simplified Chinese Corpus of Webpages
(henceforth SCCoW) contains 466.6 million words of
text extracted from web pages. The Lancaster Corpus
of Mandarin Chinese (LCMC) is a balanced corpus of
Mandarin Chinese that comprises written texts from a
variety of genres, including press, fictional texts, scien-
tific documents, and more. At 1 million words, however,
the size of the LCMC, is limited.

The final two corpora under investigation, the Lei-
den Weibo Corpus (henceforth LWC) and the Public
Weixin Corpus (henceforth PWC), are based on social
media. The LWC is a 101.4 million word corpus based
on messages posted on Sina Weibo, a social medium
that is perhaps best described as a hybrid between
Facebook and Twitter (Van Esch, 2012). Sina Weibo
has over 300 million monthly active users, which jointly
post more than 100 million messages per day. Weixin
(“we chat”) is a messaging app similar to Snapchat
that, similar to Weibo, has over 300 million monthly ac-
tive users. The PWC is a collection of Weixin messages
that comprises 491.2 million words (L. Sun, 2016).

We evaluated the predictive power of word and
character frequency measures from the six corpora de-
scribed above for 7 experimental data sets. The Chinese
Lexicon Project (henceforth CLP) contains lexical deci-
sion latencies for 2, 500 one-character words (Sze et al.,
2014), and was recently extended with data for 25, 000
two-character words (Tse et al., 2016). In the context
of SUBTLEX-CH, Cai and Brysbaert (2010) provide
lexical decision latencies for 400 two-character words.
Furthermore, MELD-SCH (Tsang et al., 2017) provides
lexical decision latencies for 1, 020 one-character words
and 10, 022 two-character words. These five lexical de-
cision data sets are complemented with data from two
word naming studies. First, the Traditional Chinese
Psycholinguistic Database (TCPD) (Chang et al., 2016)
contains naming data for 3, 314 characters. Second, in
a single-participant study, C. C. Sun (2016) provides
naming data for 25, 000 two-character words.

Unfortunately, the availability of large-scale data
sets for simplified Chinese is limited. Consequently,

two of the above-mentioned experimental data sets are
based on traditional Chinese, rather than on simpli-
fied Chinese. Whereas the lexical decision latencies for
one-character words in the CLP were collected from na-
tive speakers of simplified Chinese, the lexical decision
latencies for two characters words were collected from
native speakers of traditional Chinese in Hong Kong.
Similarly, the TCPD collected naming latencies from
native speakers of traditional Chinese in Taiwan.

The evaluation of frequency measures for simplified
Chinese on experimental data obtained from speakers
of traditional Chinese is less than optimal. Nonethe-
less, simplified versions of words and characters tend to
retain their original semantic content. Consequently,
frequency measures in traditional Chinese are a rea-
sonable proxy for frequency measures in simplified Chi-
nese, and vice versa. Notably, this is not the case for all
lexical variables. Character complexities, for instance,
differ tremendously between simplified and traditional
Chinese.

Frequency effects often level off at high predictor
values. To allow for non-linear frequency effects, we
evaluated the predictive power of the character and
word frequency measures from the different corpora
with generalized additive models (henceforth GAMs;
Hastie and Tibshirani, 1986). For each corpus, we fit-
ted GAMs with smooths for character frequencies and
word frequencies to each data set using version 1.8−16
of the mgcv package (Wood, 2006) for R. The parame-
ter k of the gam() function in the mgcv package was set
to 3 for all smooths to limit the complexity of non-linear
predictor effects.

Frequency counts for words that did not appear in
a corpus were set to 0 to keep the sample size for each
experimental data set constant across the different fre-
quency measures. Words with different forms in sim-
plified Chinese and traditional Chinese were excluded
from the CLP and TCPD data sets. Following the rec-
ommendations of Box-Cox tests (Box and Cox, 1964),
we applied inverse transformations to all dependent
variables prior to analysis. For each data set, reaction
times further than 2.5 standard deviations from the re-
action time mean were removed prior to analysis. We
used the deviance explained of the GAMs as a mea-
sure of the predictive power of the character and word
frequency measures for an experimental data set.

The deviance explained by the GAMs for each
corpus-data set combination are presented in Table 2.
The average deviance explained (ADE) by the fre-
quency measures from a given corpus across all seven
data sets is presented in the last column of Table 2. The
performance of the frequency measures from Chinese
Gigaword (average deviance explained (ADE): 32.63%)
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Table 2 Deviance explained by word and character frequency measures from SUBTLEX-CH (Cai and Brysbaert, 2010), Leiden
Weibo Corpus (Van Esch, 2012), Public Weixin Corpus (L. Sun, 2016), Chinese Gigaword (Graff and Chen, 2003), SCCoW (Shaoul
et al., 2016), and LCMC (McEnery and Xiao, 2008) for seven experimental data sets (CLP one-character words (Sze et al., 2014),
CLP two-character words (Tse et al., 2016), SUBTLEX-CH (Cai and Brysbaert, 2010), MELD-SCH one-character words (Tsang
et al., 2017), MELD-SCH two-character words (Tsang et al., 2017), TCPD (Chang et al., 2016), and (C. C. Sun, 2016)).

CLP 1 CLP 2 SUBTLEX-CH MELD 1 MELD 2 TCPD Sun (2016) mean
n 2,444 9,901 388 1,000 9,792 3,246 24,186 -
SUBTLEX-CH 46.93 36.32 25.93 63.19 41.71 37.23 18.69 38.57
Chinese Gigaword 45.78 25.33 17.20 59.80 28.56 34.01 17.74 32.63
SCCoW 48.33 26.90 19.97 63.09 33.31 34.00 18.25 34.83
LCMC 49.04 24.04 20.36 64.19 29.32 33.78 19.39 34.30
Leiden Weibo Corpus (LWC) 50.39 38.79 27.56 66.50 43.71 38.73 20.73 40.92
Public Weixin Corpus (PWC) 49.81 30.05 22.28 62.93 36.95 35.74 19.67 36.77
SUBTLEX-CH + LWC 50.90 42.22 32.60 66.86 48.25 39.58 20.93 43.05

and SCCoW (ADE: 34.83%) is less than convincing.
Presumably, this is a result of the fact that the con-
tent in these corpora poorly reflects the reading expe-
rience of the average participant in the experimental
studies. Chinese Gigaword consists solely of newswire
texts, whereas a closer inspection of the SCCoW sug-
gests that bureaucratic texts are substantially overrep-
resented in this corpus. The frequency measures from
the LCMC provided limited explanatory power as well
(ADE: 34.30%), presumably due to the limited size of
this corpus (1 million words).

The most predictive frequency measures were de-
rived from the corpora that best reflect the experience
of modern-day speakers of simplified Chinese: the PWC
(i.e., a corpus of chat messages, ADE: 36.77%), and
SUBTLEX-CH (i.e., a corpus of film subtitles, ADE:
38.57%) both yielded frequency measures with com-
petitive performance. The most predictive frequency
measures, however, were obtained from the microblog-
ging messages in the LWC. The LWC frequency counts
proved most predictive for each of the seven experimen-
tal data sets and yielded an average deviance explained
of 40.92%.

The performance of the character and word frequen-
cies from the LWC indicates that messages on the so-
cial networking site Weibo represent an important part
of the linguistic experience of contemporary speakers
of Chinese. Messages on a social networking site, how-
ever, constitute a highly specific genre that does not
cover the linguistic input of average language users in
its entirety. It could be the case, therefore, that fre-
quency measures from a combination of corpora would
outperform the LWC frequency measures. To investi-
gate this possibility, we calculated frequency counts for
all 63 possible combinations of the six corpora (26 − 1;
not all corpora can be excluded) and re-ran the above-
mentioned GAMs.

Indeed, an improvement upon the performance of
the frequency counts from the LWC turned out to be
possible. Excellent predictive performance for the seven
data sets under investigation was achieved by frequency
counts based on both the LWC and SUBTLEX-CH.
As can be seen in Table 2, this combined frequency
measure increased the average deviance explained from
40.92% to 43.05%. For each individual data set, fre-
quency counts based on both the LWC and SUBTLEX-
CH outperformed frequency counts that were solely
based on the LWC. Together, social networking mes-
sages and the film subtitles thus seem to provide a good
representation of the language experience of the average
modern-day speaker of simplified Chinese. We therefore
decided to use summed frequency counts from the LWC
and SUBTLEX-CH in the CLD.

2.2.2 Orthographic frequency

The orthographic frequency measures in the CLD
are listed in Table 1. Frequency measures are included
at different grain sizes, ranging from the word level to
the radical level. Below, we provide a brief conceptual
description of each frequency measure.

The unit in which frequency measures in the CLD
are provided is frequency per million. For convenience,
raw frequency counts are provided at the word and the
character level as well. At the word level, the main fre-
quency measure is Frequency: the frequency of a word
per million words in a meta-corpus that contains the
LWC and SUBTLEX-CH. Separate frequencies for the
LWC and SUBTLEX-CH are provided as well. Word
frequency effects for both one-character words and two-
character words have been observed in a large num-
ber of studies and across experimental tasks. Both one-
character words (Seidenberg, 1985a; Liu et al., 2007; C.
C. Sun, 2016) and two-character words (Liu, 1999; C.
C. Sun, 2016), for instance, are named faster when they
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are more frequent. In addition, lexical decision latencies
are shorter for more frequent one-character (Lee et al.,
2015; Sze et al., 2014) and two-character words (Zhang
and Peng, 1992; Peng et al., 1999).

At the character level, C1-C4 Frequency denote the
frequency of the first, the second, the third and the
fourth character per million characters. Again, separate
frequency counts for the LWC and SUBTLEX-CH are
provided as well. As was the case for word frequency
measures, effects of character frequency measures are
abundant in the literature. Zhang and Peng (1992),
Taft et al. (1994), and Peng et al. (1999) all reported
character frequency effects for lexical decision. Charac-
ter frequency effects have been observed in other mea-
sures of language processing as well. Yan et al. (2006),
for instance, found an effect of character frequency on
eye fixation durations, whereas Kuo et al. (2003) and
Lee et al. (2004) observed character frequency effects
in fMRI studies.

At the character-level, we furthermore included
measures of family size and family frequency (see e.g.,
Schreuder and Baayen, 1997): C1-C4 Family Size and
C1-C4 Family Frequency. Family size is defined as the
number of words a character occurs in. Family fre-
quency is the summed frequency of all words in which a
character occurs. Liu et al. (2007) referred to family size
as “number of word formations” and found that char-
acters with greater family sizes were named faster than
characters with smaller family sizes (cf., Baayen et al.,
2006; Hendrix, 2016, for similar findings in English). By
contrast, Huang et al. (2006) observed inhibitory fam-
ily frequency effects for Mandarin Chinese, with longer
naming latencies for characters with higher family fre-
quencies. The exact nature of family size effects in Man-
darin Chinese, therefore, remains unclear.

In addition, we included a number of frequency mea-
sures below the character level. For both the phonetic
radical and the semantic radical, frequency counts (C1-
C4 SR Frequency, C1-C4 PR Frequency), as well as
family size measures (C1-C4 SR Family Size, C1-C4
PR Family Size) are provided. Radical frequency is de-
fined as the summed frequency of all characters in which
a radical occurs. Radical family size refers to the num-
ber of characters in which a radical occurs. C. C. Sun
(2016) observed an inhibitory effect of semantic radical
frequency in a word naming task. Conversely, a num-
ber of studies found facilitatory effects of both phonetic
radical family size (Feldman and Siok, 1997; Taft and
Zhu, 1997; Lee et al., 2015) and semantic radical fam-
ily size (Feldman and Siok, 1997, 1999a,b) in lexical
decision. Effects of lexical properties of the phonetic
and semantic radical have been interpreted as evidence
for compositional processing at the character level. Taft

(2006), for instance, proposed a reading model of Chi-
nese in which access to visual components precedes ac-
cess to characters (see also Taft et al., 1999; Taft and
Zhu, 1997). As noted by Feldman and Siok (1999a), this
view stands in contrast to theories that assume that
the character is the “primary unit of visual recognition
(e.g., Cheng, 1981; Hoosain, 1991; Liu, 1988)”.

2.2.3 Phonological frequency

As was the case for orthographic frequency, the
CLD contains measures of phonological frequency at
the word level, at the character level and below the
character level. Phonological Frequency denotes the fre-
quency of the phonological form of the word, whereas
C1-C4 Phonological Frequency provide the frequency of
the phonological form of the first character, the second
character, the third character and the fourth character,
respectively.

Below the character level, the CLD contains a num-
ber of phonological frequency measures at the phoneme
level and at the diphone level. We supply average fre-
quencies, as well as minimum and maximum frequencies
for the phonemes and diphones in each word and each
character. These measures of phonological frequency
are encoded in the following lexical variables: Mean
Phoneme Frequency, C1-C4 Mean Phoneme Frequency,
Min Phoneme Frequency, C1-C4 Min Phoneme Fre-
quency, Max Phoneme Frequency, C1-C4 Max Phoneme
Frequency, Mean Diphone Frequency, C1-C4 Mean Di-
phone Frequency, Min Diphone Frequency, C1-C4 Min
Diphone Frequency, Max Diphone Frequency, and C1-
C4 Max Diphone Frequency. Furthermore, we provide
the frequency of the initial phoneme and the initial di-
phone of each character (C1-C4 Initial Phoneme Fre-
quency, C1-C4 Initial Diphone Frequency).

A final set of phonological frequency measures be-
low the character level encodes the frequency of the
diphones that connect the syllables in multi-character
words. Transitional Diphone 1 Frequency is the fre-
quency of the diphone that connects the first and sec-
ond syllables, Transitional Diphone 2 Frequency is the
frequency of the diphone that connects the second and
third syllables, and Transitional Diphone 3 Frequency
is the frequency of the diphone that connects that
third and fourth syllable. Together, the phonological
frequency measures at the word level, at the character
level, and below the character level provide a compre-
hensive quantification of the frequency of phonological
forms for one-character, two-character, three-character,
and four-character words in simplified Chinese.
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2.3 Complexity measures

The visual complexity of words and characters is a
further conceptual construct that predicts lexical pro-
cessing in Mandarin Chinese. The most basic measure
of visual complexity for Chinese is word length in char-
acters (Length). At smaller grain sizes, however, more
refined measures of visual complexity exist as well.
Characters with a greater number of strokes, for in-
stance, have been shown to yield longer reaction times
in both lexical decision (Lee et al., 2015) and word nam-
ing tasks (Liu et al., 2007; Leong et al., 1987). The CLD
therefore provides the number of strokes in the word as
a whole (Strokes), as well as the number of strokes in
each character (C1-C4 Strokes). Furthermore, it pro-
vides stroke counts for the semantic radical (C1-C4 SR
Strokes) and the phonetic radical (C1-C4 PR Strokes)
of the characters in a word. All stroke counts in the
CLD are based on information provided by the Chinese
Character Dictionary on the Mandarin Tools website
(Peterson, 2005).

As noted above, stroke counts have been shown
to predict behavioral measures of language processing
across a number of tasks. However, alternative mea-
sures of visual complexity at the character level can be
constructed as well. In the CLD, we included two alter-
native measures of character complexity: pixel counts
and picture size. To calculate these measures, we gen-
erated PNG image files for each of the 4, 895 unique
characters in the CLD (font: SimHei, font size: 80, font
color: black, image background: white). We define pixel
counts as the number of non-white pixels in these im-
age files (C1-C4 Pixels), and picture size as the size of
the image files in bytes (C1-C4 Picture Size). It will
be interesting to see how the predictive power of these
alternative measures of visual complexity compares to
the predictive power of stroke counts.

Thus far, we discussed measures of the visual com-
plexity of a word and its characters. As was the case
for frequency, however, complexity can be a phonolog-
ical property of a character or a word as well. In ad-
dition to the above-mentioned visual complexity mea-
sures, we therefore included a measure of phonological
complexity in the CLD. For both words and characters,
we provide phoneme counts. The final five complexity
measures in the CLD, therefore, are Phonemes and C1-
C4 Phonemes.

2.4 Neighborhood density measures

The fourth group of measures in the CLD consists
of neighborhood density measures. In English, ortho-
graphic neighborhood density influences reaction times

in both lexical decision (see e.g., Andrews, 1989; Forster
and Shen, 1996; Grainger, 1992) and word naming (see
e.g., Andrews, 1992, 1997; Grainger, 1990; Coltheart
et al., 1988). Due to the nature of the writing sys-
tem, however, it is not trivial to calculate orthographic
neighbors for Mandarin Chinese. Calculating ortho-
graphic neighbors on the basis of shared letters, for in-
stance, is not possible. Nonetheless, we included a mea-
sure of orthographic neighborhood density in the CLD
for each character: C1-C4 OLD Pixels. OLD stands for
orthographic Levenshtein distance and refers to the av-
erage distance between a character and its n closest
neighbors. Following Yarkoni et al. (2008) and the re-
sults of an exploration of the predictive power of the
OLD Pixels measure across different values of n, we set
n to 20 for the OLD Pixels measures in the CLD.

The distance between characters was calculated on
the basis of the PNG image files for the characters that
we mentioned above. For all characters, we defined each
pixel as either white or non-white. For a given charac-
ter, we then calculated the distance between that char-
acter and all other characters. The distance between
two characters was defined as the number of pixels with
a different status (i.e., white for one character and non-
white for the other character). Neighbors of a character,
then, are characters for which a limited number of pix-
els has a different status. The orthographic Levenshtein
distance for a character is the average number of pix-
els that differ between that character and its 20 closest
neighbors.

Phonological neighborhood density has been shown
to influence lexical processing as well. Lexical deci-
sion latencies in English, for instance, are shorter for
words with more phonological neighbors (see e.g., Yates
et al., 2004; Baayen et al., 2006), as are naming laten-
cies (see e.g., Vitevich, 2002; Hendrix, 2016). Defining
phonological neighborhood density measures for Man-
darin Chinese is much less of a challenge than defin-
ing orthographic neighborhood density measures for
Mandarin Chinese. As is the case for alphabetic lan-
guages, shared phonemes are a solid basis for phono-
logical neighborhood measures. In Chinese, however,
phonological forms can differ from each other not only
at the segmental level, but also at the suprasegmental
level. Pronunciations may differ with respect to their
constituent phonemes, but also with respect to tone.
Although we acknowledge that segmental and supraseg-
mental parts of a pronunciation encode fundamentally
different types of information, we decided to treat dif-
ferences in phonemes and differences in tone in the same
manner when calculating neighborhood density mea-
sures (i.e., both a different phoneme and a different
tone result in an increase in distance of 1). We would
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be more than willing to provide more refined measures,
however, if future research indicates that better mea-
sures can be obtained by distinguishing segmental and
suprasegmental information when calculating phono-
logical neighborhood density measures.

Two types of phonological neighborhood density
measures are included in the CLD. First, we calculated
Coltheart’s N (Coltheart et al., 1977) at the word level,
as well as at the character level. The variables Phono-
logical N, and C1-C4 Phonological N give the number of
words or characters that differ from the target word or
character by one phoneme or by one tone. Second, we
calculated phonological Levenshtein distances. Analo-
gous to the orthographic Levenshtein distance measure
described above, the phonological Levenshtein distance
measures PLD and C1-C4 PLD provide the average dis-
tance between the pronunciation of a word or character
and its 20 closest neighbors.

2.5 Orthography-phonology consistency

As noted above, Mandarin Chinese has an inven-
tory of about 8, 100 characters. These characters are
mapped onto a limited set of phonological forms. Ac-
cording to estimations by DeFrancis (1984) (as cited
by Chen and Dell, 2006), there are about 1, 200 unique
syllables when tone is taken into consideration. When
tone is ignored, this number is reduced to about 400. A
large number of orthographic units thus is mapped onto
a relatively small number of phonological forms. As a
result, the mapping between orthography and phonol-
ogy in Mandarin Chinese is less than consistent.

The mapping between orthography and phonology
can be inconsistent in both directories. Homography de-
scribes the phenomenon of multiple pronunciations be-
ing mapped onto the same orthographic unit (i.e., char-
acter). Conversely, homophony occurs when the same
pronunciation is shared by multiple characters. Thus
far, psycholinguistic research on Chinese has primar-
ily focused on homophony. Lee et al. (2015) and Wang
et al. (2012) found inhibitory effects of homophony in
visual and auditory lexical decision. By contrast, other
studies found facilitatory effects of homophony in word
naming (Ziegler et al., 2000) and in auditory word
recognition (Chen et al., 2009, 2016).

Despite the fact that experimental research has
primarily focused on homophony, we included predic-
tors describing the consistency of both the phonology-
to-orthography mapping and the orthography-to-
phonology mapping. Each character in a word has a spe-
cific pronunciation. For a given character with a given
pronunciation, a friend is defined as an occurrence of

the same character-pronunciation mapping in a differ-
ent word. For each character, we provide friend counts
(C1-C4 Friends), as well as friend frequencies (C1-C4
Friends Frequency). Friends frequency is defined as the
summed frequency of all friends.

For a given character, a homograph is defined as an
occurrence of the same character with a different pro-
nunciation. For each character, we provide homograph
type (C1-C4 Homograph Types) and token (C1-C4 Ho-
mograph Tokens, i.e., the number of words in which
the same character occurs with a different pronunci-
ation) counts, as well as homograph frequencies (i.e.,
the summed frequency of the homograph tokens; C1-
C4 Homographs Frequency). A homophone for a given
character is defined as an occurrence of a different char-
acter with the same pronunciation. As was the case for
homographs, we provide homophone type (C1-C4 Ho-
mophone Types) and token counts (i.e., the number of
words in which a different character has the same pro-
nunciation; C1-C4 Homophone Tokens), as well as ho-
mophone frequencies (i.e., the summed frequency of the
homophone tokens; C1-C4 Homophones Frequency) for
each character.

In our discussion of the categorical variables above,
we mentioned that the consistency of the orthography-
phonology mapping below the character level has re-
ceived considerable attention from researchers as well.
In particular, the reliability of the information provided
by the phonetic radical has been shown to influence lex-
ical processing (see e.g., Seidenberg, 1985a; Liu et al.,
2007; Hue, 1992). We therefore decided to include lexi-
cal variables analogous to the consistency measures at
the character level discussed above for the phonetic rad-
ical. Phonetic radical friends are defined as occurrences
of the same phonetic radical in a character with the
same pronunciation. Phonetic radical enemies, by con-
trast, are occurrences of the same phonetic radical in a
character with a different pronunciation. Finally, pho-
netic radical backward enemies are occurrences of a dif-
ferent phonetic radical in a character with the same
pronunciation.

The calculation of type counts, token counts and fre-
quency measures for phonetic radical friends, phonetic
radical enemies and phonetic radical backward enemies
resulted in the following orthography-phonology consis-
tency measures: C1-C4 PR Friends, C1-C4 PR Friends
Frequency, C1-C4 PR Enemies Types, C1-C4 PR En-
emies Tokens, C1-C4 PR Enemies Frequency, C1-C4
PR Backward Enemies Types, C1-C4 PR Backward En-
emies Tokens, and C1-C4 PR Backward Enemies Fre-
quency. Together, these variables provide in-depth in-
formation about the reliability of the information pro-
vided by the phonetic radical.
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2.6 Information-theoretic measures

The last group of variables in the CLD consists
of information-theoretic measures. Information theory
originates from the seminal work of Claude Shannon
(Shannon, 1948) and concerns the study of quantita-
tive properties of communication systems. Key concepts
in information theory are uncertainty and information,
which are both considered measurable physical quan-
tities. From an information theoretic perspective, lan-
guage processing is, at its core, a process of uncertainty
reduction. Consider, as an example, the recognition of
words in an auditory lexical decision experiment. Prior
to the onset of the word, the participant is uncertain
as to which word she will hear. Once auditory input
starts coming in, this uncertainty gradually decreases.
At the end of the auditory input (or earlier), the un-
certainty is typically reduced to such an extent that
the participant is able to provide a correct lexicality
judgement. Information-theoretic measures encode the
amount of uncertainty in the signal (e.g., entropy, rela-
tive entropy) or, conversely, the extent to which uncer-
tainty is reduced by the signal (e.g., conditional prob-
ability, association measures). The extent to which un-
certainty is reduced by the signal is also referred to as
information.

Information-theoretic properties of characters and
words have received relatively little attention in the ex-
perimental literature for Mandarin Chinese. For En-
glish, however, information-theoretic measures have
been shown to be highly predictive of behavioral mea-
sures of lexical processing. For compound process-
ing, for instance, Schmidtke et al. (2016) reported
longer lexical decision latencies for high entropy words,
whereas Kuperman et al. (2007) observed longer acous-
tic durations for these words. Similarly, Kuperman
et al. (2008a) argued that conditional probabilities play
an important role in compound processing. Further-
more, several studies have documented increased pro-
cessing costs for stimuli with greater relative entropy
(Milin et al., 2009a,b; Kuperman et al., 2010; Baayen
et al., 2011; Hendrix et al., 2017), whereas associa-
tion measures such as mutual information have been
shown to influence acoustic durations at both the word
level (Pluymaekers et al., 2005) and the segment level
(Kuperman et al., 2008b). Recently, C. C. Sun (2016)
reported effects of information-theoretic measures for
Mandarin Chinese as well, with robust effects of en-
tropy and relative entropy in both word naming and
phrase reading. Based on these findings, we decided
to include a set of information-theoretic measures in
the CLD. Given the relative novelty of information-
theoretic measures in the context of psycholinguistic re-

search on Mandarin Chinese, we provide more in-depth
descriptions of these measures below.

The lexical predictors described thus far were cal-
culated across words of different lengths. The fam-
ily size of a character, for instance, was defined
as the total number of one-character, two-character,
three-character, and four-character words that charac-
ter occurred in. Explorations of the predictive power
of information-theoretic measures, however, indicated
that information-theoretic measures calculated within
words of the same length provided somewhat more ex-
planatory power for behavioral data as compared to
information-theoretic measures calculated across word
lengths. The information-theoretic measures described
below were therefore calculated for words of the same
length. The conditional probability of a two-character
word given the first character, for instance, was calcu-
lated on the basis of all two-character words with the
same first character, whereas the conditional probabil-
ity of a three-character word given the first character
was calculated on the basis of all three-character words
with the same first character. All information-theoretic
measures were calculated on the basis of the word fre-
quencies provided in the CLD.

The first type of information-theoretic measure in
the CLD is conditional probability. The conditional
probability measures in the CLD encode the probability
of the current word given the first character (C1 Con-
ditional Probability; defined for two-character words,
three-character words, and four-character words only),
the first two characters (C2 Conditional Probability;
defined for three-character words and four-character
words only), and the first three characters (C3 Con-
ditional Probability; defined for four-character words
only). The first character of the two-character word 勒
索 (“to extort”, frequency: 3.80), for instance, is 勒.
This character is the first character in two other two-
character words: 勒令 (“to compel”, frequency: 0.79)
and 勒紧 (“to tighten”, frequency: 0.46). C1 Con-
ditional Probability for the word 勒索, therefore, is

3.80
3.80+0.79+0.46 = 0.75.

In addition to forward conditional probabilities,
we included backward conditional probabilities. These
backward conditional probabilities encode the proba-
bility of the first character (C1 Backward Conditional
Probability; defined for two-character words, three-
character words, and four-character words only), the
probability of the first two characters (C12 Backward
Conditional Probability; defined for three-character
words and four-character words only), and the proba-
bility of the first three characters (C123 Backward Con-
ditional Probability; defined for four-character words
only) given the rest of the characters in a word. The
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second character of the two-character word 勒索 (“to
extort”, frequency: 3.80), for instance, is the second
character in 17 other two-character words. The summed
frequency of these 17 words is 100.99. C1 Backward
Conditional Probability for the word 勒索, therefore, is

3.80
3.80+100.99 = 0.04.

Conditional probability describes predictability at
the word level. By contrast, the second type of
information-theoretic predictor in the CLD, entropy,
describes uncertainty at the word level. Higher values
of entropy measures indicate greater uncertainty. For
a given word, C1 Entropy (defined for two-character
words, three-character words, and four-character words
only) describes the uncertainty about a word given its
first character. Numerically, it is defined as the entropy
over the probability distribution for all words with the
same first character (and the same number of charac-
ters) as the current word. As noted above, the first
character of the word 勒索 (“to extort”, frequency:
3.80), occurs as the first character in two other two-
character words: 勒令 (“to compel”, frequency: 0.79)
and 勒紧 (“to tighten”, frequency: 0.46). Converting
the frequency counts for these words into probabilities
results in a probability of 0.75 for 勒索, a probability
of 0.16 for 勒令, and a probability of 0.09 for 勒紧.
The entropy (−

∑n
i=1 pi ∗ log2(pi)) over this probabil-

ity distribution is 1.04. C1 Entropy for the word 勒索,
therefore, is 1.04. Analogously, C12 Entropy (defined
for three-character and four-character words only) and
C123 Entropy (defined for four-character words only)
encode the uncertainty about a word given its first two
characters and first three characters.

As was the case for conditional probability, the CLD
provides backward entropy measures as well. The back-
ward entropy measures describe the uncertainty about
the first character (C1 Backward Entropy; defined for
two-character words, three-character words, and four-
character words only), the uncertainty about the first
two characters (C12 Backward Entropy; defined for
three-character words and four-character words only),
and the uncertainty about the first three characters
(C123 Backward Entropy; defined for four-character
words only) given the rest of the characters in a word.
C1 Backward Entropy for two-character words, for in-
stance, is defined as the entropy over the probabil-
ity distribution for all two-character words with the
same second character. The second character 翅 of the
word 鸡翅 (“chicken wings”, frequency: 12.56), for in-
stance, occurs as the second character in two other
two-character words: 鱼翅 (“fin”, frequency: 1.88) and
展翅 (“to spread wings”, frequency: 1.63). Converting
the frequencies of these words into probabilities gives
a probability of 0.78 for 鸡翅, a probability of 0.12 for

鱼翅, and a probability of 0.10 for 展翅. The entropy
over this probability distribution is 0.98. C1 Backward
Entropy for the word 鸡翅, therefore, is 0.98.

The third type of information-theoretic measure in
the CLD is relative entropy, which describes the dis-
tance between probability distributions. The relative
entropy of two probability distributions, also known as
the Kullback-Leibler divergence between the distribu-
tions, is defined as:
n∑

i=1

pi ∗ log2(
pi
qi
) (1)

In psycholinguistic research, the relative entropy
measure is typically used to describe the distance be-
tween the probability distribution of an inflectional or
derivational paradigm for a given word and the proba-
bility distribution of that paradigm for all words in the
language. Milin et al. (2009a), for instance, collected
probability distributions for the inflectional paradigms
of a large set of Serbian nouns (i.e., probability of nom-
inative case, probability of genitive case, et cetera for
each noun) and calculated the relative entropy for each
noun on the basis of these probability distributions.
They found that lexical decision latencies for nouns
with higher values of relative entropy (i.e., nouns with
atypical probability distributions) were longer as com-
pared to lexical decision latencies for nouns with lower
values of relative entropy (i.e., nouns with typical prob-
ability distributions).

In Mandarin Chinese, the relative entropy measure
can be applied to the combinatorial properties of char-
acters in two-character words. For C1 Relative Entropy,
we defined the reference distribution q as the proba-
bility distribution of second characters across all two-
character words. For a given word, p was defined as
the probability distribution of second characters across
all two-character words with the same first character.
Analogously, for C2 Relative Entropy the reference dis-
tribution q is the probability distribution of first char-
acters across all two-character words. For a given sec-
ond character, p is the probability distribution of first
characters across all two-character words with the same
second character.

For further clarification, consider the fictive exam-
ple for C1 Relative Entropy in Table 3. The lexicon for
this example contains 6 characters that occur as a sec-
ond character. To calculate C1 Relative Entropy for the
character 天 (“sky”), we need two sets of frequencies.
First, the frequencies of the 6 two-character words in
which 天 is the first character are required. Second, we
need the frequencies of the 6 second characters across
all first characters. Converting both frequency distri-
butions to probabilities yields the probability distribu-
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Table 3 Relative entropy: fictive example for C1 Relative En-
tropy for the character 天. Abbreviations: C2 = Character 2;
Freq. = Frequency.

Word Freq. p C2 Freq. q

天气 (“weather”) 203 0.67 气 1034 0.31
天使 (“angel”) 59 0.19 使 206 0.06
天才 (“genius”) 22 0.07 才 175 0.05
天上 (“heaven”) 13 0.04 上 1737 0.52
天际 (“skyline”) 5 0.02 际 141 0.04
天职 (“duty”) 2 0.01 职 52 0.02

tions p (the probability distribution of second charac-
ters for the first character天) and q (the probability dis-
tribution of second characters for all first characters).
To calculate C1 Relative Entropy for the character 天,
p and q are entered into Equation 1. For our example,
this yields a relative entropy of 1.14.

The more similar the probability distributions p and
q, the smaller the relative entropy. A small value for rel-
ative entropy therefore indicates that a first or second
character combines with second or first characters in a
typical way, whereas a large value for relative entropy
indicates that a first or second character combines with
second or first characters in an atypical way. As such,
relative entropy is a measure of the prototypicality of
the way in which a character combines with other char-
acters in two-character words. The frequency distribu-
tion across two-character words that a character with
low relative entropy occurs in tend to be relatively flat.
By contrast, the frequency distribution across the two-
character words that a character with high relative en-
tropy occurs in tend to be more spiky.

Extension of the relative entropy measures in the
CLD to three-character words and four-character words
is theoretically possible. C1 Relative Entropy for three-
character words, for instance, would describe the typi-
cality of the way in which the first character in a three-
character word combines with second and third charac-
ters. The probability distribution of second and third
characters across three-character words, however, is ex-
tremely sparse. The same problem applies, to an even
larger extent, to four-character words. As a result of this
sparseness, the informativeness of the relative entropy
measure substantially decreases with word length. We
therefore decided to define the relative entropy mea-
sures in the CLD for two-character words only.

A set of four association measures constitutes the
fourth type of information-theoretic measure in the
CLD. These measures describe the strength of the asso-
ciation between the characters in a word. Each measure
is based on a comparison on the expected frequency of
a multi-character word and its observed frequency. The

expected frequency of a two-character word is defined
as:
C1 Frequency ∗ C2 Frequency

Total Frequency (2)

where Total Frequency is the summed frequency of all
2-character words in the CLD. The expected frequency
for three-character and four-character words is defined
analogously.

For example, the observed frequency of the word苹
果 (“apple”) is 107.66. To calculate the expected fre-
quency of the word 苹果 (“apple”), the summed fre-
quency of two-character words that contain the charac-
ter 苹 (summed frequency: 107.66;苹果 (“apple”) is the
only two-character word in the CLD that contains the
character 苹), the summed frequency of two-character
words that contain the character果 (64 words; summed
frequency: 1975.34), as well as the summed frequency
of all two-character words in the CLD (34,233 words;
summed frequency: 334, 227.90) are required. Plugging
these numbers into Equation 2 yields an expected fre-
quency of 107.66∗1975.34

334,227.90 = 0.64 for the word 苹果 (“ap-
ple”).

All four association measures are positive when the
observed frequency is greater than the expected fre-
quency and negative when the observed frequency is
smaller than the expected frequency. The first two as-
sociation measures, Pointwise Mutual Information (see
Myers and Gong, 2002, for an application of mutual in-
formation in the context of language processing in Man-
darin Chinese) and Position-specific Pointwise Mutual
Information, are based on the (logged) ratio between
observed and expected frequencies. Pointwise Mutual
Information is defined as:

log2
(

observed frequency
expected frequency

)
(3)

The pointwise mutual information for the word 苹果
(“apple”) therefore is log2

(
107.66
0.64

)
= 7.39.

Likewise, Position-specific pointwise mutual infor-
mation can be calculated using Equation 2 and Equa-
tion 3. However, for position-specific pointwise mu-
tual information the character frequencies are position-
specific. That is, instead of using the overall frequencies
of both characters across all two-character words, the
frequency of character one is defined as the frequency
of character one in the first position in two-character
words and the frequency of character two is defined as
the frequency of character two in the second position of
two-character words.

For example, for the word 苹果 (“apple”), the fre-
quency of two-character words with苹 as the first char-
acter (frequency: 107.66) is the same as the overall fre-
quency of the character苹 in two-character words. The
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frequency of two-character words with the果 as the sec-
ond character (frequency: 1, 788.38), however, is some-
what lower than the overall frequency of the charac-
ter 果 in two-character words (frequency: 1975.34). For
the word苹果, the position-specific expected frequency
thus is 107.66∗1,788.38

334,227.90 = 0.58. This results in a position-
specific pointwise mutual information of log2

(
107.66
0.58

)
=

7.54.
As pointed out by Gries (2010), “pointwise MI is

known to return very high association scores for low-
frequency words [here: characters] as well as for tech-
nical terms or other expressions that exhibit very little
or no variation. On the other hand, the t-score returns
high association scores to word pairs [here: words] with
high co-occurrence frequencies and provides a better
measure of the non-randomness of the co-occurrence”
(p. 14; cf. Evert, 2009). The t-score measure is defined
as:
observed frequency − expected frequency√

expected frequency
(4)

As before, we included both general t-score and
position-specific t-score as lexical variables in the CLD.
For the word 苹果 (“apple”), T-Score is 107.66−0.64√

0.64
=

133.78, whereas Position-specific T-Score is 107.66−0.58√
0.58

= 140.60.
The final information-theoretic measure in the CLD

is Entropy Character Frequencies. Entropy Character
Frequencies is the entropy over the probability distri-
bution of both characters in a two-character word. For
the word 鲨鱼 (“shark”), for instance, the frequency of
the first character 鲨 is 9.86 and the frequency of the
second character鱼 is 304.50. Converting these frequen-
cies to probabilities gives a probability of 0.03 for the
first character and 0.97 for the second character. The
entropy over the character frequencies for the word 鲨
鱼, therefore, is −

∑n
i=1 pi ∗ log2(pi) = 0.20. Values of

Entropy Character Frequencies are higher when the fre-
quencies of the characters in a two-character word are
more similar.

3 Evaluation

Above, we introduced the categorical and numeri-
cal variables provided by the CLD. In this section, we
evaluate the explanatory power of these variables in the
context of lexical decision and word naming data. As
noted in our discussion of frequency measures above,
the availability of large-scale data sets for simplified
Chinese is limited. Large-scale multi-participant word
naming data for multi-character words, for instance, do
not exist. Similarly, the available of lexical decision data
for three-character and four-character words is limited.

Compromises, therefore, were necessary when selecting
the data sets used for the evaluation of the lexical pre-
dictors in the CLD.

For lexical decision, we opted to use the data for
one-character and two-character words in the Chinese
Lexicon Project (Sze et al., 2014; Tse et al., 2016),
as well as the data for one-character, two-character,
three-character and four-character words in MELD-
SCH (Tsang et al., 2017). As noted above, the lexical
decision latencies for one-character words in the CLP
were obtained in simplified Chinese, whereas the lexi-
cal decision latencies for two-character words were ob-
tained in traditional Chinese. For two-character words,
we restricted the evaluation of the CLD measures to
the subset of the two-character words in the CLP for
which the written form is identical in simplified and
traditional Chinese. This ensures that visual complex-
ity measures in the CLD are appropriate for the data
under investigation.

The lexical decision data from MELD-SCH are not
entirely problem-free either. The primary concern with
respect to the MELD-SCH data is statistical power.
Whereas lexical decision latencies are provided for no
less than 10, 022 two-character words, the number of
words for which data were collected is substantially
lower for one-character words (n = 1, 020), three-
character words (n = 949), and four-character words
(n = 587). As a result, it will be be difficult to de-
tect subtle predictor effects in the MELD-SCH data
for one-character, three-character and four-character
words. Nonetheless, the MELD-SCH data may provide
valuable information about the most prominent predic-
tor effects for three-character and four-character words.
Despite the problems mentioned above, we therefore ex-
pect the evaluation of the explanatory power of the lexi-
cal variables in the CLD for the lexical decision latencies
in the CLP and in MELD-SCH to provide a reasonable
overview of the types of effects one could expect in the
lexical decision task in simplified Chinese.

For word naming, we use the word naming data for
4, 710 one-character and 25, 935 two-character words
provided by C. C. Sun (2016). For these word nam-
ing data, C. C. Sun (2016) reported the standard ef-
fects of frequency and visual complexity measures, as
well as effects of the information-theoretic measures en-
tropy and relative entropy. The word naming data in C.
C. Sun (2016) were obtained from a single participant.
C. C. Sun (2016) demonstrated, however, that qualita-
tively and quantitatively similar predictor effects were
obtained for a second participant (see also Pham and
Baayen, 2015). The word naming study in C. C. Sun
(2016) was carried out in simplified Chinese. The partic-
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ipant was a highly educated 30-year old native speaker
of Mandarin Chinese from mainland China.

Henceforth, we will refer to the above-mentioned
data sets as LD1 CLP (lexical decision for one-character
words from the CLP, data: Sze et al., 2014), LD1
MELD-SCH (lexical decision for one-character words
from MELD-SCH, data: Tsang et al., 2017), LD2 CLP
(lexical decision for two-character words, from the CLP,
data: Tse et al., 2016), LD2 MELD-SCH (lexical deci-
sion for two-character words, from MELD-SCH, data:
Tsang et al., 2017), LD3 MELD-SCH (lexical deci-
sion for three-character words, from MELD-SCH, data:
Tsang et al., 2017), LD4 MELD-SCH (lexical deci-
sion for four-character words, from MELD-SCH, data:
Tsang et al., 2017), NAM1 (naming data for one-
character words, data: C. C. Sun, 2016), and NAM2
(naming data for two-character words, data: C. C. Sun,
2016). Below, we first describe the methodology for the
statistical analysis of these four data sets. Next, we dis-
cuss the results for each type of data set: lexical deci-
sion for one-character words (LD1 CLP, LD1 MELD-
SCH), lexical decision for two-character words (LD2
CLP, LD2 MELD-SCH), lexical decision for three-
character words(LD3 MELD-SCH), lexical decision for
four-character words (LD4 MELD-SCH), word naming
for one-character words (NAM1), and word naming for
two-character words (NAM2).

3.1 Analysis

We fit linear regression models to the lexical deci-
sion and word naming data sets using version 1.8− 23
of the mgcv package (Wood, 2006, 2011) for the sta-
tistical software package R. Although the generalized-
additive models (henceforth GAMs, Hastie and Tibshi-
rani, 1986) provided by the mgcv package allow for non-
linear predictor effects through the use of smooths, we
imposed linearity on all predictor effects for simplicity.
All predictor effects were therefore modeled through
parametric terms, with the exception of the effects of
the multi-level categorical predictors Initial Phoneme
and Final Phoneme, which were modelled through ran-
dom effect smooths.

Following the recommendation of Box-Cox tests
(Box and Cox, 1964), we applied inverse transfor-
mations to all dependent variables prior to analysis
(f(x) = −1000

x ). To increase the uniformity of the pre-
dictor distributions, power transformations were ap-
plied to predictors as well. Based on the distributional
properties of a predictor, one of the following transfor-
mations was applied: f(x) = 1

x2 , f(x) = 1
x , f(x) =

log(x), f(x) =
√
x, f(x) = x (identity transformation),

or f(x) = x2.

We removed outliers further than 3 standard devi-
ations from the mean for each dependent variable. To
prevent further data loss, we did not remove outliers
for predictors prior to analysis. For the reported mod-
els, however, we verified that all reported predictor ef-
fects were quantitatively and qualitatively similar when
predictor outliers were removed from the model.

The reported models were constructed using for-
ward selection, using an α-level of 0.0001. Due to the
fact that predictors in the CLD often describe closely
related concepts, the data sets under investigations
suffer from extreme collinearity. The simultaneous in-
clusion of highly correlated predictors in a regression
model can lead to misinformed conclusions about the
qualitative and quantitative nature of predictor effects
(see e.g., Friedman and Wall, 2005; Wurm and Fisicaro,
2014). We verified that all reported predictor effects are
robust through post-hoc analyses based on a principal
components analysis with varimax rotation. The prin-
cipal components analysis was carried out using version
1.6.9 of the psych package for R (Revelle, 2016). Unless
indicated otherwise, the effects of the principal compo-
nents corresponding to lexical predictors were quantita-
tively and qualitatively similar to the predictor effects
reported below.

3.2 Lexical decision: one-character words

The results for the linear regression analysis of
the lexical decision latencies for one-character words
in the CLP and in MELD-SCH are presented in Ta-
ble 4 and Table 5, respectively. For each significant pre-
dictor effect, we report estimated β-coefficients, stan-
dard errors and t-values. All corresponding p-values are
< 0.0001. The model fit to the lexical decision latencies
in the CLP explained 44.36% of the variance for 2, 223
one-character words. The data for the one-character
“words” MELD-SCH contain a substantial number of
characters that do not occur as independent words in
simplified Chinese (e.g., “亥”, “迂”, “沱”). These words
were not included as one-character words in the CLD,
and were therefore removed prior to analysis. The re-
gression model fit to the lexical decision latencies for the
remaining 777 one-character words explained 61.51% of
the variance.

Character frequency (C1 Frequency, CLP: t =

−10.530; MELD-SCH: t = −4.530), as well the fre-
quency of the character as an independent word (Fre-
quency, CLP: t = −4.675; MELD-SCH: t = −7.850)
showed significant effects on the lexical decision laten-
cies for one-character words from both the CLP and
MELD-SCH. More frequent characters that occurred
more often as independent words were responded to
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Table 4 Results for a linear regression model fit to the (inverse
transformed) lexical decision latencies (f(x) = −1000/x) for
single character words in Sze et al. (2014). Adjusted R2 of the
model: 0.441, deviance explained: 44.36%. Provided are β coef-
ficients, standard errors (S.E.), and t-values. All corresponding
p-values are < 0.0001.

parametric terms β S.E. t-value
Intercept -1.522 0.040 -38.016
C1 Frequency -0.033 0.003 -10.530
Frequency -0.009 0.002 -4.675
C1 Strokes 0.038 0.005 7.060
C1 Friends -0.025 0.004 -6.715
C1 SR Family Size 0.013 0.002 5.499
C1 Tone: 1 -0.143 0.034 -4.202
C1 Tone: 2 -0.147 0.034 -4.324
C1 Tone: 3 -0.152 0.034 -4.446
C1 Tone: 4 -0.143 0.034 -4.235

faster. The facilitatory effects of character frequency
(Zhang and Peng, 1992; Taft et al., 1994; Peng et al.,
1999) and word frequency (see e.g., Lee et al., 2015;
Sze et al., 2014) are qualitatively similar to frequency
effects reported in previous lexical decision studies

We furthermore found an effect of visual complex-
ity. In line with previous findings (see e.g., Lee et al.,
2015), lexical decision latencies in the CLP were longer
for words with more strokes (C1 Strokes, t = 7.060). For
the MELD-SCH data, however, we did not find an effect
of stroke count (C1 Strokes, t = 0.923, p = 0.356). A
potential explanation for this discrepancy comes from
the fact non-words were constructed in a different way
for the CLP and MELD-SCH. The non-words in the
CLP were created by replacing the semantic radical in a
character with a different semantic radical. By contrast,
the non-words for one-character words in MELD-SCH
were constructed either through non-existing combina-
tions of radicals, or through the addition or deletion
of strokes in real characters. The different nature of
the non-words in the CLP and MELD-SCH could lead
to different processing strategies. It is not immediately
clear, however, why the effect of stroke count would be
present for the type of non-words in the CLP, but not
for the type of non-words in MELD-SCH.

Alternatively, the absence of a visual complexity ef-
fect for one-character words in the lexical decision data
from MELD-SCH could be due to reduced statistical
power. The analysis for the one-character words in the
CLP is based on 2, 223 words, whereas the analysis for
the one-character words in MELD-SCH is based on 777
words only. The size of the set of one-characters words
in MELD-SCH, therefore, may be insufficient to observe
an effect of stroke count.

In addition to the effects of frequency and vi-
sual complexity, we found three further predictor

Table 5 Results for a linear regression model fit to the (in-
verse transformed) lexical decision latencies (f(x) = −1000/x)
for one-character words in Tsang et al. (2017). Adjusted R2

of the model: 0.614, deviance explained: 61.51%. Provided are
β coefficients, standard errors (S.E.), and t-values. All corre-
sponding p-values are < 0.0001.

parametric terms β S.E. t-value
Intercept -1.103 0.010 -107.202
C1 Frequency -0.019 0.004 -4.530
Frequency -0.021 0.003 -7.850
C1 Friends -0.039 0.005 -7.877

effects. First, we found an effect of the consis-
tency of the orthography-to-phonology mapping. The
greater the number of words with the same character-
pronunciation mapping (C1 Friends), the shorter the
lexical decision latencies in both the CLP (t =

−6.715) and MELD-SCH (t = −7.877). This effect of
orthography-to-phonology consistency is in line with
previous findings in the experimental literature for
Mandarin Chinese. Lee et al. (2015) and Wang et al.
(2012), for instance, found that characters with more
pronunciations (i.e., higher homophone counts) were re-
sponded to slower in visual and auditory lexical deci-
sion, respectively.

Second, lexical decision latencies increased as a
function of the number of characters in which a seman-
tic radical occurs. This effect of semantic radical family
size was limited to the CLP (C1 SR Family Size, CLP:
t = 5.933; MELD-SCH: t = 0.285, p = 0.775). The in-
hibitory effect of semantic radical family size for in the
CLP is opposite to the facilitatory effects of semantic
radical family size observed by Feldman and Siok (1997,
1999a,b). A potential explanation for this discrepancy
comes from the different nature of the non-words in
the CLP and the non-words in the Feldman and Siok
studies.

The non-words in Feldman and Siok (1999a) (see
also Feldman and Siok, 1997, 1999b) were constructed
“[...] either by taking real characters and changing one
or more strokes or by combining two components that
did not co-occur”. The use of two types of non-character
formations avoided “[...] having participants focus ei-
ther on strokes or on the appropriateness of a partic-
ular combination” (p. 565). By contrast, and as noted
above, the non-words in the CLP were created through
a single mechanism: the replacement of the semantic
radical in a character with a different semantic radical
(Sze et al., 2014).

By definition, all words contain a valid semantic
radical. All non-words in the CLP contained a valid
semantic radical as well. The presence of a valid se-
mantic radical, therefore, did not provide information
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about the lexical status of a stimulus. In the Feldman
and Siok studies, however, not all non-words contained
a valid semantic radical. The presence of a valid seman-
tic radical therefore provided probabilistic information
about the lexical status of a stimulus. To be precise, it
increased the probability that the current stimulus was
a word.

More frequent lexical items can be accessed faster
than less frequent lexical items. Semantic radicals that
occur in a large number of characters tend to be more
frequent than semantic radicals that occur in fewer
characters. Semantic radicals with large families, there-
fore, can be accessed faster than semantic radicals
with smaller families. As such, the information that a
valid semantic radical is present becomes available more
rapidly when the family size of the semantic radical is
large. As noted above, this information helped deter-
mine the lexical status of the stimuli in the Feldman
and Siok studies. Consequently, participants were able
to respond faster to characters that contain semantic
radicals with a large family size.

By contrast, the presence of a valid semantic radical
did not provide information about the lexical status of
a stimulus in the lexical decision paradigm adopted by
the CLP. Instead, the lexical status of a character crit-
ically depended on the legitimacy of the combination
of the semantic radical and the rest of the character.
To successfully complete the lexical decision task in the
CLP it was sufficient to decide whether or not the se-
mantic radical of a character was the correct semantic
radical.

The principles of associative learning help provide
an estimation of the difficulty of this decision. Consider
the lexical decision task in the CLP in the context of
an event in associative learning, with the semantic rad-
ical as the cue and the character as the outcome. Asso-
ciative learning theory states that the strength of the
association between a cue and an outcome is inversely
proportional to the number of outcomes the cue occurs
with (see Baayen et al., 2011). A semantic radical that
occurs in a limited number of characters thus is strongly
associated with each of these characters. By contrast,
a semantic radical that occurs in a large number of
characters is less strongly associated with each of these
characters.

To decide whether or not the semantic radical of
a character is the correct semantic radical, it is neces-
sary to verify that the semantic radical is a valid cue
for the character. The stronger the association between
the semantic radical and the character, the less time
this verification takes. As such, it is easier to establish
the correctness of a semantic radical when the semantic
radical occurs in fewer characters. Consequently, par-

ticipants in the CLP were able to respond faster to
characters that contain semantic radicals with a limited
family size. The nature of the semantic radical family
size effect in lexical decision studies, therefore, may to
some extent depend on the properties of the non-word
stimuli in the experiment.

Third, we observed an effect of tone. As was the
case for the effects of visual complexity and semantic
radical family size, this effect was present in the CLP,
but not in MELD-SCH, presumably due to differences
in statistical power (the qualitative pattern of results
in MELD-SCH was similar to the qualitative pattern
of results in the CLP). Post-hoc pairwise comparisons
indicated that lexical decision latencies were longer for
tone 5 as compared to tones 1 through 4. No signif-
icant differences were found between tones 1 through
4. Tone 5 (0.76% of the one-character words in the
CLP) is much less frequent than tone 1 (23.07%), tone
2 (22.67%), tone 3 (16.37%), and tone 4 (37.11%). In
total, no more than 17 data points were available for
tone 5. The effect of C1 Tone, therefore, may not be
robust.

3.3 Lexical decision: two-character words

Table 6 shows the results for the lexical decision la-
tencies for the two-character words in Tse et al. (2016),
whereas Table 7 show the results for the two-character
words in Tsang et al. (2017). After the removal of re-
action time outliers and two-character words with dis-
tinct word forms in simplified Chinese and traditional
Chinese, the data set from the CLP contains lexical
decision latencies for 8, 005 two-character words. The
model fit to these lexical decision latencies explained
39.84% of the variance in the data. The linear regres-
sion model for the MELD-SCH data explained 48.50%
of the variance and was fit to the lexical decision laten-
cies for 9, 763 words.

As was the case for one-character words, we found
significant effects of the frequency of both the first
(C1 Frequency, CLP: t = 5.949; MELD-SCH: t =
9.373) and the second character (C2 Frequency, CLP:
t = 3.950; MELD-SCH: t = 7.940), as well as of the
frequency of the word as a whole (Frequency, CLP:
t = −63.411; MELD-SCH: t = −107.290). Consistent
with previous findings, the word frequency effect in
both data sets is facilitatory in nature: more frequent
words are responded to faster than less frequent words
(Zhang and Peng, 1992; Peng et al., 1999). Contrary
to expectation, however, the effects of the frequency of
both the first and the second character are inhibitory
rather than facilitatory in nature.
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Table 6 Results for a linear regression model fit to the (in-
verse transformed) lexical decision latencies (f(x) = −1000/x)
for two-character words in Tse et al. (2016). Adjusted R2 of the
model: 0.398, deviance explained: 39.84%. Provided are β coef-
ficients, standard errors (S.E.), and t-values. All corresponding
p-values are < 0.0001.

parametric terms β S.E. t-value
Intercept -1.468 0.006 -242.933
C1 Frequency 0.008 0.001 5.949
C2 Frequency 0.005 0.001 3.950
Frequency -0.050 0.001 -63.411
C1 Entropy -0.012 0.001 -7.980
C1 Backward Entropy -0.010 0.001 -8.023
C1 RE -0.008 0.001 -7.194
C2 RE -0.007 0.001 -6.213

Given the well-established facilitatory nature of
character frequency effects (see e.g., Zhang and Peng,
1992; Peng et al., 1999), we suspected that the in-
hibitory nature of the character frequency effects in our
models might be an artifact of collinearity between the
predictors in the CLD. Post-hoc analyses using prin-
cipal components rather than raw variables as predic-
tors (see above) confirmed this suspicion. The effects
of the principal components corresponding to C1 Fre-
quency (CLP: t = −18.006, loading C1 Frequency =
0.971; MELD-SCH: t = −18.540, loading C1 Frequency
= 0.969) and C2 Frequency (CLP: t = −16.739, load-
ing C2 Frequency = 0.971; MELD-SCH: t = −14.840,
loading C1 Frequency = 0.971) were in the expected
direction for both data sets, with lexical decision laten-
cies being shorter for words that contain more frequent
characters.

In addition to the effects of frequency, we observed
an effect of visual complexity, albeit only for the lex-
ical decision latencies in MELD-SCH. As expected, a
greater number of strokes in the first character (C1
Strokes, MELD-SCH: t = 3.860; CLP: t = −2.012,
p = 0.04), as well as a greater number of strokes in the
second character (C2 Strokes, MELD-SCH: t = 4.257;
CLP: t = 1.187, p = 0.235) resulted in longer reac-
tion times. The presence of a visual complexity effect
for two-character words in MELD-SCH suggests that
the absence of such an effect in the MELD-SCH data
for one-character words (see above) may be a result of
insufficient statistical power. Whereas the data set for
two-character words consisted of 8, 005 two-character
words, the data set for one-character words contained
no more than 777 words.

The absence of an effect of visual complexity for
the CLP data stands in contrast to observations by Tse
et al. (2016), who found significant effects of the num-
ber of strokes in both characters for the CLP lexical de-
cision data for two-character words. It should be noted,

Table 7 Results for a linear regression model fit to the (in-
verse transformed) lexical decision latencies (f(x) = −1000/x)
for two-character words in Tsang et al. (2017). Adjusted R2 of
the model: 0.484, deviance explained: 48.50%. Provided are β
coefficients, standard errors (S.E.), and t-values.

parametric terms β S.E. t-value
Intercept -1.339 0.012 -107.290
C1 Frequency 0.011 0.001 9.373
C2 Frequency 0.010 0.001 7.940
Frequency -0.061 0.001 -84.781
C1 Strokes 0.009 0.002 3.8602

C2 Strokes 0.010 0.002 4.257
C1 Entropy -0.011 0.001 -8.771
C1 Backward Entropy -0.009 0.001 -7.743
C1 RE -0.005 0.001 -5.551
C2 RE -0.006 0.001 -5.866

however, that the amount of variance explained by a
linear regression model including only stroke counts for
the first and second character as independent variables
in Tse et al. (2016) was no more than 1.5%. This ob-
servation confirms that the explanatory power of stroke
counts for the lexical decision data in the CLP is lim-
ited and explains why we did not observe stroke count
effects for the two-character words in the CLP at an
α-level of 0.0001.

Furthermore, we observed robust effects of two
information-theoretic measures: entropy (C1 Entropy,
CLP: t = −7.980; MELD-SCH: t = −8.771 and C2
Entropy, CLP: t = −8.023; MELD-SCH: t = −7.743)
and relative entropy (C1 Relative Entropy, CLP: t =

−7.194; MELD-SCH: t = −5.551 and C2 Relative En-
tropy, CLP: t = −6.213; MELD-SCH: t = −5.866).
Consistent with the findings of C. C. Sun (2016) for
word naming, greater uncertainty about one character
given the other character leads to shorter lexical deci-
sion latencies. Similarly, lexical decision latencies are
shorter when the frequency distribution of one char-
acter given the other character is unlike the frequency
distribution of the former in the language as a whole.

The inhibitory effects of entropy and relative en-
tropy are in the opposite direction to the entropy ef-
fects typically observed in English (see e.g., Milin et al.,
2009a,b; Kuperman et al., 2010; Baayen et al., 2011;
Hendrix et al., 2017). This is not a result of collinear-
ity: similar effects of entropy and relative entropy were

2 The p-value for C1 Strokes in the analysis of the lexical deci-
sion latencies for two-character words in the Tsang et al. (2017)
was exactly 0.0001. The effect of C1 Strokes was therefore tech-
nically not significant at an α-level of 0.0001. A posthoc prin-
cipal components analysis, however, confirmed suggested the
presence of an effect of the stroke count of the first character
(t = 5.189, p < 0.0001). We therefore decided to nonetheless in-
clude the effect of C1 Strokes in the model for the two-character
lexical decision latencies from Tsang et al. (2017).
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observed in a post-hoc principal components regression.
To us, it is not immediately clear why entropy effects
in simplified Chinese seem to be facilitatory, while en-
tropy effects in English are inhibitory. Further research
that takes a closer look at the distributional properties
of both languages may shed further light on this is-
sue. The robust effects of entropy and relative entropy
in the lexical decision latencies for both the CLP and
MELD-SCH, however, do establish the necessity of tak-
ing the combinatorial properties into account when in-
vestigating lexical processing of two-character words in
simplified Chinese.

3.4 Lexical decision: three-character words

The results for the linear regression analysis of the
lexical decision latencies for three-character words in
MELD-SCH are presented in Table 8. After removal of
words that are not in the CLD and reaction time out-
liers, lexical decision latencies for 864 words remained.
Despite the limited size of the data set under investi-
gation, however, the effects of three predictors reached
significance at an α-level of 0.0001. The model fit to
the lexical decision latencies for three-character words
explained 38.71% of the variance.

Consistent with the findings for one-character and
two-character words reported above, we found a highly
significant effect of word frequency (Frequency, t =
−21.881). As expected, reaction times were shorter for
more frequent words. For two-character words, we fur-
thermore observed effects of both character frequencies.
For the three-character words in MELD-SCH, however,
a significant effect of character frequency was present
for the final character only (C3 Frequency, t = −4.734).
Words with more frequent final characters were re-
sponded to faster as compared to words with less fre-
quent final characters.

The third predictor that significantly influenced lex-
ical decision latencies for three-character words was
the conditional probability of the third character given

Table 8 Results for a linear regression model fit to the (in-
verse transformed) lexical decision latencies (f(x) = −1000/x)
for three-character words in Tsang et al. (2017). Adjusted R2

of the model: 0.385, deviance explained: 38.71%. Provided are
β coefficients, standard errors (S.E.), and t-values. All corre-
sponding p-values are < 0.0001.

parametric terms β S.E. t-value
Intercept -1.342 0.021 -62.560
Frequency -0.057 0.003 -21.881
C3 Frequency -0.014 0.003 -4.734
C12 Conditional Probability 0.093 0.013 7.152

the first two characters (C12 Conditional Probability,
t = 7.152). Surprisingly, lexical decision latencies were
longer when the probability of the third character given
the first two characters was higher. As a similar in-
hibitory effect of conditional probability was observed
in a post-hoc principal components analysis, the un-
expected direction of the conditional probability effect
was not due to collinearity. As was the case for the
facilitatory effects of entropy and relative entropy for
two-character words, further research will be necessary
for a better understanding of the inhibitory effect of
conditional probability. Nonetheless, the effect of con-
ditional probability once more highlights the potential
of information-theoretic measures in the context of lex-
ical processing in simplified Chinese.

3.5 Lexical decision: four-character words

Table 9 shows the results for the analysis of the lex-
ical decision data for four-character words in MELD-
SCH. As was the case for three-character words, the
number of four-character words in MELD-SCH is lim-
ited. After removal of words that are not in the CLD
and reaction time outliers, lexical decision latencies
for 421 words remained. Nonetheless, we found signifi-
cant effects of three predictors at an α-level of 0.0001.
The model fit to the lexical decision latencies for four-
character words explained 28.64% of the variance.

In line with our findings for three-character words,
we found effects of two frequency measures. Reaction
times were shorter for more frequent words (Frequency,
t = −10.490, as well as for words with more frequent fi-
nal characters (C4 Frequency, t = −4.883). In addition,
we found an effect of the visual complexity of the initial
character: the higher the stroke count for the first char-
acter, the longer the reaction times for four-character
words (C1 Strokes, t = 4.637).

Due to the limited size of the data sets for three-
character words and four-characters words, the current
analyses lack the statistical power to provide detailed

Table 9 Results for a linear regression model fit to the (in-
verse transformed) lexical decision latencies (f(x) = −1000/x)
for four-character words in Tsang et al. (2017). Adjusted R2

of the model: 0.281, deviance explained: 28.64%. Provided are
β coefficients, standard errors (S.E.), and t-values. All corre-
sponding p-values are < 0.0001.

parametric terms β S.E. t-value
Intercept -1.290 0.025 -51.190
Frequency -0.044 0.004 -10.490
C4 Frequency -0.014 0.003 -4.883
C1 Strokes 0.034 0.007 4.637
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insights into the nature of lexical processing for three-
character and four-character words in the lexical deci-
sion task. Nonetheless, the analyses reported here sug-
gest that the frequency of multi-character words as a
whole as well as the frequency of the final character in
these words co-determine lexical decision latencies to a
considerable extent. The current analyses paint a less
clear picture of the role of information-theoretic mea-
sures. While we found an effect of conditional probabil-
ity for three-character words, no information-theoretic
measures reached significance for four-character words.

3.6 Word naming: one-character words

The results for a linear model fit to the naming
latencies for one-character words in C. C. Sun (2016)
are presented in Table 10. This linear model explains
36.36% of the variance in the naming latencies for 3, 368
words. The model contains a significant random effect
smooth for the initial phoneme of the word (Initial
Phoneme, F = 13.033). This random effect smooth con-
trols for the variance introduced by the different sensi-
tivity of the response detection algorithm to different
phonemes.

Furthermore, the analysis of the word naming data
for one-character words revealed effects of three lexical
variables. As was the case for the lexical decision laten-
cies for one-character words, both the frequency of the
character across all words (C1 Frequency, t = −5.974)
and the frequency of the character as an independent
word (Frequency, t = −4.583) reached significance. As
was the case in previous word naming studies, more fre-
quent words were named faster (Seidenberg, 1985a; Liu
et al., 2007; C. C. Sun, 2016). In addition, the number
of strokes in the character showed an effect consistent
with previous research (see e.g., Liu et al., 2007; Leong
et al., 1987). The greater the number of strokes, the
slower the response (C1 Strokes, t = 3.013).

As was the case for the lexical decision latencies
for one-character words, we furthermore observed an
effect of C1 Friends (t = −10.580). Naming laten-
cies for one-character words were shorter when the
same orthography-to-phonology mapping occurred in
a larger number of other (multi-character) words. Fi-
nally, a post-hoc analysis for the subset of one-character
words that contained a phonetic radical (n = 2, 236)
revealed an effect of the regularity of the phonetic
radical. Consistent with previous word naming studies
(Liu et al., 2007; Seidenberg, 1985b; Hue, 1992), one-
character words for which the pronunciation of the char-
acter was identical to the pronunciation of the phonetic
radical were named faster as compared to one-character
words for which the pronunciation of the character and

Table 10 Results for a linear regression model fit to the (in-
verse transformed) naming latencies (f(x) = −1000/x) for one-
character words in C. C. Sun (2016). Adjusted R2 of the model:
0.358, deviance explained: 36.36%. Provided are β coefficients,
standard errors (S.E.) and t-values for parametric terms, and
estimated degrees of freedom (edf), reference degrees of freedom
(ref. df) and F -values for smooth terms.

smooth terms edf ref. df F -value
Initial Phoneme (bs=“re”) 25.450 31.000 13.033

parametric terms β S.E. t-value
Intercept -1.770 0.035 -51.278
C1 Frequency -0.029 0.005 -5.974
Frequency -0.014 0.003 -4.583
C1 Strokes 0.025 0.008 3.0133

C1 Friends -0.058 0.005 -10.580

the pronunciationof the phonetic radical were different
(C1 PR Regularity, t = −4.136).

3.7 Word naming: two-character words

Table 11 presents the results for the naming laten-
cies for two-character words in C. C. Sun (2016). As was
the case for one-character words, the model includes a
highly significant random effect smooth for the initial
phoneme (Initial Phoneme, F = 98.750). For 24, 100
two-character words, the model explains 32.33% of the
variance in the naming data.

As was the case for the lexical decision latencies
for two-character words, we found significant effects
of the frequency of both characters (C1 Frequency,
t = −16.864; C2 Frequency, t = −7.634). As ex-
pected, naming latencies were shorter for words with
more frequent characters. In line with previous findings
by Liu (1999) and C. C. Sun (2016), we furthermore
found a facilitatory effect of word frequency (Frequency,
t = −26.629).

The lexical decision data from MELD-SCH for two-
character words furthermore revealed effects of visual
complexity. Similarly, we found effects of the num-
ber of strokes of both the first character (C1 Strokes,
t = 21.532) and the second character (C2 Strokes,
t = 4.061) for word naming. As was the case for the
character frequency effects, the effect of visual com-
plexity was stronger for the first character than for the
second character.

3 The p-value for C1 Strokes in the analysis of the naming
latencies for one-character words in C. C. Sun (2016) was 0.0026
and therefore not significant at an α-level of 0.0001. A posthoc
principal components analysis, however, showed a robust effect
of stroke count (t = 6.575, p < 0.0001). We therefore decided
to nonetheless include the effect of C1 Strokes in the model for
the naming latencies for one-character words.
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Table 11 Results for a linear regression model fit to the (in-
verse transformed) naming latencies (f(x) = −1000/x) for two-
character words in C. C. Sun (2016). Adjusted R2 of the model:
0.322, deviance explained: 32.33%. Provided are β coefficients,
standard errors (S.E.) and t-values for parametric terms, and
estimated degrees of freedom (edf), reference degrees of free-
dom (ref. df) and F -values for smooth terms. All corresponding
p-values are < 0.0001.

smooth terms edf ref. df F -value
Initial Phoneme (bs=“re”) 27.925 30.000 98.750

parametric terms β S.E. t-value
Intercept -1.843 0.019 -95.242
C1 Frequency -0.025 0.001 -16.864
C2 Frequency -0.012 0.002 -7.634
Frequency -0.021 0.001 -26.629
C1 Strokes 0.063 0.003 21.532
C2 Strokes 0.011 0.003 4.061
C1 Entropy -0.027 0.002 -17.311
C2 Entropy -0.018 0.001 -12.381
C1 Relative Entropy -0.010 0.001 -8.735
C2 Relative Entropy -0.008 0.001 -6.660
C1 SR Family Size 0.004 0.001 3.927

In parallel to the lexical decision data, we observed
effects of the information-theoretic measures entropy
(C1 Entropy, t = −17.311; C2 Entropy, t = −12.381)
and relative entropy (C1 Relative Entropy, t = −8.735;
C1 Backward Relative Entropy, t = −6.660) as well. As
before, greater values of entropy and relative entropy
lead to shorter response times.

Furthermore, the data revealed an effect of a lexical
variable that is defined below the character level. For
the first character, an increased family size of the se-
mantic radical (C1 SR Family Size, t = 3.927) results in
longer naming latencies. This inhibitory effect of family
size is consistent with the inhibitory effect of semantic
radical family frequency reported by C. C. Sun (2016)
for word naming, but in the opposite direction of the fa-
cilitatory effects of semantic radical family size that are
typically found in lexical decision experiments Feldman
and Siok (1997, 1999a,b) (see, however, our discussion
of the semantic radical family size effect in the CLP
data for one-character words above).

The opposite pattern of results for semantic rad-
ical family size in lexical decision and word naming
may suggest that while semantic radicals that occur
in a large number of characters help determine the
lexical status of a character (i.e., real Chinese char-
acter or not), they do not provide much information
for the identification of a specific character. As a re-
viewer pointed out, however, it should be noted that
the semantic radical family size effects for lexical de-
cision were observed for one-character words, whereas
the semantic radical family size effects for word naming

were observed for two-character words. A direct com-
parison of the semantic radical family size effects in
lexical decision and word naming is therefore not pos-
sible.

Finally, a post-hoc analysis for the subset of two-
character words for which the first character contained
a phonetic radical (n = 11, 749) revealed an effect of the
number of friends of the phonetic radical of the first
character. Naming latencies for two-character words
where shorter when more characters with the same pho-
netic radical were pronounced in the same manner (C1
PR Friends, t = −4.439). This effect of phonetic radical
friends fits well with the effect of phonetic radical regu-
larity that we reported for one-character words above.

3.8 Discussion

The evaluation of the lexical variables in the CLD
for lexical decision latencies and word naming data
for one-character and two-character words yielded a
number of interesting results. We observed a num-
ber of effects that are well-documented in the psy-
cholinguistic literature on Mandarin Chinese, including
word and character frequency effects, visual complex-
ity effects and orthography-to-phonology consistency
effects. More frequent words and characters give rise to
shorter response times, whereas more complex words
and characters lead to less efficient processing and
longer response times. In addition, response times were
shorter for words with more consistent orthography-to-
phonology mappings.

Effects were observed at different grain sizes. At
the word and character level we found the above-
mentioned effects of frequency, visual complexity, and
orthography-to-phonology consistency. Below the char-
acter level we observed an effect of orthography-to-
phonology consistency as well. Naming latencies for
single-character words were shorter when the pronunci-
ation of the character was identical to the pronunciation
of the phonetic radical. In addition, we found effects of
the family size of the semantic radical (i.e., the number
of characters in which a semantic radical appears) in
both lexical decision and word naming. The greater the
family size of the semantic radical of a character, the
longer the response time to words containing that char-
acter (see, however, Feldman and Siok, 1997, 1999a,b,
for facilitatory effects of semantic radical family size in
lexical decision).

Furthermore, we found effects related to the way
in which characters combine to form words. The
information-theoretic measures entropy and relative
entropy had substantial explanatory power for two-
character words in both lexical decision and word nam-
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ing. Surprisingly, a greater uncertainty about one char-
acter given the other character led to shorter reaction
times. In addition, response latencies were shorter when
the frequency distribution of a character given the other
character did not resemble the frequency distribution
of that character in the language as a whole. In addi-
tion, the analysis of lexical decision latencies for three-
character words revealed an effect of conditional prob-
ability. These effects of information-theoretic measures
highlight the importance of taking the combinatorial
properties of characters into account when investigat-
ing lexical processing above the character level.

Finally, we would like to clarify that the current
analyses are by no means intended to provide an ex-
haustive description of the predictive power of the lexi-
cal information provided by the CLD for the experimen-
tal data sets under investigation. Above, we focused on
the predictor effects that were most prominent in sim-
ple linear regression analyses. More complicated rela-
tionships between lexical decision latencies and word
naming latencies on the one hand, and the lexical vari-
ables in the cld on the other hand are likely to exist.
These more complicated relationships include, but are
not limited to, non-linear predictor effects and linear or
non-linear interactions between predictors. The absence
of an effect for a specific predictor in the current analy-
ses, therefore, does not imply the absence of a predictive
relationship between that predictor and the dependent
variables under investigation.

4 Conclusions

We presented the Chinese Lexical Database (CLD).
The CLD is a large-scale lexical database for one-
character and two-character words in simplified Chi-
nese. It comprises 3, 913 one-character words, 34, 233
two-character words, 7, 143 three-character words, and
3, 355 four-character words, for a total of 48, 644 words.
The 48, 644 words in the CLD consist of 4, 895 unique
characters. For each of these words and characters, the
CLD provides a wealth of lexical information. Cate-
gorical variables provide information about the ortho-
graphic and phonological form of a word, its characters
and the semantic and phonetic radicals in each char-
acter. Numerical variables contain in-depth informa-
tion about the frequency, the complexity, the neighbor-
hood density, the orthography-phonology consistency
and the information-theoretic properties of linguistic
units at different grain sizes.

The CLD contains an unmatched amount of lexi-
cal information for simplified Chinese. Nonetheless, the
lexical information provided by the CLD is by no means

exhaustive. The current version of the CLD, for in-
stance, does not contain semantic information about
words and their characters. In future updates to the
CLD, we plan to provide categorical semantic infor-
mation, as well as numerical semantic measures de-
rived from subjective ratings and distributional seman-
tic models. Similarly, the current version of the CLD
does not provide information about the grammatical
status of linguistic units. The addition of such informa-
tion, too, will have high priority in the further develop-
ment of the CLD.

For now, however, the CLD is the largest lexical re-
source for simplified Chinese by a substantial margin.
An evaluation of the lexical information provided by
the CLD for large-scale lexical decision and word nam-
ing data demonstrated the potential of the lexical vari-
ables in the CLD for uncovering hitherto unobserved
effects in experimental data by unveiling robust effects
of information-theoretic measures of the combinatorial
properties of characters. Furthermore, the information
provided by the CLD allows for an objective analy-
sis, re-evaluation, and comparison of predictor effects
across studies and experimental paradigms. We hope,
and we believe, therefore, that the CLD will prove to
be a valuable resource for psycholinguistic research on
simplified Chinese.
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