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Abstract

This paper describes ongoing research aiming at the descrip
tion of variation in speech as represented by asynchroneus a
ticulatory features. We will first illustrate how distancis

the articulatory feature space can be used for event detecti
along speech trajectories in this space. The temporaltateic
imposed by the cosine distance in articulatory feature espac
coincides to a large extent with the manual segmentation on
phone level. The analysis also indicates that the artionjat
feature representation provides better such alignmeatsttie
MFCC representation does. Secondly, we will present first re
sults that indicate that articulatory features can be us@ddbe

for acoustic differences in the onsets of Dutch singulad an
plurals.

1. Introduction

Virtually all approaches in automatic speech recognitd8R)
systems assume that the information in the speech signal and
ASR dictionaries can be represented in terms of sequences of
discrete symbols (e.g. phone-like symbols). This beads-on
a-string paradigm ([9], which goes back to e.g. [16]), ferce
a less than optimal representation of variation in speeuatesi
variation (due to pronunciation variation, speaking ftyieter-
speaker differences, accents etc.) primarily takes plaaeon-
tinuous domain, often with effects on the sub-phonemicljeve
rather than in a discrete domain. The description of vaiesti

in a continuous domain by discrete symbols is evidently a re-
sult of compromises (cf. [1]). It can therefore be argued tha
fundamentally better ways to model variation in speech can
be achieved by modeling the underlying pronunciation pgsce
rather than modeling the surface effects on the resultiogsc

tic speech signal. In this area, progress has been maderyy usi
specifically trained articulatory feature classifiers ([8], [10],

[12], [7]). The choice of the set of articulatory featurekigely
inspired by both the theory of distinctive features ([3]ddhe
gestural theory of speech production ([2]).

In this study, we describe ongoing research that aims at a de-
scription of the variation in speech by use of articulatceg-f
tures (AF). As in [4], [18], we apply AF classifiers using afea
ture set including manner of articulation, place of arttiadn,
voicing, front-back and rounding. The combination of thesAF
results in a sequence of vectors (updated each 10 ms) defining
trajectory in AF space.

Compared to other representations, AFs offer two advastage
First, AFs provide a description of the speech signal athgwi
loose synchrony between articulatory features, in contih
linear phone representations which explicitly imposectyri
synchronous feature transitions. Secondly, AFs make &ipos
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ble to provide a strong link between variation in speech &ed t
relevance of fine phonetic details in human speech proggssin
There is a growing number of indications that human lexical
decoding is mediated by subphonemic details (e.g. [15])[19

In this paper, we will first describe a framework in which
AFs are used for event detection. We will use the term event to
mark a salient, sudden change in the trajectory. Trajextaie
endowed with a temporal structure by using a distance in AF
space, and we will compare this structure with manual segmen
tation. Another approach to impose a structure on the bettom
up derived AF streams is based on Dynamic Bayesian Networks
DBN (e.g. [13]) or on parsing [5]). The method presented here
can be regarded as an alternative and complementary way to re
late event-detection and structure in the speech signal.
Secondly, we will describe experiments showing how artic-
ulatory features can be used to distinguish different word
types. Recently, studies have observed systematic diffessin
acoustic duration between words in isolation (ehgm) and the
same words embedded in longer words (éngmster) [19, 23].

In Dutch, the duration of a syllable is dependent on the numbe
of syllables that follow in the word and may therefore meeliat
word differentiation. [21, 22] have shown that such dunsgio
differences indeed bias the listener’s interpretatiomeadly be-
fore the vowel of the suffix is actually perceived, listenpes-
ceive whether a singular or a plural is involved. Our modglin
experiments show that AFs form a powerful and interpretable
representation in the computational modeling of similéees.

The organisation of this paper is as follows. The next sec-
tion is devoted to a brief introduction to the design anchiray
of the AF classifiers. The third section describes the databé
spontaneous speech that was used in this study, while thié fou
section discusses two applicatons: event detection bgrdist
measures in AF space, and the use of AFs in the modeling of
perceptual differences on the basis of word onsets. The final
section concludes with a discussion and remarks for furdaer
search.

2. Articulatory Feature Classifiers

In line with current approaches in this area (e.g. [4]),cari
latory features are derived from the signal by using Ardiici
Neural Nets (ANN). For the ANNs used in this paper, we ap-
plied the NICO-toolkit ([11]). Each of the six features (nmen,
place, front-back, voicing, rounding, and static (seeddblis
represented by one ANN. Each ANN is trained on canonical
feature transcriptions on the basis of a phoneme trangoript
of the speech signal and a phone-to-feature table. Put ai-par
lel, the six AF classifiers provide information without amyg-i
posed structure: the strict dependency of the features\site



Table 1: The six features with the 28 values used in this study

Features | Card | Values |

manner 6 approximant, fricative, nasal,
stop, vowel, silence

place 7 (labio)dental, alveolar, velar,
high, mid, low, silence

voicing 3 voiced, voiceless, silence

rounding 4 rounded, unrounded, nil, silence

front-back 5 front, central, back, nil, silence

static 3 static, dynamic, silence

on the canonical training samples is lost due to independenc
between the classifiers, and so on a test set AF output vectors
may show feature asynchrony and deviate from the canonical
0/1 AF vectors. The AF output consists of 28 parallel analog
values between 0 and 1, updated every 10 ms.

3. Database description

In this study, we have used the IFAcorpus ([14]), a database
of spoken Dutch. It contains recordings of 4 male and 4 fe-
male speakers, varying from 15 to 66 years in age. For all
utterances, manually corrected labelling and segmentatio
phone and word level are available. Metadata include eturcat
level, birth place, and smoking habit and contain more imfor

tion than is available in the much larger Spoken Dutch Corpus
(CGN, [8]). The transliteration of the IFAcorpus is accowli

to the CGN-protocol. Compared to CGN, the amount of speech
per speaker is much larger (40 min/speaker) and more sgeakin
styles have been recorded (8, varying from spontaneous-mono
logues to read-aloud word lists). A number of 19867 uttezanc
have been transcribed (a bit more than 5 hours). Two subrpo
(retold stories in the form of long monologues, and randomly
presented sentences, in total about 140 minutes of speaeh) h
been selected for this study. The total number of utterances
is 2650. All speech material has been converted to 16 kHz 16
bits/sample mono wav files. The phone alphabet was cleaned up
to contain 50 different phones apart from the basic phohes, t
IFAcorpus also uses palatalised variants. There is onpcgle
symbol. The selected subcorpus was divided into a trairgtg s
(1978 utterances), a validation set (100) and a test sety@72

44m10s). The test set consisted of the speech from one male ual boundary, while 89 percent could be assigned a boundary

and one female who were kept separate, while speech from the
other 6 speakers was used for training and validation.

The training and validation set have been applied for the
training of the six different ANNs. Table 2, second column,
shows the classification results on the IFAcorpus testiset(¢t-
curacy of the individual classifiers on frame level in petege
correct). For the sake of comparison, we added the ANN re-
sults obtained on the TIMIT test set after training on the TTM
training set, but since transcription methods and datatzee-
ifications differ in detail, a further cross-database corngoa
hardly makes sense. After training, the classifiers werd tse
produce AF vector sequences for test data, overall reguitin
about 265000 vectors of dimension 28.

Table 2: Frame-based accuracy of individual feature diassi
(in perc.) on the IFA-corpus and TIMIT test set.

Features | IFA-corpus | TIMIT |

manner 84.7 86.5
place 76.7 78.6
voicing 93.5 92.0
rounding 87.4 86.0
front-back 83.6 83.0
static 89.7 81.0

Table 3: Alignment results for three distances and two sig-
nal representations. Corresponding thresholds are iedidze-
tween brackets. For an explanation see the text.

[ repr. | cosine | Euclidean | city-block |
AF 40, 89, 3.1 (0.21)] 39, 88, 3.2 (0.20)] 34, 83, 5.1 (0.41)
MFCC | 34, 79, 6.1 (0.85)| 32, 81, 9.0 (325)| 35, 79, 4.9 (106)

4. Two applications of AF representations
4.1. Bottom-up alignment with manual segmentations

Given a certain distance functiol, event along a trajectory
ey Un—1,Un,Unt1,... May be defined by the moments on
which D(v;—1, v;) exceeds a certain threshaldof which the
optimal value depends on the type of distance). It has been
shown ([18]) that this technique yields promising aligntnen
results between events and manual phone-level segmerstatio
when D equals the cosine distance (eq. 1) andutheepresent
AF vectors.

oD )

D = arccos W

1)

This difference is further elaborated in table 3. The ta-

ble shows alignment results between the event detection and

the manual segmentation for three distances (cosine,deaal|
city-block) and two representations (MFCC, AF). The figures
indicate the percentage of frames with an exact match, with a
match within 25 ms, and without a manual segment boundary
within 5 frames, respectively. The optimal threshéli given
between brackets. For example, for the combination (cpsine
AF), 40 percent of the cosine peaks coincide with the man-

within 25 ms from the cosine peak, and 3.1 % (215 out of 6810
cosine-maxima) could not be associated with a segment bound
ary within the range [-5, 5]. For all other combinations the
alignment is worse, but the Euclidean distance performesim
equally well. The value of 89 percent within 25 ms is compa-
rable to the accuracy of 84 percent within 20 ms (reported in
[17], table 5) for the position of phone boundaries by auticna
segmentation.

This alignment result is not coincidental. Theoreticatlynight

be the case that all point processes with a similar statistic

the manual segmentation can be aligned with the same success

rate. This possibility, however, turns out to be less likalyce
(a) it appears that the manual segmentation distributioerg
similar to a Poisson distribution with = 5.7 (see figure 1),
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Figure 1: Histograms of segment durations (stars) and tie Po
son distribution § = 5.7) (+-signs).

activation

and (b) the alignment between the cosine peaks and a Poisson

process withh = 5.7 is significantly different from the align-

ment between the cosine peaks and the manual segmentation

(x* = 11.6, nf =2, p < 0.01).

In order to apply AF representation to study fine temporal-
phonetic details, probably a time resolution finer than 10sns
required. This is suggested by figure 2, which shows over-80 re
alisations of the transition d-schwa. Increasing (sol)iand
decreasing (dashed) plots display the feature value Vanel
‘plosive’, respectively. All plots are overlaid such thaeman-
ual segment boundary is halfway between frame 5 and 6. The
coarse resolution due to the 10-ms time frame shift is glearl
visible.

4.2. Relevance of fine phonetic details in word onsets

As mentioned above, listeners can perceive subtle diféeren
between words in isolation (e.gham) and the same words
embedded in longer words (e.dnamster) [19, 23]. In order
to investigate how differences other than duration diffitiege
Dutch singulars and plurals, an experiment was conducied us
AF representations of acoustic realisations of Dutch dargu
and plurals.

4.2.1. Materials

For 47 nouns, we recorded several tokens of the singular and
plural form, read by a female native speaker of Dutch. Allplu
rals were bisyllabic words ending in the plural suffen, all
singulars were monosyllabic. The number of singular tokens
ranged from2 to 5, the number of plural tokens ranged form
14 to 20. In all, 993 tokens were recorded, and digitized at a
sample rate of 44 KHz. For each token, the corresponding ma-
trix of scores was calculated. The average duration of antoke
was 54 timesteps. The plural forms (rangé — —85) tended

to be shorter than the singular forms (rarte— —97) by 5
timesteps (i.e., by approximate) ms,p < 0.0001, mixed-
effect anova with word as random stratum). For each w@rd,
tokens of the singular anid! tokens of the plural form were ran-
domly selected for training, the remaining tokens (maxiynal
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Figure 2: Feature values (plosive, vowel) over time for dvea.

singulars6 plurals) were held out for testing.

4.2.2. Results

We fitted a stepwise logistic regression model to the dath wit
the log odds of plural to singular as the dependent variaié,
the acoustic feature values as predictors. An initial migéect
analysis with Word as random effect revealed negligeahfie va
ation for this factor § < 0.0001). We therefore removed Word
as a predictor from the model. A stepwise logistic regressio
analysis suggested significant predictivity for the feanalues

| abi odent KB =119, 6 = 3.18, Z = 3.73, p = 0.0002),
unvoi ced (8 = 2.570, 6 = 1.0413, Z = 2.47, p = 0.0136),

voi ced (8 = 0.782, 6 = 0.3007, Z = 2.60, p = 0.0093),
back (3 = 2.336, 6 = 0.8403, Z = 2.78, p = 0.0054),
static-nil (3 = 3.156, 6 = 0.4662, Z = 6.77, p =
0.0000), andstatic (3 = 1.701, 6 = 0.4282, Z = 3.97,

p = 0.0001). Although significant, the features succeeded
in accounting for only a tiny proportion of the variance. The
bootstrap-corrected®? was0.025 and the bootstrap-corrected
value of Somerd,., = 0.21. All 6 predictors were retained
in 156 out of 200 bootstrap runs using a backwards variable
elimitation algorithm [20].

A t-test on the predicted probabilities for the singular and
plural revealed a highly significant < 0.0001 difference in
probability of 2% (mean predicted probability singulad:86,
mean predicted probability plural.88). When applied to the
held-out singulars and pluralst-#est on the predicted probabil-
ities for the held-out singulars and plurals revealed aifiggmt
(p < 0.0001) difference in probability ofl% in the expected
direction (mean predicted probability singul@r87, mean pre-
dicted probability plural0.88).

These results suggest that there are subtle qualitative dif
ferences in the fine phonetic detail in the fis8tms of Dutch
singulars and plurals. The plurals in our data appear to have
been realized with more acoustic detail for labio-dentatplof
articulation, more detail for voicing, and more to the ba¢k o
the mouth. The evidence for staticity is mixed, with one dieat
value indicating that statisticity is irrelevant for plisgSnvt )
and another feature value indicating more evidence foicgtat



(Sst at i ¢). Considered jointly, the main pattern is that plurals

receive more careful articulation than singulars. In tigatliof
the shorter duration of the stem in plurals, this suggestisdi-
rational shortening is compensated for by increased datimy

Frontiers of Corpus Research (pp. 105-112). Amsterdam:
Rodopi.

Ostendorf, M. (1999). Moving beyond the beads-on-a-
string model of speech. In: Proceedings of the IEEE Auto-

detail. matic Speech Recognition and Understanding Workshop.

Vol. 1. Keystone, Colorado, USA, pp. 79-83.

[10] Richards, H. B., Bridle, J. S., (1999). The HDM: A seg-
mental hidden dynamic model of coarticulation. In: Pro-
ceedings of ICASSP. Vol. 1. Phoenix, AZ, pp. 357-360.

Strom, N. (1997). Phoneme probability estimation with
dynamic sparsely connected artificial neural networks.

5. Discussion and conclusion

We addressed variation in speech by aligning data-basetdseve

with manual phone segmentations and by relating acoustic de

tails in word onsets with word number. The obtained ap- [11]
proaches are promising and simpler than HMM-based meth-

ods. The results directly show that AF representations sre a The Free Speech Journal Issue 5.
least as rich as manual segmentations on phone-level, and we o ]
argue that it is in fact a richer representation due to featur ~[12] Wester, M. (2003). Syllable classification using
asynchrony. However, essentially different segmentatioay articulatory-acoustic  features. In:  Proceedings = of
result from other distance measures. To what extent metrics Eurospeech, Geneva, Switzerland (cd-rom).

such as Kullback-Leibler show a similar performance i$ stit [13] Wester, M., Frankel, J., King, S. (2004). Asynchronous
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which appears useful for research on lexical decoding ard fin '
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