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Abstract
Letter transpositions are relatively harmless for reading English and other
Indo-European languages with an alphabetic script, but severely disrupt
comprehension in Hebrew. Furthermore, masked orthographic priming does
not produce facilitation as in English (Frost, 2012). This simulation study
compares the costs of letter transpositions and of letter exchanges for Modern
English and Classical Hebrew, using the framework of naive discriminative
learning (Baayen, Milin, Filipovic Durdjevic, Hendrix, & Marelli, 2011). The
greater disruption of transpositions for Hebrew as compared to English is
correctly replicated by the model, as is the relative immunity of loanwords
in Hebrew to letter transpositions. Furthermore, the absence of facilitation
of form priming in Hebrew is correctly predicted. The results confirm the
hypothesis that the distributional statistics of the orthographic cues in the
two languages are the crucial factor determining the experimental hallmarks
of orthographic processing, as argued by Frost (2012).

In a recent study, Frost (2012) calls attention to an intriguing difference between Hebrew
and English. English readers suffer little when letters are transposed or exchanged. For
instance, anwser was found to provide the same amount of priming for the target ANSWER
as the correct orthographic form, answer, itself (Forster, Davis, Schoknecht, & Carter, 1987;
Perea & Lupker, 2003). Furthermore, a masked prime such as mature has been found to
prime targets such as NATURE, subject to the condition that the words are from low-density
similarity neighborhoods (Forster & Davis, 1991). By contrast, in Hebrew, letter exchanges
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and letter transpositions are disruptive. For letter exchanges, no priming is observed, and
letter transpositions (Frost, 2012; Velan & Frost, 2011) were detrimental to reading with a
substantial drop in reading performance.

Frost (2012) argues that Hebrew requires a rigid orthographic coding scheme which
contrasts with the flexible coding scheme that would be required for English or French. He
also argues that the underlying neuro-circuitry of the visual system must operate on the
same principles across both Semitic and non-Semitic languages. Frost’s hypothesis is that
it is differences in the statistical regularities across the two language families, Semitic and
Indo-European, that give rise to different coding schemes, which themselves would be the
result of the same underlying cognitive and neurobiological principles responding to very
different language input.

The goal of the present study is to use computational modeling to examine Frost’s
hypothesis that the specific statistical properties of Hebrew are at issue. The method used
to test the role of the distributional properties of Semitic and non-Semitic languages is
corpus-driven computational modeling. The modeling framework adopted is that of Naive
Discriminative Learning, henceforth ndl (Baayen et al., 2011; Baayen, 2011; Hendrix &
Baayen, 2012). The ndl model implements a simple two-layer network with as orthographic
input cues letter unigrams and bigrams, and as output outcomes lexical and grammatical
meanings (e.g., ‘hand’, ‘plural’). The model does not implement fuzzy encoding of orthog-
raphy. That is, for a word such as hand the only letter bigrams taken into consideration are
#h, ha, an, nd, d#. Furthermore, all letter unigrams and letter bigrams are assumed to
become available at the same time.

Each outcome is linked to all cues. Hence, a subnet consisting of a given outcome
and its cues is therefore formally a perceptron. The weights are not set by iteration over
time, instead, for a given perceptron subnet the weights are determined by means of the
equilibrium equations (Danks, 2003) of the Rescorla-Wagner equations (Wagner & Rescorla,
1972) for discriminative learning. As each perceptron is independent of all other perceptrons,
the model instantiates naive discrimination learning, in the sense of naive Bayes classifiers.

Given corpus-derived matrices of co-occurrences of cues and outcomes, the sets of
equilibrium equations can be solved straightforwardly using the Moore-Penrose pseudoin-
verse. Crucially, the weights are completely determined by the distributional properties of
its input space. There are no free parameters, no parameters for decay rates, threshold
activation levels, or resting activation levels. Baayen (2011) shows that naive discrimina-
tive learning, used as a classifier for data on the dative alternation, actually outperforms a
generalized linear mixed model, and performs as well as a support vector machine.

The simulated latencies predicted by the naive discriminative reader (henceforth ndr)
reflect a wide variety of distributional effects, including not only whole word frequency ef-
fects, but also morphological family size effects (Moscoso del Prado Mart́ın, Bertram, Häikiö,
Schreuder, & Baayen, 2004), inflectional entropy effects (Baayen, Feldman, & Schreuder,
2006), constituent frequency effects (Baayen, Kuperman, & Bertram, 2010), and paradig-
matic entropy effects (Milin, Filipović Durdević, & Moscoso del Prado Mart́ın, 2009). This
is accomplished without any representations for complex words whatsoever — the model is
a full semantic decomposition model. Furthermore, Hendrix and Baayen (2012) show that
the model also predicts the n-gram frequency effects reported by Arnon and Snider (2010),
again without the presence of representations for word n-grams.
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The modeling results support the idea that morphological form representations medi-
ating the flow of activation from orthographic units to semantics are unnecessary. (Baayen
et al., 2011) discuss a great many arguments from theoretical linguistics in support of this
claim. Hebrew presents a particularly strong test of this idea, because it is generally believed
that the consonantal root, as well as the vocalic pattern, are representational units that must
be accessed during reading for comprehension to take place (Frost, 2012). If the ndr model
is on the right track, then it should be able to correctly predict the detrimental effects of
letter exchanges and transpositions for Hebrew without the mediation of root and pattern
morphemes. As hidden layers in connectionist models often function as implicit distributed
representations mediating a mapping, our claim is that a hidden layer for representing roots
and patterns is superfluous, in addition to being statistically dysfunctional.

Because the ndr is a tool for studying the relation between form and meaning, it is
crucial to have semantically interpreted corpora available for training. For English corpora,
a (highly simplified) semantic representation can be obtained by identifying inflectional
functions, by isolating derivational meanings, and by taking the lemma as a pointer to a
word’s lexical meaning. In this way, a word such as writers receives the following set of
meaning outcomes: write, agent, plural. For English, tagged corpora and lexical
databases facilitate the calculation of such meaning sets. For modern Hebrew, no such
resources are available at present. Fortunately, there is a corpus of Classical Hebrew, namely,
the collection of texts referred to as the Tenach in Judaism, and as the Old Testament in
Christianity. These biblical texts are available on-line with literal morpheme-by-morpheme
transliterations in English. By going back to the Bible, we obtain with these transliterations
exactly the required semantic representations for setting the cue-to-outcome association
strengths.

In what follows, we first describe the English and Classical Hebrew corpora in more
detail, and then compare the distributions of unigrams and bigrams in these two languages.
Next we proceed with an inspection of the weights and the predicted semantic activations.
Against this background knowledge, we then consider the consequences of letter transposi-
tions for Hebrew and English, as well as for non-Semitic loanwords in Hebrew. A simulation
study of form priming with a single letter transposition is presented next, after which we
conclude with a discussion of the results.

Training data sets for Hebrew and English

The simulation experiments reported in this study are based on two corpora, a corpus
of classical Hebrew narrative texts, and for English the British National Corpus (Burnard,
1995).

Hebrew

From the interlinear Classical Hebrew texts at http://www.scripture4all.org/
OnlineInterlinear/Hebrew_Index.htm, the older narrative texts (Genesis, Exodus,
Judges, the two books of Samuel, the two books of Kings, Ruth, and Esther) and the
legal texts from the Tenach (Leviticus, Numbers, Deuteronomy) were selected. The pdf
files were converted into ascii with the unix utility pdftotext, digraphs were converted
into unigrams, and Hebrew words (defined as strings of letters bounded on either side by
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braSiT in-begin-ing
bra he-create-ed
alHim Elohim
aT accusative marker
HSmim the-heaven-s
uaT and-accusative marker
HarZ the-earth

Table 1: The first sentence from the book of Genesis: The Hebrew transliteration (left) and the
English morpheme-by-morpheme glosses (right).

a space character) were aligned with their morpheme-by-morpheme English glosses. These
English morphemic glosses will henceforth be used as the meaning components of a Hebrew
word. Glosses for multimorphemic English translation equivalents were parsed into their
constituent morphemes by look-up in the celex lexical database (Baayen, Piepenbrock, &
Gulikers, 1995). Table 1 presents an example of the Hebrew-English alignments obtained.
Due to inconsistencies in the mapping from pdf to ascii format that resisted straightfor-
ward automated correction, the total number of alignments was reduced by roughly half to
113725.

Of the 113094 alignments, a minority (33538) had a single monomorphemic English
translation equivalent. Due to cliticization, extensive person/number marking, and the
realization of direct object and genitive pronouns as suffixes, a large majority of Hebrew
strings required multi-word English glosses. Each of the glosses constitutes a meaning (or
outcome) for the naive discriminative learning model.

English

Count Hebrew English
1 33538 128
2 36487 4980
3 24081 38010
4 12886 47013
5 5047 15202
6 836 4402
7 182 2745
8 37 614

Table 2: Counts of number of meanings for the Hebrew words and English n-grams.

From the database of phrases from the British National Corpus compiled by Baayen
et al. (2011), 113094 instances were selected at random, to provide an equal-sized instance
base for English. This set of instances comprised 90780 word trigrams and 22314 word



MODELING LETTER TRANSPOSITIONS AND EXCHANGES 5

Form Orthography Root Root bigrams
lamad lmd lmd lm, md
lamadti lmdti lmd lm, md
lmadtem lmdtm lmd lm, md
yilmad ilmd lmd lm, md
limmed lmd lmd lm, md
talmud tlmwd lmd lm

Table 3: Examples of Classical Hebrew forms of the root lmd (‘to learn’), their orthography, and
bigrams that are part of the root (lm, md).

bigrams. In this data set, a word can be morphologically complex, consisting at most
of two monomorphemic stems and an inflectional affix. The choice of word bigrams and
trigrams for English is motivated by the consideration that most Hebrew letter strings have
multi-word translation equivalents in English. For instance, Hebrew wydbr translates into
and he said. By estimating weights from word n-grams rather than from single words, a
learning bias favoring English is avoided. It should be noted, however, that the two corpora
are not well balanced with respect to the distribution of the numbers of meanings for a
given string, as shown in Table 2. For typologically very different languages such as Hebrew
and English, such imbalances are inevitable.

Comparison of distributions of unigrams and bigrams

Frost (2012) describes the orthographic coding scheme of Hebrew print as relying
“mainly on the few letters that carry morphological information, whereas the other letters
of the word do not serve for lexical access, at least not initially” (p. 21). He further argues
that for Hebrew, but not for Indo-European languages, individual letters of base words carry
semantic values (p. 23). In the light of these claims, it is worth considering the distributions
of Hebrew and English unigrams and bigrams.

A comparison (ignoring the space character) of the distribution of letter unigram
frequencies for Hebrew and English reveals two very similar distributions that do not differ
significantly according to a Kolmogorov-Smirnov test (p =0.5544). This finding argues
against the idea in Hebrew, unlike in English, some letters would be especially informative.
It is also not the case that there are letters that are not used as part of a root. Some letters,
such as w, i and h, when used as root consonants, may not be present in some of the written
forms of a given (weak) verb’s inflectional paradigm, but they will be visible in at least
some forms.

Letter unigrams by themselves, therefore, are not likely to offer an explanation for the
different processing characteristics of Hebrew and English. Letter bigrams, by contrast, are
more promising, as bigrams capture important chunks of a word’s (mostly tri-consonantal)
root. As can be seen in Table 3, across very different spoken forms, thanks to the omission
of many vowels in the orthography, at least one root bigram will be present in most forms.

If root bigrams play a role as cues to root meanings, then we may expect that the
distributions of Hebrew and English bigrams do differ significantly. More specifically, due
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Figure 1. Densities of letter bigram frequencies for Hebrew (solid) and English (dashed).

to the recurrence of the same bigram across the many different derivational and inflectional
forms of a root, Hebrew should reveal a distribution of bigrams with more higher-frequency
bigrams compared to English.

This is exactly what Figure 1 reveals: There is a highly significant difference between
the bigram distributions of these two languages (p =0, Kolmogorov-Smirnov test), such that
higher bigram frequencies are more characteristic of Hebrew (p < 0.0001, Wilcoxon test).
Furthermore, since Hebrew has fewer distinct bigrams (556) as compared to English (650),
Hebrew can be said to use its smaller set of bigrams more intensively. This result is fits well
with Frost’s claim (2012, p.27) that

for efficient reading, the statistical properties of letter distributions of the lan-
guage, and their relative contribution to meaning, have to be picked up, and the
transitional probabilities of letter sequences have to be implicitly assimilated.

Although bigram frequencies represent transitional probabilities, by themselves they
are completely blind to the link between orthographic form and a root’s meaning. The naive
discriminative learning framework offers the possibility to assess the strengths with which
bigrams (and also unigrams) are linked to (root) meanings, by means of the cue-to-outcome
association weights on the links from orthographic cues to the meaning outcomes.

Orthography-to-meaning association weights

The ndl package (Arppe, Milin, Hendrix, & Baayen, 2011) was used to set the weights
from the orthographic cues (letter unigrams and bigrams) of Hebrew words and English word
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n-grams to their component meanings.
For each language, the cues consisted of letter unigrams and bigrams. For Hebrew

HarZ, the set of cues contained the unigrams H, a, r, Z and the pairwise bigrams #H, Ha,
ar, rZ, and Z#. The English three-word sequence and he said was coded as #and#he#said#,
and yielded the cue set {#, a, n, d, h, e, s, i, #a, nd, d#, #h, he, e#, #s, sa, id, d#}.
The cue-to-outcome association weights were estimated using the equilibrium equations for
the Rescorla-Wagner equations of Danks (2003).

Language Gram Mean Median Count
Hebrew unigram 0.000013 -0.0000099 92483
Hebrew bigram 0.000088 0.0000040 2143193
English unigram 0.000013 -0.0000015 173623
English bigram 0.000028 0.0000000 3717927

Table 4: Statistics for unigram and bigram association weights for Hebrew and English

Table 4 presents mean and median of the unigram weights and bigram weights for
Hebrew and English. The median unigram weights are negative for both languages, and
smaller than the bigram weights. The unigram weights are uninformative about lexical
meanings. Too many meanings link up to the same unigrams for the unigrams to be useful
as discriminative cues.

Interestingly, a striking difference emerges between Hebrew and English. For Hebrew,
the median weight for bigrams is half of the median for the unigrams, but with the sign
reversed. By contrast, the English bigram weights are positive, but close to zero. This
suggests that the functional load for Hebrew bigrams is much greater.

It is worth noting that the median number of letters in a Hebrew word is 4, whereas
the median number of letters in an English n-gram, not counting spaces, is 13. As a
consequence, a larger number of cue-to-outcome connections will contribute to a meaning
activation for English compared to Hebrew. Furthermore, experience with modeling English
reading indicates that adding bigram cues to unigram cues leads to enhanced prediction
accuracy: They are not superfluous. Yet even if we correct for two orders of magnitude to
take word length differences into account, the magnitude of Hebrew bigram cues remains
many orders of magnitude greater compared to English cues.

There is also a difference in the number of meanings that are distinguished in the
training data for the two languages, and it might be argued that this difference is at issue.
However, the magnitude of this difference is moderate: 4021 for Hebrew and 5987 for
English: The Hebrew data set has approximately two thirds of the number of meanings
distinguished in the English data set. More importantly, as the ndl model implements naive
discriminative learning, for which each meaning and its cues are evaluated independently of
all other meanings, the difference in the number of meanings cannot explain the differences
in weights.

These considerations taken together suggest that for Hebrew the functional load of
bigram-to-meaning weights is likely to be much higher compared to English, exactly as
predicted by Frost (2012).
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Meaning activations

The weight matrices produced by the ndr specify the assocation strengths of unigram
and bigram cues to outcomes (meanings), allowing the activations of these meanings given an
input string to be straightforwardly estimated by summation of the incoming weights from
active cues. For Hebrew, activations were evaluated for 700 verbs in the Hebrew corpus, as
verbs show the greatest inflectional variation and hence provide the best and most difficult
test case for naive discriminative learning. (Verb status was determined on the basis of
the English gloss containing a lexeme that according to celex can be a verb, followed
by manual pruning of, for instance, unlikely conversion verbs.) For English, 700 content
words were selected, which were matched with the Hebrew words in length (p =0.9994,
Kolmogorov-Smirnov test). The English (lemmatized) words, however, were more frequent
(p < 0.0001, Wilcoxon test; median Hebrew frequency: 5; median English frequency: 16).

Hebrew English
median activation 0.0328 0.0124
median activation from unigrams 0.0013 0.0001
median activation from bigrams 0.0274 0.0122
median activation unigrams 0.0011 0.0003

Table 5: Median activation, median activation from unigram cues, median activation from bigram
cues, and the median activation from a model with unigram cues only, for Hebrew and English.

The first row of Table 5 shows that, as expected given the greater magnitude of
Hebrew weights, the median activation for Hebrew is greater than the median activation
for English. Note that as the length distributions of the Hebrew and English test words
do not differ significantly, it is unlikely that Hebrew activations would be higher due to
Hebrew words containing more bigrams. Furthermore, the frequencies of the Hebrew words
were lower than those of the English words, hence frequency cannot explain the observed
pattern of results as frequency by itself predicts greater activation for English, and smaller
activation for Hebrew, contrary to fact.

For both Hebrew and English, the bulk of the activation is contributed by the active
bigram cues — the contribution of unigram cues is much smaller, as indicated by rows two
and three of Table 5. The last row of this table lists the activations that are obtained
when a model is trained with only unigram cues and no bigram cues whatsoever. Such
a unigram-only model gives rise to reduced activations similar to those observed in the
unigram+bigram model from just the unigram cues.

It is clear from Table 5 that the bigram cues are the key contributors to the meaning
activations. For both languages, the order information captured by the bigrams is a key
factor in the mapping of form to meaning. The set of bigram cues is large enough so that
individual bigrams can become good cues for individual meanings. At the same time, this
set is not too large to become computationally prohibitive.

In summary, Hebrew uses a smaller set of bigram cues more intensively than English,
and these bigram cues tend to have stronger associative weights to lexical meanings com-
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pared to English. This gives rise to higher activation levels for these meanings, even where
both sets of words are of similar length, and even though Hebrew words (more specifically,
their meanings) are characterized by lower frequencies. In what follows, we address whether
these remarkable properties of the Hebrew bigrams can explain the very different priming
and letter transposition effects observed for Hebrew and English.

Letter transpositions

How does a letter transposition affect the activation of a word’s meaning in Hebrew
compared to English? To address this question, the activations of the Hebrew verbs were
estimated for when a single letter pair was transposed, subject to the condition that the
letter pair was not word initial nor word final. This restriction limited the set of eligible
verbs to the 588 verbs with a minimal length of four letters (including clitics and affixes).
For English, 666 words, also with a word length exceeding three characters, were subjected
to the transposition of a non-edge-aligned letter pair. For both languages, the respective
cue-to-outcome weight matrices were used to calculate the activation of the words’ meanings,
both for the standard form, and for the form with a letter transposition.

Hebrew English
median activation 0.0344 0.0124
median activation with transposition 0.0026 0.0035
median difference 0.0238 0.0036
proportional reduction in activation 0.9237 0.7186

Table 6: Median activation, median activation with a single transposition of one non-edge aligned
letter pair, the median of the difference between the two, and the proportional reduction in median
activation, for Hebrew and English. The number of observations is 588 for Hebrew and 642 for
English.

Disruption by letter transpositions can be gauged by calculating the extent to which
a word’s activation decreases due to a letter transposition. Table 6 clarifies that the amount
of disruption caused by a single letter transposition is indeed greater for Hebrew than for
English: The median disruption in Hebrew (0.0238) is 6.6 times that for English (0.0036,
p <0.0001, Wilcoxon test on the proportional reductions).

Estimate Std. Error t value
Intercept (Language=English, Treatment=None) 904.42 2.86 316.36
Language = Hebrew -15.96 4.16 -3.84
Treatment = Transposition 20.23 1.96 10.30
Language = Hebrew & Type = Transposition 23.91 2.87 8.33

Table 7: Coefficients of a mixed-effects regression model for the simulated reading times of Hebrew
and English words with and without a letter transposition.
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Figure 2. Mean simulated reading times for Hebrew and English with and without a letter trans-
position, as estimated by a linear mixed-effects model with random intercepts for Item.

Chronometric methods assess meaning activations indirectly through response vari-
ables such as response latencies and reading times. To simulate this, we define reading
times as the log of the reciprocal of the activation. To do so, it is necessary to avoid neg-
ative activations, which can be achieved by addition of the absolute value of the minimum
activation. It is also necessary to back of from zero, which we do by adding one:

t = log
1

a + I[min(a)≤0]|min(a)|+ 1
. (1)

For ease of interpretation, these reading times are subsequently rescaled to the interval
[200,1000] ms.

A mixed-effects analysis of the simulated reaction times with Item as random-effect
factor was fitted to the data. Subsequently, outliers with absolute standardized residuals
exceeding 2.5 were removed and the model refitted. The trimmed model, which is summa-
rized in Table 7 and visualized in Figure 2, revealed a significant interaction of Language
by Treatment, with a transposition cost for Hebrew that is twice that for English. The re-
sults of this simulation therefore fit with the observed much greater difficulty that Hebrew
readers experience with words with transposed letters.
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Loanwords in Hebrew

Hebrew transliteration English source Hebrew transliteration English source
trus truss tSaild child
mudrn modern labradur labrador
braS brash kuuta quota
asbstus asbestos abril april
spak speck uarrn warren
brut brute miriad myriad
rumans romance tannin tannin
suap sweep starb starve
sulu solve skrabbl scrabble
fauntn fountain hurd idiom
blutS blotch kurdl curdle
suldr solder kambur camphor
skrambl scramble traS trash
Hurd hoard skil skill
kautS couch Hurd horde
glatin gelatine sulbunamid sulphonamide
plank plank sugst suggest
snaipr sniper dmagug demagogue
bras brass gardn garden
pulip polyp buru bureau

Table 8: English sources and Hebrew transliteration of 40 randomly selected loanwords

Loanwords in Hebrew are reported not to suffer from adverse effects of letter trans-
positions (Velan & Frost, 2011; Frost, 2012). To study whether the naive discriminative
learning framework helps explain the remarkable immunity of loanwords against transposi-
tions, 40 English content words were selected randomly from the English dataset, subject
to the condition that their meanings do not occur in the Hebrew dataset. For each of these
words, a transliteration into the Hebrew orthography was made (see Table 8). The loan-
words were added to the Hebrew dataset, and were assigned frequencies randomly selected
from the frequency list of meanings in the outcomes vector of the Hebrew dataset. As no
context is available in the original corpus, no further context was added to the loanwords.
Subsequently, the weights and activation matrices were recalculated.

Normal Transposed
Hebrew 0.0344 0.0027
Loanwords 0.1975 0.0547

Table 9: Median activation for native Hebrew words and 40 loanwords, without and with transpo-
sition.

Table 9 shows that the median activation for loanwords, 0.197 is substantially larger
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Figure 3. Estimated densities for normal (black) and loan words (grey) with (dashed line) and
without (solid line) transposition.

than the median activation for native words, 0.034 (p = 0.0001, Wilcoxon test).
Letter transpositions reduce the median activation for the loanwords from 0.1975 to

0.0547. Crucially, the median activation for loanwords after a letter transposition, 0.0547
is as high as that of non-loans without transposition (0.0344, a non-significant difference
according to a Wilcoxon test).

Figure 3 presents the estimated densities for non-loans and loanwords with and with-
out transpositions. The density for tranposed loanwords is quite close to that of the un-
transposed nonwords, in conformity with the medians in Table 9.

Estimate Std. Error t value
Intercept (Type = Native, Treatment = None) 885.5293 3.5285 250.9661

Type = Loanword -142.8045 13.4210 -10.6404
Treatment = Transposed 47.4346 2.6931 17.6131

Table 10: Coefficients of a linear mixed-effects model fit to the simulated RTs for normal and loan
words, with and without transposition.

A mixed-effects model fitted to the simulated RTs, obtained in the same way as above
using (1) and rescaled to the [200, 1000] ms interval, is summarized in Table 10 and Figure 4.
(In order to avoid violating normality assumptions, outliers with absolute standardized
residuals were removed from the data set and the model refitted. As a consequence, a
minor interaction of Transposition by Loanword status lost significance.) According to this
trimmed model, transposition has a main effect (a cost of 47 ms) and loanwords have, on
average, an advantage of 119 ms. Even after trimming, the distribution of RTs remained
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Figure 4. Estimated simulated mean RTs for Hebrew words and loanwords with and without
transposition.

very skewed, due to a very skewed — but ecologically valid — word frequency distribution.
These results indicate that the model succesfully captures the relative immunity of

loanwords to letter transpositions. Interestingly, if the present model is on the right track,
the cause of this immunity is not that loanwords would not suffer from transpositions. To
the contrary, as can be seen in Figure 4, they suffer exactly to the same degree as native
words. The reason that transposed loans appear immune is that loanwords as such are
easier to read. This reading advantage masks the costs of the transpositions. The reason
for the reading advantage for loanwords is easy to trace. Loanwords have unusual letter
combinations. Unusual bigrams are excellent cues for the loanword meanings, which are
learned better, and therefore receive higher activations and shorter reading times. Note
that the model predicts that untransposed loanwords can be read faster than untransposed
native words, other things being equal. Whether this prediction is correct awaits further
empirical verification with real loanwords rather than the constructed loanwords used in
the present simulation study.

At present, however, our results suggest that the difference between loanwords and
native words resides primarily in the fact that the writing system for native words has
removed nearly all redundancy, leaving a system in which the cues that have been left carry
a high functional load. With redundancy removed, the system is not robust to noise in
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the signal, as witnessed by the extreme disruption caused by letter transpositions. Because
loanwords do not have the Semitic phonotactics, redundancy is re-introduced, and this in
turn allows for faster and more robust processing.

Simulating priming

The preceding section clarified that the different effects of letter transpositions across
Hebrew and English can be understood perfectly well within the naive discriminative learn-
ing approach. This section addresses whether this framework makes the correct predictions
for the effects of form priming. The central empirical finding is that form related primes,
obtained for instance by random replacement of a letter, produce facilitation compared to
an unrelated baseline in English, but not in Hebrew.

For the evaluation of priming effects, the same 700 English and Hebrew words were
considered as for the transposition simulation experiment. Two conditions were considered
in addition to the identity condition, a priming condition in which the prime was obtained
from a target word with a random substitution of one letter, and an unrelated condition
in which the prime was a randomly selected word of the same length. As for English the
longest length (12) was represented by a single word, no replacement was available. As a
consequence, the number of English words studied was reduced by one.

Priming was modeled, as in Baayen et al. (2011), with the compound cue strength
model ccs of Ratcliff and McKoon (1988), according to which the joint cue strength of
prime P and target T is given by the sum of all relevant activations for prime aPi and
target aTi given a prime weight w representing the duration of the prime:

ccs =
∑

i

a
(w)
Pi

a
(1−w)
Ti

(0 ≤ w ≤ 0.5). (2)

For the identity condition, the prime is the target, and the identity condition cssi reduces
to the activation of the target aT . For the prime condition, in which the letter exchange
results in a nonword, the relevant terms are aPT , the activation of the target meaning given
the prime, and aTT , the activation of the target meaning given the target. The compound
cue strength for the letter-exchange prime and its target, csse, is

ccse = a
(w)
PT a

(1−w)
TT (0 ≤ w ≤ 0.5). (3)

For the unrelated condition, there are two sources of confusion. The meaning of the un-
related prime can interfere with the meaning of the target, and the unrelated prime form
can interfere with the activation of the target meaning. Both interferences were modeled
with (2), with the index of the sum ranging over both sources of confusion. Let aPP denote
the activation of the prime meaning by the prime. The compound cue strength for the
unrelated condition, ccsu can now be defined as

cssu = a
(w)
PP a

(1−w)
TT + a

(w)
PT a

(1−w)
TT

= [a(w)
PP + a

(w)
PT ]a(1−w)

TT , (4)

subject, as before, to the condition (0 ≤ w ≤ 0.5). These equations are defined only for
positive ai. For a < 0, aw was defined as −(|a|w). The activations for the prime condition,
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Figure 5. Difference in the compound cue strength of a single letter exchange prime ccse and the
compound cue strength for the identity condition ccsi (left) and the compound cue strength of the
unrelated condition ccsu (right) for Hebrew (red) and English (blue). Points indicate significance
according to a Wilcoxon test.

the identity condition, and the unrelated condition were rescaled to the [0,1] interval, for
Hebrew and for English separately.

Figure 5 presents, for the full range of possible values of the prime weight w, the
difference in the compound cue strength of a one-letter exchange prime ccse and the com-
pound cue strength for the identity prime ccsi (left) and the compound cue strength for
the unrelated prime ccsu (right), evaluated in the median. The left panel clarifies that a
letter replacement is substantially more detrimental for Hebrew than for English. A non-
identical prime blurs the signal (Norris & Kinoshita, 2008), and for Hebrew this blurring is
substantially more harmful than for English. Not only is the magnitude of the effect larger
for Hebrew, but the effect reaches significance for smaller w, that is, for shorter prime
durations.

The right panel of Figure 5 indicates that for very small prime durations w the
compound cue strength of the letter exchange prime is greater than that of an unrelated
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prime. This effect is significant in both English and Hebrew, but it is stronger for Hebrew.
For increasing prime duration (w), the effect reverses: The unrelated prime (which is a
word) has a stronger compound cue strength than the letter-exchange nonword prime.

Estimate Std. Error t value
Intercept (Language=Hebrew, Type=Unrelated 813.1404 4.0901 198.8053
Language=English 33.7517 5.7629 5.8567
Type=Identity -7.4045 1.4443 -5.1267
Type=Letter Exchange 4.4040 1.4460 3.0458
Language=English & Type=Identity -0.7934 2.0368 -0.3895
Language=English & Type=Letter Exchange -7.9405 2.0356 -3.9008

Table 11: Simulated RTs for the priming data. The reference level for Language is Hebrew, and the
reference level for Type is Unrelated

As before, we take the log of the reciprocals of the simulated activations to obtain
masked priming response latencies. Figure 6 and Table 11 summarize the results of a linear
mixed-effects model with Item as random-effect factor fitted to these simulated reaction
times with prime weight w = 0.15. (Eight extremely small activations were reset to 0.15)
followed by rescaling to the interval [200,1000]. After a first fit of the model, potentially
harmful outliers were identified and removed, and the model was refitted.

The model indicates that the identity condition elicits shorter simulated reaction times
than the unrelated condition for both languages, without an interaction. For English, the
letter-exchange prime elicits significantly shorter reaction times than the unrelated prime.
For Hebrew, by contrast, small but significant inhibition emerges. This inhibitory effect can
be rendered non-significant by adding Gaussian response noise with a standard deviation
of 50, without affecting the significance of the facilitation for English primes compared to
the unrelated condition.

Root priming

One important question that remains is whether naive discriminative learning can also
account for root priming and pattern priming. Root priming concerns prime-target pairs
which share the same root, e.g. for the root lmd the forms lmdti (first persion perfective)
and azmr (first person imperfective). Pattern priming involves forms with different roots
that share the same vowel+affix pattern, for instance, iSmr (yishmor) and ilmd (yilmad).
To address this issue, first consider the predictions of the compound cue strength model of
Ratcliff and McKoon (1988) under the assumption that prime and target pairs are balanced
with respect to their distributional properties. For balanced primes and targets, it can be
shown that (2) leads straightforwardly to the compound cue strengths listed in Table 12.
These activations correctly predict the longest response latencies for the unrelated condition,
intermediate latencies for the root and pattern priming conditions, and the shortest latencies
for the identity condition. (In reality, perfect matching of primes and targets is impossible,
and the expected values in Table 12 will vary substantially depending on a words position in
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Figure 6. Estimated means for simulated reading latencies for Hebrew and English crossed with
prime condition (Identity, Prime (letter exchange), Unrelated).

its distributional hyperspace. Actual computational modeling will be essential for clarifying
whether naive discriminative learning will indeed be succesful in modeling pattern priming.)

For the identity condition, the compound cue strength is predicted to be the sum of
the target’s lexical and grammatical meanings. For the unrelated condition, the compound
cue strength is very small, and close to zero.

For root priming, the compound cue strength is a proportion of the target’s lexical
activation. This proportion will depend primarily on the number of shared root bigrams
and their cue strengths.

Pattern priming gives rise to a compound cue strength that is a proportion of the
activation of the target’s grammatical meaning. The magnitude of this proportion probably
depends less on letter bigrams than is the case for roots, for two reasons. First, patterns
are often co-indicated in the orthography by affixes, compare, for instance, the forms ilmd
(yilmad) and iSmr (yishmor), both third person singular imperfective forms. The patterns
yi-o and yi-a are carried solely by the word-initial and invariant i in the orthography. For
this initial i, the edge bigram #i is a potential cue, but due to preceding clitics, the i is often
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Condition Compound Cue Strength
identity full activation lexical meaning + full activation grammatical meaning
root priming partial activation lexical meaning
pattern priming partial activation grammatical meaning
unrelated near zero

Table 12: Compound cue strengths for four priming conditions under balanced prime-target pairs.

not word-initial, reducing the importance of the bigram, and enhancing the cue validity of
the i unigram. Second, some patterns are carried exclusively by a vowel, as, for instance,
in the case of the w in the absolute infinitive of Classical Hebrew (lmwd, lamod). Here, the
unigram w is likely to be a relatively important cue. As a consequence, the processing of
Hebrew patterns is expected to be less dependent on bigrams, and to be more similar to
the processing of vocalic alternations in Germanic languages.

A natural extension that might be necessary is to include not only order relations at
distance 1 (captured by bigrams), but also order relations at distance 2 (i.e., discontinuous
bigrams such as l-d) and possibly even order relations at greater distances. Such exten-
sions may be necessary not only for fine-tuning predictions for Semitic languages (the w-#
discontinuous bigram would capture the pattern for the absolute infinitive, for instance),
but may prove essential for properly modeling reduplication in languages such as Tagalog.
It is important to note that such discontinuous bigrams maintain positional information,
unlike “open bigram units” (Grainger & Whitney, 2004) which only encode relative position
but provide no information about distance.

Whether such extensions are truly necessary awaits further modeling, especially be-
cause the beauty of naive discriminative learning and also of string kernels in machine
learning is that these models do not take orthographic cues into account just by themselves,
but in their co-occurrence configurations. For ndl, this implies that next to isolated uni-
grams and isolated bigrams, co-occurrence pairs — unigram-unigram, unigram-bigram, and
bigram-bigram — are implicitly also considered. As a consequence, a word pattern such
as exemplified by the Hebrew words tizmoret, tiksoret, tisroket, tifzoret, tikrovet, tirkovet
will be detectable as long as the bigrams ti and et and the unigram o co-occur as cues
for a consistent meaning. For Hebrew, we therefore anticipate that the full range of lexical
processing effects can be understood with the present very basic cue set.

Discussion

The results of this simulation study provide the following insights: First, bigram cues
have a greater functional load in Hebrew than in English. There are relatively more frequent
bigrams in Hebrew, and the bigram cue-to-outcome association strengths in the ndl model
are stronger in the model for Hebrew than in the model for English.

Second, letter transpositions emerged as more disruptive for Hebrew than for English.
Furthermore, loanwords from English into Hebrew, adjusted to the Hebrew orthography,
and assigned frequencies sampled from observed Hebrew frequencies, are equally disrupted
by letter transpositions as non-loaned Hebrew words.
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Third, near-identity orthographic priming generates facilitation (compared to an un-
related baseline) for English but a small inhibitory effect in Hebrew.

Fourth, the empirical findings can be approximated without positing lexical access
is mediated by hierarchically organized intervening layers of syllable units and morpheme
units (Dell, 1986; Taft, 1994; Schreuder & Baayen, 1995; Baayen, Dijkstra, & Schreuder,
1997). This results is especially striking because the massive array of priming studies
for Hebrew and Arabic have been interpreted as supporting separate representations for
consonantal root morphemes as well as for vocalic pattern morphemes (see, for instance, for
Hebrew Bentin and Frost (1995); Frost, Forster, and Deutsch (1997); Frost, Deutsch, and
Forster (2000); Frost, Kugler, Deutsch, and Forster (2005); Frost (2012) and for Arabic,
e.g., Boudelaa and Marslen-Wilson (2001)).

Interestingly, Frost (2012) accepts as given that indeed root and pattern morphemes
indeed mediate lexical access in Semitic. This forces him to assume that the flexible letter
position coding that works so well within interactive activation frameworks for explaining
priming and transposition effects in English must be language-specific. He therefore argues
that for Hebrew and Arabic, some form of a rigid, position specific coding system must be
in place. Without such a rigid coding system, it would be impossible to access the proper
root and pattern morphemes, which in turn would be the gatekeepers to meaning.

In the naive discriminative learning approach pursued in the present study, which is
basically parameter free (for priming, a parameter for the prime duration is required), there
is no strict positional encoding. In fact, the problem of letter-position flexibility does not
arise at all. Letter unigrams encode which letters are present, and letter bigrams encode
relative positions of letter pairs. Relative position information turns out to carry a much
heavier functional load in Hebrew than in English. The greater functional load of letter
pairs translates straightforwardly into catastrophic effects of letter transpositions, and the
absence of one-letter-exchange form priming.

It is therefore not necessary to argue that some languages would encode letter positions
flexibly and others rigidly. Instead, all that is necessary is a sufficiently simple and open
universal learning algorithm that is sensitive to the (potentially very different) distributional
properties characterizing the mapping of form onto meaning in different languages. The
crucial insight is that the similarity space provided by letter bigrams is sufficiently sparse
to allow small sets of bigrams to become sufficiently reliable cues to jointly activate the
intended meanings.
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